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INVERSE PROBLEM FOR STIELTJES STRING DAMPED
AT ONE END

OLGA BOYKO AND VYACHESLAV PIVOVARCHIK

Abstract. Small transversal vibrations of the Stieltjes string, i.e., an elastic thread
bearing point masses is considered for the case of one end being fixed and the other
end moving with viscous friction in the direction orthogonal to the equilibrium po-
sition of the string. The inverse problem of recovering the masses, the lengths of
subintervals and the coefficient of damping by the spectrum of vibrations of such a
string and its total length is solved.

1. Introduction

The equation

(1.1)
∂2u

∂M(s)∂s
− ∂2u

∂t2
= 0

describes small transversal vibrations of a stretched inhomogeneous string. Here t stands
for the time, s for the longitudinal coordinate, u(s, t) is the transverse displacement,
M(s) is a nonnegative nondecreasing function on [0, l] describing the mass distribution.
Substituting u(s, t) = y(λ, s)eiλt into (1.1) we obtain the following equation for the
amplitude function y(λ, s):

(1.2)
dy′

dM(s)
+ λ2y = 0.

The operation d
dM(s) has the following meaning, see [1]. If M(s) is an absolutely con-

tinuous function and M ′(s) > 0 almost everywhere on [0, l] then the operation acts on
absolutely continuous functions which have absolutely continuous first order derivatives,
and the operation is given by the equation

(1.3)
dy′

dM(s)
a.e.=

y′′

M ′(s)
.

Here a.e. means almost everywhere. In the general case the operation is defined only
on the so-called prolonged functions u[s] which are obtained from usual functions u(s)
(0 < s < l) by attaching two arbitrary numbers u′−(0) and u′+(l) which are called the
left derivative at s = 0 and the right derivative at s = l, respectively. Then u[s] =
{u(s), u′−(0), u′+(l)}. Under the domain of the operation we mean the set DM of all
complex-valued functions u[s] of the form

(1.4) u(s) = a + bs−
∫ s

0

(s− p)g(p)dM(p) (0 < s < l),

2000 Mathematics Subject Classification. Primary 34K29; Secondary 34K10, 26C10.
Key words and phrases. Stieltjes string, continued fractions, spectrum, Dirichlet boundary con-

dition, Nevanlinna function, Hermite-Biehler polynomial, damped vibrations, Lagrange interpolating
polynomial.

10



INVERSE PROBLEM FOR STIELTJES STRING DAMPED AT ONE END 11

(1.5) u′−(0) = b, u′+(l) = b−
∫ l

0

g(p)dM(p),

where a and b are complex numbers, g(p) is a complex-valued function M -summable on
[0, l]. The operation is defined by the equality

− du′

dM(s)
= g(s).

We assume M(s + 0) = M(s) for all s ∈ [0, l) by definition. If M(s0 − 0) < M(s0) then
there is a point (concentrated) mass (M(s0)−M(s0− 0)) at s = s0 ∈ (0, l]. If M(0) > 0
then there is a point mass M(0) at s = 0. The horizontal intervals (M(s) = const)
correspond to massless intervals (where the string appears to be a thread). In [1] the
notion of a regular string was introduced: if l < ∞ and M(l) < ∞, then the string is
said to be regular. A more general class of strings was introduced in [2], [3]. The right
end l of the string is said to be regular if l < ∞ and in some neighborhood (l − ε, l) the
mass

∫ l

l−ε
dM(s) is finite. A (possibly half-infinite) string with the right end regular and

with finite momentum
∫ l

l1
(l−s)dM(s) is said to be an S-string. Here l1 ≥ −∞. It is easy

to see that such a string has finite mass
∫ l

l1
dM(s) but the length of it can be infinite.

General properties of such strings were investigated in [4].
Let us suppose that the left end of the string described by equation (1.1) is fixed.

Then we have the boundary condition at the left

u(0, t) = 0.

The right end is supposed to be able to move with viscous friction in the direction
orthogonal to the equilibrium position of the string. Then we have

∂u(s, t)
∂s

∣∣∣∣
s=l+0

+ ν
∂u(s, t)

∂t

∣∣∣∣
s=l+0

= 0.

Here ν > 0 is the coefficient of damping. Substituting u(s, t) = eiλty(λ, s) into these
boundary conditions we obtain taking into account (1.2) that

(1.6)
dy′

dM(s)
+ λ2y = 0,

(1.7) y′+(λ, l) + iλνy(λ, l) = 0,

(1.8) y(λ, 0) = 0.

As usual, by eigenfunction we mean a function u[s] defined by (1.4), (1.5) which is
not equal to 0 almost everywhere and satisfies (1.6)–(1.8). The corresponding value of
λ is said to be the corresponding eigenvalue. Such a problem but with the left end
free was considered in [5], [2], [3]. In [5] necessary and sufficient conditions were given
for a function to be a characteristic function, i.e., the function the set of zeros of which
coincides with the spectrum of the problem, for a regular string with the left end free and
the right one damped. In [2], [3] for a class of S-strings, necessary and sufficient conditions
were given in an explicit form for a sequence of complex numbers to be spectrum of the
problem. However, the method of recovering the density of the string was given in [5]
only for a certain subclass of regular strings.

If the density of a string satisfies the conditions ρ(s) def= M ′(s) ≥ ε > 0 and ρ(s) ∈
W 2

2 (0, l), then we apply the Liouville transformation [6, p. 292],

(1.9) x(s) =
∫ s

0

ρ
1
2 (s′)ds′,

(1.10) v(λ, x) = ρ
1
4 (s(x))y(λ, s(x))
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to reduce the problem (1.6)–(1.8) to the following one:

(1.11) v′′ + λ2v − q(x)v = 0,

(1.12) v(λ, 0) = 0,

(1.13) v′(λ, a) + (iαλ + β) y(λ, a) = 0,

where ′ means derivative with respect to the new variable x and

(1.14) a =
∫ l

0

ρ
1
2 (s)ds > 0,

(1.15) ρ[x] = ρ(s(x)),

(1.16) q(x) = ρ−
1
4 [x]

d2

dx2
ρ

1
4 [x],

(1.17) β = −1
4
ρ−1[a]

dρ[x]
dx

∣∣∣∣
x=a−0

,

(1.18) α = ρ−
1
2 [a]µ > 0.

From (1.16) it follows that q(x) ∈ L2(0, a). Since the spectrum of problem (1.6)–(1.8) is
invariant under transformation (1.9)–(1.10), one can investigate the spectrum of problem
(1.11)–(1.13). This problem has appeared in many papers [7], [8], [9], [10] and others.
The case of a string bearing a point mass at the right end was considered in [11] and the
case of a string with a massless interval at the right end was considered in [12]. By inverse
problem we mean recovering the string parameters using the spectrum of its vibrations
and some additional information. In [9], [10] the inverse problem was solved for smooth
strings described by (1.11)–(1.13).

The opposite case of extremely nonsmooth so-called Stieltjes string, i.e., a thread
bearing point masses, was considered in [13] and [14] assuming absence of damping.
The inverse problem for the Stieltjes string with the left end free and the right end
damped is a particular case of the inverse problem solved in [5]. It should be mentioned
that the case of Stieltjes strings of finite number of masses with point-wise (i.e. one
dimensional) damping at the right end can be reduced also to the problem of damped
oscillators considered in [15], [16]. Another approach to inverse problem for a damped
finite dimensional system was developed in [17] where the given data included not only
eigenvalues but also the so-called Jordan pairs.

In the present paper we consider the inverse problem for the Stieltjes string with the
left end fixed and the right end damped. Throughout the paper we assume the total
length of the string as well as the number of the point masses to be finite. In Section
2 we describe the spectrum of a damped Stieltjes string in terms of continued fractions
using the method of [13] based on the results of [18]. In Section 3 we give a solution
of the corresponding inverse problem. By inverse problem here we mean recovering the
values of point masses, the lengths of the subintervals between them and the coefficient
of damping by the spectrum of vibrations and the total length of the string.

2. Direct problem for a damped Stieltjes string

Like in [13] we suppose the string to be a thread (i.e. a string of zero density) bearing
a finite number of point masses. Let lk (k = 0, 1, . . . , n) be the lengths of the intervals
of zero density and let mk (k = 1, 2, . . . , n + 1) be values of the masses separating the
intervals (lk lies between mk and mk+1, the last mass has only one thread at the left).
We assume mk > 0 for k = 1, 2, . . . , n and mn+1 ≥ 0. Let us denote by α > 0 the
coefficient of damping (viscous friction) of the point mass mn+1. Denote by vk(t) the
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transversal displacements of the point masses at the time t. We assume the thread to
be stretched by the force equal to 1. Taking into account that on the intervals of zero
density the general solution of (1.1) is a linear function of s multiplied by a function of
t we obtain the following recurrences:

(2.1)
vk(t)− vk+1(t)

lk
+

vk(t)− vk−1(t)
lk−1

+ mkv′′k (t) = 0 (k = 1, 2, . . . , n).

We impose the Dirichlet boundary condition at the left:

(2.2) v0(t) = 0,

which means that the left end is fixed. We assume that the right end bearing the
mass mn+1 can move with damping (viscous friction) in the direction orthogonal to the
equilibrium position of the string:

(2.3)
vn+1(t)− vn(t)

ln
+ mn+1v

′′
n+1(t) + αv′n+1 = 0,

where α is a positive constant proportional to the coefficient of damping.
Substituting vk(t) = ukeiλt into (2.1)–(2.3) we obtain

(2.4)
uk − uk+1

lk
+

uk − uk−1

lk−1
−mkλ2uk = 0 (k = 1, 2, . . . , n),

(2.5) u0 = 0,

(2.6)
un+1 − un

ln
+ (−mn+1λ

2 + iλα)un+1 = 0.

The relation between uk and u1 involves only even powers of λ, therefore we can write
following [13] that

uk = R2k−2(λ2)u1 (k = 1, 2, . . . , n),
where R2k−2(λ2) is a polynomial of degree 2k − 2 obtained by (2.4). Also we define the
corresponding polynomials of odd index

R2k−1(λ2) =
R2k(λ2)−R2k−2(λ2)

lk
.

Due to (2.4) the polynomials Rk satisfy the recurrence relations

R2k−1(λ2) = −λ2mkR2k−2(λ2) + R2k−3(λ2),

R2k(λ2) = lkR2k−1(λ2) + R2k−2(λ2) (k = 1, 2, . . . , n),

R−1(λ2) =
1
l0

, R0(λ2) = 1.

Using boundary condition (2.6) we obtain

(2.7) R2n−1(λ2) + (−mn+1λ
2 + iλα)R2n(λ2) = 0.

It is shown in [13] that the polynomials R2n(λ2) and R2n−1(λ2) have no common zeros
and the ratio R2n(λ2)

R2n−1(λ2) can be expanded into a continued fraction,

(2.8)
R2n(λ2)

R2n−1(λ2)
= ln +

1
−mnλ2 + 1

ln−1+
1

−mn−1λ2+...+ 1
l1+ 1

−m1λ2+ 1
l0

.

The eigenvalues of problem (2.4)–(2.6) are nothing else but the zeros of the polynomial

(2.9) φ(λ) = R2n−1(λ2) + (−mn+1λ
2 + iλα)R2n(λ2).
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Let us introduce the following even polynomials

(2.10) P (λ2) =
φ(λ) + φ(−λ)

2
= R2n−1(λ2)−mn+1λ

2R2n(λ2),

(2.11) Q(λ2) =
φ(λ)− φ(−λ)

2iλ
= αR2n(λ2).

We can consider these polynomials as functions of z = λ2.

Definition 2.1. The function ω(λ) is said to be a Nevanlinna function (or an R-function
in terms of [1]) if the following is verified:
1) it is analytic in the half-planes Imλ > 0 and Imλ < 0;
2) ω(λ) = ω(λ) (Imλ 6= 0);
3) Imλ Im ω(λ) ≥ 0 for Imλ 6= 0.

Definition 2.2. (see [1]). The Nevanlinna function ω(λ) is said to be an S-function if
ω(λ) ≥ 0 for λ < 0.

Lemma 2.1. The function Q(z)
P (z) is an S-function.

Proof. It is clear that

(2.12)
Q(z)
P (z)

= α

(
−mn+1z +

(
R2n(z)

R2n−1(z)

)−1)−1

.

It is known, see [13, p. 334], that R2n(z) and R2n−1(z) are of the form

R2n(z) = d1

n∏
k=1

(−z + ν2
k), R2n−1(z) = d2

n∏
k=1

(−z + µ2
k)

where
0 < µ2

1 < ν2
1 < µ2

2 < ν2
2 < · · · < µ2

n < ν2
n

and d1 > 0, d2 > 0. That means [21] that R2n(z)
R2n−1(z) is an S-function and, consequently,

Im
(
−mn+1z +

(
R2n(z)

R2n−1(z)

)−1)
< 0 for Im z > 0

and

Im
(
−mn+1z +

(
R2n(z)

R2n−1(z)

)−1)−1

> 0 for Im z > 0.

It is also clear that

−mn+1z +
(

R2n(z)
R2n−1(z)

)−1

> 0 for z < 0.

The assertion of the lemma follows. �

Corollary 2.1. λQ(λ2)
P (λ2) is a Nevanlinna function.

Proof. According to Lemma 5.1 in [1] the assertion of the corollary is due to Lemma 2.1.
�

Definition 2.3. A polynomial is said to be real if it takes real values on the real axis.

Definition 2.4. A polynomial is said to be Hermite-Biehler (HB) if all its zeros lie in
the open upper half-plane.

It should be mentioned that the transformation λ → iλ transfers a HB polynomial
into a so-called Hurwitz polynomial [19].

Theorem 2.1. (Hermite-Biehler theorem, see [20], [21]). In order that the polynomial

ω (λ) = P (λ) + iQ(λ)
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where P (λ) and Q(λ) are real polynomials, not have any zeros in the closed lower half-
plane Im λ ≤ 0, i.e be HB, it is necessary and sufficient that the following conditions be
satisfied:

1) the polynomials P (λ) and Q(λ) have only simple real zeros, while these zeros separate
one another, i.e., between two successive zeros of one of these polynomials there lies
exactly one zero of the other one;

2) at some point λ0 of the real axis,

(2.13) Q′(λ0)P (λ0)−Q(λ0)P ′(λ0) > 0.

The fact that the two polynomials satisfy condition (1) will be expressed by saying
that “the zeros of the polynomials P (λ) and Q(λ) are interlaced”.

Now Lemma 2.1 and Theorem 2.1 imply the following result.

Corollary 2.2. The polynomial P (λ2) + iλQ(λ2) belongs to the Hermite-Biehler class.

Definition 2.5. The polynomial ω(λ) is said to be symmetric if ω(−λ) = ω(λ) for all
λ ∈ C. The polynomial ω(λ) is said to belong to the SHB class if it is symmetric and
belongs to the Hermite-Biehler class.

Corollary 2.3. The polynomial P (λ2) + iλQ(λ2) belongs to the SHB class.

Corollary 2.4. If mn+1 > 0, then the eigenvalues of problem (2.4)–(2.6) satisfy the
following conditions:

1) Imλk > 0 for k = ±1,±2, . . . ,±(n + 1);
2) λ−k = −λk for not pure imaginary λ−k and the multiplicities of symmetrically

located eigenvalues are equal.
If mn+1 = 0, then the eigenvalues of problem (2.4)–(2.6) satisfy the conditions:

1) Imλk > 0 for k = 0,±1,±2, . . . ,±n;
2) λ−k = −λk for not pure imaginary λ−k and the multiplicities of symmetrically

located eigenvalues are equal.

3. Inverse problem for a Stieltjes string damped at the right end

By inverse problem we mean recovering the parameters of the problems of small vibra-
tions of a Stieltjes string with the left end fixed and the right end damped, i.e. problem
(2.4)–(2.6). The parameters to be recovered are {mk}, (k = 1, 2, . . . , n + 1), {lk} (k =
0, 1, . . . , n) and α. As the given data we use the spectrum {λk} (k = ±1,±2, . . . ,±(n+1)
if mn+1 6= 0 and k = 0,±1,±2, . . . ,±n if mn+1 = 0) of problem (2.4)–(2.6) and the total
length of the string l = l0 + l1 + · · ·+ ln.

Theorem 3.1. Let l > 0 be given together with the set of complex numbers {λk} (k =
±1,±2, . . . ,±(n + 1)) which satisfy the conditions

1) Imλk > 0 for k = ±1,±2, . . . ,±(n + 1);
2) λ−k = −λk for not pure imaginary λ−k and the multiplicities of symmetrically

located numbers are equal.
Then there exists a unique Stieltjes string, i.e., a unique set of intervals lk > 0 (k =

0, 1, . . . , n) of the total length
n∑

k=0

lk = l, a unique set of masses mk > 0 (k = 1, 2, . . . , n+1)

and a unique positive number α which generate problem (2.4)–(2.6) with the spectrum
coinciding with the set {λk}.

Proof. Let us construct the polynomial

(3.1) Φ(λ) =
n+1∏

−n−1, k 6=0

(
1− λ

λk

)
.
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Due to the symmetry of the zeros of this polynomial the following even polynomials are
real,

(3.2) P (λ2) =
Φ(λ) + Φ(−λ)

2
and

(3.3) Q(λ2) =
Φ(λ)− Φ(−λ)

2iλ
.

Set

(3.4) α =
Q(0)

l
.

Using (3.3) and (3.1) we obtain

(3.5) α =
i

l

n+1∑
k=−n−1,k 6=0

1
λk

and because of the symmetry in location of the zeros of the polynomial Φ(λ) and condi-
tions 1) and 2) we conclude that α > 0. Set

(3.6) mn+1 = −α lim
|λ|→∞

P (λ2)
λ2Q(λ2)

.

The limit in the right-hand side of (3.6) exists because the degree of P (λ2) is 2n + 2 and
the degree of Q(λ2) is 2n. Moreover,

P (λ2)
λ2Q(λ2)

=
|λ|→∞

(
i

n+1∑
k=−n−1,k 6=0

λk

)−1

+ o(1).

Conditions 1) and 2) imply

i

n+1∑
k=−n−1,k 6=0

λk < 0,

and according to (3.6) mn+1 > 0.
Since P (λ2)+iλQ(λ2) = Φ(λ) is SHB, P (λ2)+iλα−1Q(λ2) is also an SHB polynomial.

We consider the polynomial φ(λ, mn+1) := P (λ2) + mn+1α
−1λ2Q(λ2) + iλα−1Q(λ2) as

a perturbation of P (λ2) + iλα−1Q(λ2). Since φ(λ, η) is a polynomial with respect to the
variables λ and η, the zeros of it in λ-plane are piece-wise analytic and continuous in η
[22]. The zeros do not cross the real axis when η changes from 0 to mn+1. Otherwise,
we would have P (λ2) = λQ(λ2) = 0 for some η > 0 and some real λ and, therefore,
Φ(λ) = 0 for this real λ, which contradicts condition 1). Therefore, φ(λ, mn+1) ∈ SHB
for each mn+1 > 0. This implies [21, p. 308] that

α−1λQ(λ2)
P (λ2) + mn+1λ2α−1Q(λ2)

is a Nevanlinna function. That means that

0 < τ2
1 < ν2

1 < τ2
2 < · · · < ν2

n,

where νk are the zeros of Q(λ2) and τk are the zeros of P (λ2) + mn+1λ
2α−1Q(λ2).

Therefore,

(3.7)
α−1Q(λ)

P (λ) + mn+1λα−1Q(λ)
.

is a Nevanlinna function also. Now Lemma 5.1 in [1] implies that

(3.8)
α−1Q(λ)

P (λ) + mn+1λα−1Q(λ)
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in an S-function. Then according to [13]

(3.9)
α−1Q(λ)

P (λ) + mn+1λα−1Q(λ)
= an +

1
−bnλ + 1

an−1+
1

−bn−1λ+...+ 1
a1+ 1

−b1λ+ 1
a0

with ak > 0 and bk > 0 for each k.
We identify ak as the length of k-th interval and bk as the k-th mass of a Stieltjes

string, i.e.,

(3.10)
α−1Q(λ2)

P (λ2) + mn+1λ2α−1Q(λ2)
=

R2n(λ2)
R2n−1(λ2)

,

where R2n(λ2) and R2n−1(λ2) are the corresponding polynomials for this Stieltjes string.
Consequently,

α−1Q(λ2) = TR2n(λ2),

P (λ2) + mn+1λ
2α−1Q(λ2) = TR2n−1(λ2),

where T is a positive constant. Therefore,

Φ(λ) = P (λ2) + iλQ(λ2) = T (R2n−1(λ2) + (−mn+1λ
2 + iλα)R2n(λ2)).

This means according to (2.7) that the set {λk} is the spectrum of the problem (2.4)–
(2.6) with the masses bk (k = 1, 2, . . . , n) and mn+1 and the lengths ak (k = 0, 1, . . . , n)
damped at the right with the coefficient of damping α. The length of this string according
to [13] is equal to R2n(0)

R2n−1(0)
. From (3.10) we obtain

(3.11)
R2n(0)

R2n−1(0)
=

Q(0)
αP (0)

=
Q(0)

α
.

Due to (3.4), the right-hand side of (3.11) is equal to l.
To prove uniqueness suppose there exists another Stieltjes string of the same length

l and with the masses {m̃k}n+1
k=1 , the intervals {l̃k}n

k=0 (
n∑

k=0

l̃k = l), with the coefficient

α̃ > 0 and with the same spectrum {λk}k=n+1
k=−(n+1),k 6=0. Then solving the corresponding

direct problem we obtain the following analogue of (2.8):

(3.12)
R̃2n(λ2)

R̃2n−1(λ2)
= l̃n +

1
−m̃nλ2 + 1

l̃n−1+
1

−m̃n−1λ2+...+ 1
l̃1+ 1

−m̃1λ2+ 1
l̃0

.

Here R̃2n(λ2) and R̃2n−1(λ2) are the polynomials described in Section 2 for the problem
(2.4)–(2.6) generated by the sets {m̃k}n+1

k=1 , {l̃k}n
k=0 and the coefficient α̃. The spectrum of

problem (2.4)–(2.6) generated by {m̃k}n+1
k=1 , {l̃k}n

k=0, α̃ is the set of zeros of the polynomial

(3.13) φ̃(λ) = R̃2n−1(λ2) + (−m̃n+1λ
2 + iλα̃)R̃2n(λ2).

The set of zeros of this polynomial coincides with {λk}k=n+1
k=−(n+1),k 6=0 and, therefore,

(3.14) φ̃(λ) = Cφ(λ).

The constant C is positive because φ̃(0) = R̃2n−1(0) > 0 and φ(0) = R2n−1(0) > 0.
From (3.14) we obtain

(3.15) α̃R̃2n(λ2) = CαR2n(λ2)

and

(3.16) R̃2n−1(λ2)− m̃n+1λ
2R̃2n(λ2) = CR2n−1(λ2)− Cmn+1λ

2R2n(λ2).
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Equations (3.15) and (3.16) imply

(3.17)
R̃2n−1(λ2)
α̃R̃2n(λ2)

− m̃n+1λ
2

α̃
=

R2n−1(λ2)
αR2n(λ2)

− mn+1λ
2

α
.

Since the polynomials R̃2n(λ2), R̃2n−1(λ2), R2n(λ2) and R2n−1(λ2) are of the same
degree, (3.17) implies

(3.18)
m̃n+1

α̃
=

mn+1

α

and

(3.19)
R̃2n−1(λ2)
α̃R̃2n(λ2)

=
R2n−1(λ2)
αR2n(λ2)

.

By conditions the total length of the string is l, therefore,

(3.20)
R̃2n−1(0)
R̃2n(0)

=
R2n−1(0)
R2n(0)

=
1
l
.

Using (3.20) we obtain from (3.19) that α̃ = α. Then (3.18) implies m̃n+1 = mn+1 and
(3.19) implies

(3.21)
R̃2n−1(λ2)
R̃2n(λ2)

=
R2n−1(λ2)
R2n(λ2)

.

Since the left-hand sides of (2.8) and of (3.12) are the same, we conclude that the right-
hand sides coincide also. Theorem 3.1 is proved. �

In case of mn+1 = 0 using similar arguments we obtain the following analogue of
Corollary 2.4 and Theorem 3.1.

Theorem 3.2. In order for the set {λk} (k = 0,±1,±2, . . . ,±n) to be the spectrum
of problem (2.4)–(2.6) with mn+1 = 0 and given total length l > 0 it is necessary and
sufficient that the following conditions be satisfied:

1) Imλk > 0 for k = 0,±1,±2, . . . ,±n;
2) λ−k = −λk for not pure imaginary λ−k and the multiplicities of symmetrically

located elements of the set are equal.
If these conditions are satisfied then there exists an unique set {mk}n

1 , a unique set

{lk}n
0 with

n∑
k=0

lk = l and unique α > 0 which generate problem (2.4)–(2.6) on the interval

l with mn+1 = 0 and with the spectrum {λk}.
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