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ON RANK ONE PERTURBATION OF CONTINUOUS SPECTRUM
WHICH GENERATES PRESCRIBED FINITE POINT SPECTRUM

F. DIABA AND E. CHEREMNIKH

Dedicated to the 100th anniversary of Mark Krein.

ABSTRACT. The perturbations of Nevanlinna type functions which preserve the set
of zeros of this function or add to this set new points are discussed.

1. STATEMENT OF THE PROBLEM

The point spectrum in the case of rank one perturbation of purely continuous spectrum
may be very rich. In general, this spectrum contains the eigenvalues as well the spectral
singularities. We will not give a review of the references (we only indicate [1] and [2]).

Let us consider the case where non-perturbed continuous spectrum coincides with the
half line [0, 00). The eigenvalues of the perturbed operator is obtained as a set of zeros
of the function

(1) 50 =1+ [ i ¢z

o T—¢
(called the “denominator” of the resolvent). Some properties of such function one can
find in [4]. Spectral singularities of the perturbed operator coincide with zeros of the
functions

(1.2) di(o) = hnilo d(c+ie), o>0.

We discuss following questions: how to describe a) perturbations of the function h(7)
such that the perturbed function §(¢) has new prescribed zeros without changing the
other zeros; b) all perturbations of the function h(7), which does not change the set of
zeros of the function §(¢).

The set of zeros of the function § (o) or §_(o), ¢ > 0, are considered in the same
way.

2. THE CONSTRUCTION OF THE FUNCTION 4(¢) WITHOUT ZEROS OR WITH A
PRESCRIBED FINITE SET OF ZEROS

Let us consider, in the space L?(0, ), the operator generated by the expression
ly=—y", >0
2.1 ’
21) { y(0) + (¥:1m)L2(0,00) = 0

with a non-local boundary condition. The function to study (the “denominator” of the
resolvent) is

(22 s =1+ [ 2R ¢ oo
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where 7y(7) denotes the sin-Fourier transformation of the function 7(z). Note that
n € L*(0,00), v € L2(0,00), p(7) = £/7 and that the function (2.2) is of the form (1.1).

Lemma 2.1. Leta; € C, 7; > 0,4 =1,...,n, be arbitrary numbers, then the function

(VC +iar)...(vC +iay)
(VC+iym)...(WC+iym)’

admits the representation (2.2).

(2.3) 5(¢) = Imy/C >0,

Proof. The expression (2.3) is a rational function of 1/, so, the decomposition into simple
fractions gives

A, A

) = - . m
© 1+\/Z+¢ﬁ+ +\/Z+iﬁ’

Ay, = const.
Using the identity

(2.4)

Imy/(¢ >0, 79 >0,

( 1 1 ) B )
T+ Lg_\ﬁ—i—i\/?o’

we obtain the representation (2.2) where

Lemma is proved. O

If Imv/o + de > 0 then lim._, 19 Vo + ic = £1/0. So, due to (1.2) and (2.3) we have

(Vo £iar) ... (/T £ ian)
(Vo Eiym)--- (Vo £iy/ra)’

The representation (2.3)—(2.5) prove the following proposition.

(2.5) 0+(0) = o> 0.

Proposition 2.2. Let the representation (2.3) hold. Then fork =1,...,n, { &€ [0,00)
and o > 0, we have the following:

1) if ap > 0 then 6(¢) # 0, 04(0) # 0, 6_(0) # 0,

2) if ar, < 0 then 6(—a2) =0, d4(0) #0, 6_(c) # 0,

3) if ar, = iy, o > 0 then 6(¢) # 0, 04(az) =0,_(c) #0 .

As a consequence one can give examples of the function v(7) such that the functions

0(C), 04+(o) and d_(o) have a prescribed set of zeros.
In view of the condition 7; > 0, i = 1,...,n, the function 6(¢) is bounded,

sup [8(¢)] < o0
¢#[0,50)

(see (2.3)). We denote the relation (1.1) by §(¢) ~ h(7) and the Hilbert transformation
by

Hh(o) =V.p. /OO h(7) dr, o>0.

0 T — 0

Theorem 2.3. Let §1(C) ~ hi(7) and 52(C) ~ ha(7). Suppose that hy o € L?(0,00) N
C1[0,00) and that the function 62(¢) is bounded in the domain ¢ ¢ [0,00).
Let §(¢) ~ h(7) where

(2.6) h(T) = hl (T) + hQ(T) + h1(7'>7‘[h2(7') + hg(T)th (T)
Then 6(¢) = 61(¢)d2(¢)-
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Proof. Denote §(¢) = §1(¢)d2(¢), then we must prove that §(¢) = §(¢). According to the
definition (2.2) we have

= = (1) % ho(7) / = ha(7)

2. = M) g =1 A7) M)
@D K0 = b0+ [ Par=1s [F 20 s [ 20
Since hy 2 € L*(0, 00), the integrals / MdT belong to a Hardy space in the domain

o T~

Im¢ > 0 and Im¢ < 0. The function 5~(( ) —1 belongs to this Hardy space, too. Therefore,
there exists a function h € L?(—o0,c0) such that

~ > h(r
5(()71:/0 T(_)g_dT.
Here, due to (2.7), h(c) = 2%” (&.(0) 4 (0)) =0, 0 < 0. In view of hy 2 € C1[0, 00),
the limit-values (like (1.2)) exist as continuous functions, for example,
0,+(0) =1xmihi(0) + Hhi(o), o >0.
So, for o > 0 we have (see (2.6)—(2.7))
2mih(c) = 64 (0) — 6_(0)
= 2mihga(0) + +(1 + wiha (o) + Hha(o))(mwihi (o) + Hhi(0))
— (1 = wihe(o) + Hho(o))(—mihy (o) + Hhi(0))
= 2mih(o),

i.e., h(c) = h(c), o > 0. Therefore,
Ty R )
5(C)—1+/_OO T_CdT_1+./C) T_Cdf_é(g).

Theorem is proved. O

Corollary 2.4. To add a finite set of zeros to the function 61(¢) ~ hi(T) one can use
the function 62(C) ~ ho(7) with this set of zeros and replace the function hi(7) by the
function h(T) (see (2.6)).

3. THE PERTURBATION WHICH PRESERVES THE SET OF ZEROS

We consider the perturbation A~(7) of the function «(7) in the representation

(3.1) 5O =1+ /000 :(T)Cﬁdn ¢ € 10,00).

To simplify the calculations, we will study the function 64(c), o > 0, only (the
functions §4(0), o > 0 and 6(¢), ¢ & [0,00) are considered similarly). We are looking
for a function A~(7) such that replacing v(7) with v(7) + Av(7) in (3.1) we obtain the
same set of zeros for the function d (o), o > 0.

Let 0 < 01 < -+ < 0, be the set of all zeros of the function 6, (c), o > 0. We suppose
that v € C'[0, 0] and that the multiplicities of the zeros are equal to 1.

We need the notations

Ron(r) = L) =7(0)
(3.2) T—o
Ry(1) = (1) + 251 ARav(7),

where the coefficients A, = const are defined below.

)
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Lemma 3.1. Suppose that o; > 0, j = 1,...,n, are arbitrary numbers. Let p(1) =

H;-lzl(T —0j), (1) = p(1)/(1 + 7)". Then there exists the coefficients A = const and

polynomials f;(7) of degree n — 1, f;(c;) =1, fi(on) =1,k #j, k,j =1,...,n, such
that following decomposition holds:

(3.3) W) =D (0 fi(r) + a(r)Ry(7).
j=1
Proof. We define the values A; as coefficients of the decomposition into simple fractions,
1 “LA
— =1 .
T) + ; T —0;
The decomposition (3.3) follows from the identity

0 - Lot s o a0

q(7)
then fj(T) = AjT — o .
Lemma is proved. O

Note that the set of numbers ~y(01),...,7(0,) and the function I'(7) = Ry(r) are
independents composants of the decomposition (3.3) of the function (7).
Obviously, the function f;(7) admits a decomposition in the form

n

My,
3.4 — = t.
(3.4) ; ] M;; = cons
The functions f1(7),..., fn(7) are linearly independents, so
(3.5) det(M,;) # 0.

In view of (3.1) and the relation (1) = Z;‘L=1 v(0;) (1) +q(m)I'(r) we have for o > 0
that

3O o) =1+ 3@+ ([ Arevrar) TR

T—0
i=1 +

where

(3.7) (o) = < OOO Wﬁm) , o>0.

— .
Lemma 3.2. Let £ = (If (0;)). Then det L # 0.

Proof. Taking the derivative of the equality (2.4) in the case \/{ — /o with respect to
79 and substituting 7o = 1 we obtain for [ = 2,3, ...

1 i N
(o), Z b= e
In view of (3.4), (3.7),

iﬁ(@Z(Tiav >+ ZMl’<Tia (r + 1) ) ZL

n

+ pt

Li,a - ZMl’Pal
l=a

where
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Obviously, the matrix

L+
11 ... . P+
. ( Mlz Mgl M,” @
Lr—iz_l te nn
Pa n P’rirn
is nondegenerate (see (
So, the column is a nondegenerate stable (with respect to o) transfor-
(o )
u(o)
mation of the column ; . Since u(o;) # u(oj), i # j, we have det L # 0
u(o)"
because
u(or) ... u(og)
# 0.
u(o)™ ... u(op)"
Lemma is proved. O

We consider two functions
[eS) oo .0
50 =1+ [ 2 ran w0 =1+ [T T vman cg oo
0 - 0
Obviously, the set {o;} is a set of zeros of the function ;4 (o) iff

64 (0)

0< q(o)

, o>0.

Lemma 3.3. Let {0;} be a set of zeros of 6% (o). Then {o;} is a set of zeros of 6, (o) iff

i+ ()
3.8 >0, o>0,
(38) q(o)
(3.9) 64(0) =83 (0) =0, j=1,...,n.
Note that due the identity
(3.10) L o) = L0 + —— (5 () = &0 (0))
' g(o) " glo) o)\ "
the condition inf g o) ’ q((a)) > 0 follows from the condition
50
inf 0+(9) > 1 inf +(9)
0.00) | (o) |~ 2 ©0.00) | q(o)
if
1 1 89 (o)
3.11 su 50500>‘<inf 220
( ) (o7£)’qw)( +(0) = 04(0) 2 (0, | g(o)
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Lemma 3.4. 1) If v(7), 7°(7) are arbitrary functions, then

S4(05) = 6%(05) =>_ (Vo) =7°(03)) I (o)
(3.12) i=1

+ /00 Ro,q(T) (F(T) — FO(T)) rdr,
0

where T’ = Ry, I'? = RAO.
2) If 64 (0;) = 0%(0;) =0, then

L (65:(0) — 02(0)) = 3 (7(00) — 1°(02)) RE ()
q(o) P
o +/ R (Roq(T)) (F(T) - FO(T)) Jrdr + (/OO 7F(T) — () ﬁdr)
0 7 0 T—0 +

Proof. 1) The decomposition (3.6) for the functions d4 (), 89 (o) follow from the equality
(3.12).

2) The equality 64 (0;) = 0 signifies (see (3.6))
(3.14) 1—|—Z’yatl+ aj) / Ro;q( TIWTdr =0, i=1,...,n.

Like (3.3) we introduce the decompositions

7) =301 (@) f(0) + d()RI; (0).
1= f0)+a(0)

T) = Z Ro;q(7)fi(0) + ¢(0)R (Roq(7)) -

Subtracting from the equation (see (3.6))

U)“Fé’?(fh‘) / Roq(T)T(1)/7dr + q(0 )(/Ooo WdT)+

T—0

the equations (3.14) which are multiplied by f;(c) we obtain

(3.15) O+lo >—1+Z’yaz RIf (o / R (Roq(r (T)\Edwr(/ooo Wdf) .
+

q(0) T—0

39 (o)
q(o)

Lemma is proved. O

The same decomposition for the function

gives (3.13).

Since det(l; (o)) # 0, the relation

(3.16) > (o) =4°(00) I (o)) / Ro,q(7) (T(r) = T%)) V/rdr =0
i=1
and (3.13) define uniquely a linear operator Nt such that

~ (354(0) = 82(0)) = (V4 (T = T))().

(3.17) e
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Let

IT lh=sup (14 DI + sup ((1+7/7) (7))

0500 [0;00

Theorem 3.5. Suppose that || T ||1< co. If f(7) = T'(7)\/T, then

F(U)EV.p./ Md7'—>0, T — 00,
0 T—0

and
sup |F(o)| < C || T |1, C = const.

[0;00)

Proof. We use the estimates

Sup WTHOI<IT I, sup [7f' (1) <2 T |y

0;00)
for the following expressions.
1) Let 0 > 4 and

Fo) = (/()Uﬁ+/crg+ﬁ+/:o )MdTEFI(o—)JrFQ(aHFg(U).

7\/5 +\/g T—O0
Then
a) |Fi( —/ dT\sup VTF(T / o — 00.
i =| fr—a) VR
o4+ a'—i—f
b) |F2(U)|:’V.p/ f(r ‘ ‘/ FD=10) ) - / " Pedr
f T —0 T —0 O'—\/E
o+
< sup |Tf/(7 |/ —>07 o — 00,
[2;00)
here a—\/z;<c<a+\/5.
> f(r) dr
c) |Fs(o)] = / =2 dr| < sup |VTf — 0, o — 0.
) im@l=| [T )< s vrro [T

2) Let 0 < 0 < 4 and

_ (A5+/5m)f(fzdezG1(a)+G2(U).

Then

) Gy =v.p [ VT d—/ffm)

0o T—O o

dr

T—0

I'(o)V.p. /05 VT dr=0(1), o—0
and

G1(0)] < C(sup |T'(7 )I+bup|F( I <CIT L.
[0:5] [0:5]

0 (Gl =| [~ L

Theorem is proved.

Corollary 3.6. If || T ||1< oo then (see (3.17)) (N.T') (o) — 0,
sup [(N1T)(o)] < K ||T' |1, K = const.
[0;00)

o dr
< [;lig)lxﬁf(f)l/5 Jr—o)

)SCHF||1~

o — o0, and
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1
Proof. The function ¢(7) is a linear combination of the functions (‘f'il)k’
i

and

R 1 1 1 B 1 B r(r,0)
Nr+DF)  r—0o|(r+1DF (oc+DF]  (t+1)kFo+ 1)k
where r(7,0) is a polynomial in 7 and o of degree k — 1.
The same form holds for R(R,¢(r)). Due to Theorem 3.5, the estimate

||| Il

R, a(PIL(P)] < [Ro ()

and the presentation

(/ooo W‘“)Jr = 7”T(U)\/EJrV.p./ooo LV,

T—O0 T—0

prove the Corollary 3.6. |

Corollary 3.7. If §,(0) # 0 then the value

. 4 (0)
m(vy) = inf
) [0;00) ' q(o)
is non-zero, i.e., m(y) > 0.
: . 04(0)
Proof. The continuous function o)’ o € [0;00), does not have zeros and, by Corollary
q(o
_ 4 (o)
3.6, for ' = v and (3.15), ©) — 1, 0 — oo. Therefore, m(vy) > 0. O
q(o

Let 4%, v be two functions, then we denote Ay = v —+% AI' =T —T% T = R~,
'Y = RAHO.
We denote by Q(v) the set of zeros of the function d4 (o), o > 0.

Theorem 3.8. Let the function v° be such that m(y°) > 0. We define the function
A~(T) by its decomposition
(3.18) Ay(r) = Ay(03) fi(7) + a(T)AT(7), T =Ry,
i=1
where AL'(T) is an arbitrary function such that (see Corollary 3.6)
1
(3.19) K || AT 1< 2m(y")
and the numbers A~y (o;) are defined by AT'(7) from the system (3.16). So, if
v=7"+ 2y
then Q(v) = Q(1°), i.e., the sets of zeros of the functions 5. (o) and 69 (o) coincide.

Proof. Let Q(«°) = {01,...0,}. Suppose that some function AT satisfies the condition
(3.19). The system (3.16) where I'(r) — I'’(7) = AI'(7) defines the numbers v(o;) —
7°(0;) = Avy(oj). The relation (3.18) gives the function Ay(7), so, we obtain () =
7%(7) + Avy(7). Using the known function v(7) we define the function 6(¢) by (3.5).
The system (3.16) signifies that §4(0;) — 6%(c;) = 0, ie., d1(0;) = 0. Therefore,
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Q(7) € Q(«Y). It remains to prove that 6 (o) #0if 0 # 0, j = 1,...,n. We use the
identity (3.10). According to Corollary 3.6 and (3.19), we have

L (6u(e) — 8 (o] = su J 1 lm .
o |-L50(0) - 207 = sup [V D)) < K 8 < i)

sup
[0;00)
inf |—— 30 ()
=— inf |—
2 [000) [q(0) T
Therefore,
1
inf |—0,(0)| > = inf |—6%(0)| >0,
[o;oo)’q(a) +(©) 2[0;oo>’q(0) +(0)
ie., Q(y) = Q(1Y).
Theorem is proved. O

4. APPLICATION TO NON-LOCAL STURM-LIOUVILLE OPERATOR WITH TRIVIAL
POTENTIAL

Let ly = —y"”, we denote by B and A the operators in the space L?(0, 00) generated by
the same differential expression ly and the corresponding boundary condition y(0) = 0
and y(O) + (y7 n)LQ(O,oo) =0.

We need the Fourier transformation which diagonalizes the nonperturbed operator B,
namely F: L*(0,00) — L2(0,00), p(1) = L\/7, where

T

Fy(r) = /000 y(x) Sin\;ﬁdx, >0,

and we need the relation

(11) F(e) ) = =
We denote R¢(B) = (B — ()™, Re(A) = (A—¢)~! and

0 T i

where the function n(x) defines the boundary condition for the perturbed operator A.

Theorem 4.1. Let ¢ & [0,00), then ¢ € p(A) iff 6(C) # 0, in this case,

(4.3) Re(A)f = Re(B)f — (Re(B)f,m)12(0,00)€¢

T >0, Im\/g>0.

(4.2) 5O =1+

1
4(¢)
where e¢(x) = exp(iy/Cz), Imy/¢ > 0. A value ¢ & [0,00) is an eigen-value of the operator
A iff6(¢) =0.

Proof. Let e € L*(0,00) be an arbitrary function such that le € L?(0, ), e(0) = 1, and
(€,M)12(0,00) = —2-

Every element z € L?(0, 00) admits the representation
(4.4) 2=y ~+ (Y,n)L2(0,00)€
where y = 2+ (2,7) L2(0,00)¢- If 2 € D(A) then 2(0) + (2,1)12(0,00) = 0, 50 y¥(0) =0, i.e.,
z € D(B).

Applying the operation [ — ¢ to both sides of the equality (4.4) we obtain

(A=Qz=(B=Qy+ (41)L20.00) (L = (e

The equation (A — )z = f becomes
(4.5) Y+ (4,1 120,000 B¢ (B)(l = C)e = R¢(B) f.
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The identity Fle(r) — 7Fe(r) = —e(0) = —1 gives
1

P (U= QJelr) = Felr) = - ——

T—=¢

or
FR(B)(1—Qe(r) — Fe(r) = —Fee(r), ec(zx) = exp(i/Cx)
from which R¢(B)(l — {)e = e — e¢. Substituting into (4.5) we obtain
(46) Y+ (y7 n)LQ(O,oo) (6 - 64) = RC (B)f
The multiplication by 7 gives

(Y, M) 12(0,00) [1 + (=2 = (e¢, ) 12(0,00))] = (Re(B) 1) £2(0,00)

therefore,
1
2 = — = B 2 .
(ya 77)L (0,00) 5(§) (RC( )f7 U)L (0,00)

In view of (4.4), the equality (4.6) becomes (4.3). If §({) # 0 then the operator R¢(A) is
bounded, so ¢ € p(A). Other statements are simple to prove.
Theorem is proved. O

We will consider the functions that are more general than (4.2), namely,
< h
(@.7) 5(C) = a+ / ™) 4.
o T—C
where a € C, h € L?(0,00). We denote 6(¢) ~ (a, h) and assume that h(7) is a function

such that the limit values d4(+) of the function (4.7) are continuous on (0, 00).
Let us introduce the normed space

U={u=(a,h):acC,he L*0,00),6+(-) € C[0,00)},

where the norm is

(4.8) [lulle = sup[dx(@)] + 110+ = 0-l[12(0.00)-

The definition (4.8) is correct, since the transformation (a, h) — §(¢) is invertible,

{ a=lim,_,_ d(0),
h(T) = 555 (04(7) = 0-(7)).

Lemma 4.2. Let some function §(¢) be holomorphic in the domain ¢ & [0, 00), have con-
tinuous on [0, 00) limit-values 6+ (-) and a finite value of the right side of (4.8) and a finite
value of the limit a = im,_,_o §(0). Then the function 6(¢) admits the representation
(4.7), 0(¢) ~ (a, h), where (a,h) € U.

(4.9)

Proof. Tt is sufficient to consider the difference (see (4.9))

0~ [or [ 200

and use the principle of symmetry known as a property of analytic functions. O

Lemma 4.3. The space U is closed.

Proof. Let us rewrite the norm (4.8) in the form

(4.10) lully = sup 10+ (0)] + 27[[P][ L2 (0,00)-

Let u, = (an,hn) € U be a fundamental sequence, in view of (4.10) the sequence
{hn} is fundamental in L?(0,00). We denote h = limh,,. Since |6,+(0) — 6mt(0)| <
||t —tm |1, the sequence {0,+ (o)} is fundamental too in the space of continuous function
Clo,09] for every 0 < 01 < o3.
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So, from the equality
5n+(0)*5m+(0):an—am+ (/ h"(T)_hm(T)dT)
0 T—O +

taking into account the boundedness of the Hilbert transform in the space L?(oy,02)
it follows that the sequence {a,} is fundamental. Let a = lim, . a,. Obviously,
(a, h) = limy,— o (an, hy) in the sense of the norm ||-||;. The functions é4 (-) corresponding
to the pair (a, h) (see (4.7)) are continuous on [0, 00), being uniform limits of the sequence
of the continuous functions {d,+(c)}. So, (a,h) € U, therefore the space U is closed.
Lemma is proved. O

According to Lemma 4.3, the space U is a Banach space.
We introduce the product of the pairs u; = (a1, h1) and ug = (ag, he) by the relation

uy * ug ~ 61(¢)02(C)
(see (4.7)).
Lemma 4.4. Ifu; 2 € U, then uy *uz € U and
[ua * uzlly < [lually - [luzl]s-
Proof. The function §(¢) = 1(¢)d2(¢) is holomorphic in the domain ¢ ¢ [0,00), has
continuous on [0, c0) limit-values d4 (¢) and has the finite limit lim,_,_~ §(0) = ajaq,
llur * ugl[y = sup |01+ (0) 824 (0)] + [[614-024 — 61-02—[|£2(0,00)
o>
< sup |61+ (0)] sup |02+ (0)| + sup [024 ()] - [[014 — 61| L2(0,00)
a>0 a>0 a>0
+sup 01— ()] - 624 — 2= £2(0,00) < Munll1 - [Juzlx

According to Lemma 4.2, the function §(¢) admits the representation (4.7), §1(¢)d2(¢) ~
u, where u € U. Therefore, u; *x us € U.
Lemma is proved. O

According to Lemma 4.4, the Banach space U is a normed ring.

Let us come back to Theorem 2.3. If d2(¢) # 0, ¢ € [0, 00), then the relation (2.6) gives
a sufficiency condition for such a transformation of the function h;(7) which preserves the
roots of the function = d;(¢). We will show that this condition is closed to a necessary
condition.

Lemma 4.5. Let 6(¢) be an arbitrary function in the form (4.7) and 61(¢) be a function
in the form (2.3) with the same roots as the function 6(¢). Then

5(¢) = 61(¢)d2(¢)
where the function (which has no roots) admits the representation (4.7).
Proof results from Lemma 4.2. |

We will give some sufficient condition for the function §(¢) to not have roots (compare
(4.2) and (4.11)).

Theorem 4.6. Let

o0
h
(4.11) 5(0) =1 +/ ") 4r ¢ ¢10,00).
o T—¢
Suppose that the function h(t) and its Hilbert transform H(o) = v.p. [;° :L(fg dr are
continuous on [0, 00).
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Then, if

sup | £ wih(o) + Hh(o)| + 27||h||L2(0,00) < 1,
a>0

then the function 6(¢), ¢ & [0,00), has no roots.

Proofresults from the statement that an element u of the ring U is invertible if ||1—ul||; <
1 where 1 denotes the pair (1,0).

Theorem 4.7. Let Q = {¢ : dist(¢, [10,00)) < €} for some 19 > 0, ¢ > 0. Suppose
that the function h(T) admits an analytic continuation, which belongs to the Hardy space
H?(Q).
Suppose
(4.12) sup | £ wih(o) + Hh(o)| < 1.
o>0
Then the function 6(¢), ¢ € [0,00), has no roots.

Proof. We have the inequality

[t

using Phragmén-Lindel6f theorem and the estimate (4.12). O

<1, ¢&][0,00)

Note that Theorem 4.6 and 4.7 complete the Theorem 3.8 and that one can easily
rewrite all results in terms of the problem (2.1).

5. CONCLUSION

The case where the function §(¢) has zeros with multiplicities > 1 is considered in the
same way.

The traditional inverse problem requires to find a unique operator such that its spec-
trum coincides with a given set in the complex plane. But the problem to describe all
the operators such that only a part of their spectrum coincides with a given set has a
sense too. The question of how to choose a perturbation as to obtain a given change is
interesting. Ome can compare such a problem with the construction of the well-known
transform of the potential which adds to the spectrum of the Sturm-Liouvill operator
one new point only (see, e.g. [3]). The decomposition (3.3) is useful for the Friedrichs’
model (see [5]).
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