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GENERALIZED STOCHASTIC DERIVATIVES ON A SPACE
OF REGULAR GENERALIZED FUNCTIONS OF MEIXNER

WHITE NOISE

N. A. KACHANOVSKY

Abstract. We introduce and study generalized stochastic derivatives on a Kondra-
tiev-type space of regular generalized functions of Meixner white noise. Properties of
these derivatives are quite analogous to the properties of the stochastic derivatives
in the Gaussian analysis. As an example we calculate the generalized stochastic
derivative of the solution of some stochastic equation with a Wick-type nonlinearity.

0. Introduction

Let S ′ be the Schwartz distributions space, µ be the Gaussian measure on S ′. As is
well known, every square integrable function f ∈ L2(S ′, µ) can be presented in the form

(0.1) f =
∞∑

n=0

〈Hn, f (n)〉,

where {〈Hn, f (n)〉}∞n=0 are the generalized Hermite polynomials, f (n) ∈ Hb⊗n, H (in the
simplest case) is the complexification of L2(R), ⊗̂ denotes a symmetric tensor product.
A stochastic derivative D : L2(S ′, µ) → L(H, L2(S ′, µ)) can be defined on its domain,
{f ∈ L2(S ′, µ) :

∑∞
n=1 n!n|f (n)|2H⊗n < ∞}, by the formula

(Df)(g(1)) :=
∞∑

n=1

n〈Hn−1, 〈f (n), g(1)〉〉 ∀g(1) ∈ H,

where 〈f (n), g(1)〉 ∈ Hb⊗n−1 is defined by

〈〈f (n), g(1)〉, h(n−1)〉 = 〈f (n), g(1)⊗̂h(n−1)〉 ∀h(n−1) ∈ Hb⊗n−1

(here 〈·, ·〉 denotes the scalar product in Hb⊗n).
In the paper [4] Fred E. Benth extended the derivative D on the Kondratiev space

of nonregular generalized functions (S)−1 (elements of (S)−1 can be presented in the
similar to (0.1) form, but the kernels {f (n)}∞n=0 are singular). This generalization is
useful for different applications. For example, as distinct from L2(S ′, µ), in the space
(S)−1 one can introduce the Wick product ♦ by setting for the Hermite polynomials
〈Hn, f (n)〉♦〈Hm, g(m)〉 := 〈Hn+m, f (n)⊗̂g(m)〉, and D is a differentiation with respect
to ♦: for all F,G ∈ (S)−1 D(F♦G) = (DF )♦G + F♦(DG). Using this result (and
another properties of D) one can study properties of solutions of stochastic equations with
Wick type nonlinearity. Another possible applications are connected with the fact that
the stochastic derivative is the adjoint operator to the extended (Skorohod) stochastic
integral.
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In the papers [15, 16] the author generalized the results of [4] to the spaces of ge-
neralized functions of the so-called Gamma white noise analysis (i.e., instead of the
Gaussian measure the introduced in [23] Gamma measure γ on S ′ was used). Since the
Gamma measure has no the so-called Chaotic Representation Property (i.e., a function
f ∈ L2(S ′, γ) can not be presented in complete analogy with (0.1), generally speaking)
and has some another peculiarities, the corresponding spaces have a more complicated
than in the Gaussian analysis structure; nevertheless a natural and rich in content analog
of the Gaussian theory is possible.

A next natural step consists in the construction of a theory of stochastic differentia-
tion on the generalized functions spaces of the so-called Meixner analysis. In fact, the
(introduced in [29]) generalized Meixner measure µ on the Schwartz distributions space
D′ (the base measure of the Meixner analysis) is a direct generalization of ”classical”
measures on D′, such as the Gaussian, Poisson and Gamma measures. This measure
is very general, but still has some ”classical” properties (for example, the orthogonal
polynomials in L2(D′, µ) are Schefer (generalized Appell in another terminology) ones),
therefore a constructive theory is still possible.

In the paper [20] the author constructed and studied generalized stochastic derivatives
on the Kondratiev-type (finite order) spaces of nonregular generalized functions (H−τ ) of
Meixner white noise. The obtained results are very general (actually, they can be rewrit-
ten for the generalized functions spaces of the so-called ”biorthogonal analysis”, see, e.g.,
[3, 2, 24, 18, 22, 19, 5, 8]); but this merit simultaneously is a lack. In fact, an analysis
on the very general spaces (H−τ ) can not ”take into account” all characteristics of the
generalized Meixner measure µ. As a result, the natural generalized stochastic deriva-
tives on these spaces have no some ”classical” properties. For example, these derivatives
are not adjoint to the extended stochastic integral, their restrictions on L2(D′, µ) do not
coincide with the natural stochastic derivatives on this space, etc. Moreover, the kernels
from the natural orthogonal decompositions of elements of (H−τ ) belong to the distri-
butions spaces without ”good” description. All these peculiarities are inconvenient for
applications. Therefore there is a good motivation to make a next step: to construct and
study generalized stochastic derivatives on the Kondratiev-type space of regular general-
ized functions (L2)−1. In fact, this space (cf. [14]) ”takes into account” characteristics of
µ, and there are no the mentioned problems with generalized stochastic derivatives and
orthogonal decompositions on (L2)−1. Moreover, it turned out that almost all results of
[20] can be transferred on this ”regular” case. The realization of this ”next step” is a
main aim of the present paper.

The paper is organized in the following manner. In the first section we give a neces-
sary information about the generalized Meixner measure, spaces of test and generalized
functions, the stochastic integration and the Wick calculus. In the second section we
introduce and study generalized stochastic derivatives on (L2)−1. In the third section
we discuss some properties of stochastic derivatives on L2(D′, µ).

1. Preliminaries

Let σ be a measure on (R+,B(R+)) (here B denotes the Borel σ-algebra) satisfying
the following assumptions:

1) σ is absolutely continuous with respect to the Lebesgue measure and the density
is an infinite differentiable function on R+;

2) σ is a nondegenerate measure, i.e., for each nonempty open set O ⊂ R+ σ(O) > 0.

Remark 1.1. Note that these assumptions are the ”simplest sufficient ones” for our
considerations; actually it is possible to consider a much more general σ.
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By D denote the set of all real-valued infinite differentiable functions on R+ with
compact supports. This set can be naturally endowed with a (projective limit) topology
of a nuclear space (by analogy with, e.g., [7]): D = pr limτ∈T Hτ , where T is the set of
all pairs τ = (τ1, τ2), τ1 ∈ N, τ2 is an infinite differentiable function on R+ such that
τ2(t) ≥ 1 ∀t ∈ R+; Hτ = H(τ1,τ2) is the Sobolev space on R+ of order τ1 weighted by the
function τ2, i.e., the scalar product in Hτ is given by the formula

(f, g)τ := (f, g)Hτ
=

∫
R+

(
f(t)g(t) +

τ1∑
k=1

f (k)(t)g(k)(t)
)
τ2(t)σ(dt).

Hence in what follows, we understand D as the corresponding topological space.
Let us consider the (nuclear) chain (the rigging of L2(R+, σ) that is the space of

real-valued functions on R+ square integrable with respect to σ)

D′ = ind lim
τ ′∈T

H−τ ′ ⊃ H−τ ⊃ L2(R+, σ) =: H ⊃ Hτ ⊃ pr lim
τ ′∈T

Hτ ′ = D,

where H−τ , D′ are the spaces dual to Hτ , D with respect to H, correspondingly. By
| · |0 denote the norm in H. Let 〈·, ·〉 be the dual pairing between elements of D′ and D,
generated by the scalar product in H (and also H−τ and Hτ ). The notation | · |0 and
〈·, ·〉 will be preserved for tensor powers and complexifications of spaces.

Remark 1.2. Note that all scalar products and pairings in this paper are real, i.e., they
are bilinear functionals.

Let us fix arbitrary functions α, β : R+ → C that are smooth and satisfy

(1.1) θ := −α− β ∈ R, η := αβ ∈ R+,

θ and η are bounded on R+ (note that in a sense η is a ”key parameter” and will be
mentioned very often below). Further, let υ̃(α, β, ds) be a probability measure on R that
is defined by its Fourier transform∫

R
eiusυ̃(α, β, ds) = exp

{
− iu(α + β)

+ 2αβ

∞∑
m=1

(αβ)m−1

m

[ ∞∑
n=2

(−iu)n

n!
(βn−2 + βn−3α + · · ·+ αn−2)

]m}
,

υ(α, β, ds) := 1
s2 υ̃(α, β, ds).

Definition 1.1. We say that the probability measure µ on the measurable space (D′,F)
(here F is the σ-algebra on D′ generated by cylinder sets) with the Fourier transform∫

D′
ei〈x,ξ〉µ(dx) = exp

{∫
R+

σ(dt)
∫

R
υ(α(t), β(t), ds)(eisξ(t) − 1− isξ(t))

}
(here ξ ∈ D) is called the generalized Meixner measure.

Let us denote by a subindex C complexifications of spaces.

Theorem 1.1. ([29]) The generalized Meixner measure µ is a generalized stochastic
process with independent values in the sense of [13]. The Laplace transform of µ is given
in a neighborhood of zero U0 ⊂ DC by the following formula:

lµ(λ) =
∫

D′
e〈x,λ〉µ(dx) = exp

{∫
R+

∞∑
m=1

(α(t)β(t))m−1

m

×
( ∞∑

n=2

(−λ)n

n!
(β(t)n−2 + β(t)n−3α(t) + · · ·+ α(t)n−2)

)m

σ(dt)
}

, λ ∈ U0.
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Remark 1.3. According to the classical classification [27] (see also [26, 29]) for α = β = 0
(here and below all such equalities we understand σ-a.e.) µ is the Gaussian measure; for
α 6= 0 (here and below a(·) 6= b(·) means that a− b 6= 0 on some measurable set M such
that σ(M) > 0), β = 0, µ is the centered Poissonian measure; for α = β 6= 0, µ is the
centered Gamma measure; for α 6= β, αβ 6= 0, α, β : R+ → R, µ is the centered Pascal
measure; for α = β, Im(α) 6= 0, µ is the centered Meixner measure.

It was established in [21] that there exists τ̃ ∈ T such that the generalized Meixner
measure is concentrated on H−eτ , i.e., µ(H−eτ ) = 1.

Now by (L2) = L2(D′, µ) denote the space of complex-valued functions on D′, square
integrable with respect to µ. Let us construct orthogonal polynomials on (L2).

Definition 1.2. We define a so-called Wick exponential (a generating function of the
orthogonal polynomials) by setting
(1.2)

: exp(x;λ) :

def
= exp

{
−

∫
R+

(λ(t)2

2
+

∞∑
n=3

λ(t)n

n
(α(t)n−2 + α(t)n−3β(t) + · · ·+ β(t)n−2)

)
σ(dt)

+
〈
x, λ +

∞∑
n=2

λn

n
(αn−1 + αn−2β + · · ·+ βn−1)

〉}
,

where λ ∈ U0 ⊂ DC, x ∈ D′, U0 is some neighborhood of 0 ∈ DC.

Remark 1.4. It was proved in [29] that

: exp(x;λ) :=
e〈x,Ψ(λ)〉

lµ(Ψ(λ))

with Ψ(λ) = λ+
∑∞

n=2
λn

n (αn−1+αn−2β+· · ·+βn−1), therefore : exp(x; ·) : is a generating
function of the so-called Schefer polynomials (or the generalized Appell polynomials in
another terminology). This fact gives us the possibility to use in our considerations well-
known results of the so-called ”biorthogonal analysis” (see, e.g., [3, 2, 24, 18, 22, 19, 5, 8]
and references therein).

It is clear (see also [29]) that : exp(x; ·) : is a function on DC holomorphic at zero
for each x ∈ D′. Therefore using the Cauchy inequalities (see, e.g., [12]) and the kernel
theorem (see, e.g., [7]) one can obtain the representation

: exp(x;λ) :=
∞∑

n=0

1
n!
〈Pn(x), λ⊗n〉, Pn(x) ∈ D′

C
b⊗n

, x ∈ D′, λ ∈ DC.

Here (and below) ⊗̂ denotes a symmetric tensor product, λ⊗0 = 1 even for λ ≡ 0.

Remark 1.5. It follows from the given in [29] recurrence formula for Pn(x) that actually
Pn(x) ∈ D′ b⊗n for x ∈ D′. Moreover, if τ ∈ T is such that the Dirac delta-function
δ0 ∈ H−τ (it means that δs ∈ H−τ ∀s ∈ R+, see, e.g., [7]) then for x ∈ H−τ we have
Pn(x) ∈ Hb⊗n

−τ .

Definition 1.3. We say that the polynomials 〈Pn, f (n)〉, f (n) ∈ D
b⊗n
C , n ∈ Z+, are called

the generalized Meixner polynomials.

Remark 1.6. Depending on α and β in (1.2) the generalized Meixner polynomials can be
the generalized Hermite polynomials (α = β = 0); the generalized Charlier polynomials
(α 6= 0, β = 0); the generalized Laguerre polynomials (α = β 6= 0); the Meixner poly-
nomials (α 6= β, αβ 6= 0, α, β : R+ → R); the Meixner-Pollaczek polynomials (α = β,
Im(α) 6= 0) (see also Remark 1.3).
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In order to formulate a statement on orthogonality of the generalized Meixner poly-
nomials we need the following.

Definition 1.4. We define the scalar product 〈·, ·〉ext on D
b⊗n
C (n ∈ N) by the formula

(1.3)

〈f (n), g(n)〉ext :=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

× g(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)η(t1)l1−1 . . . η(ts1)
l1−1

× η(ts1+1)l2−1 . . . η(ts1+s2)
l2−1 . . . η(ts1+···+sk−1+1)lk−1 . . . η(ts1+···+sk

)lk−1

× σ(dt1) . . . σ(dts1+···+sk
).

Denote by | · |ext the corresponding norm, i.e., |f (n)|2ext = 〈f (n), f (n)〉ext. For n = 0,
〈f (0), g(0)〉ext := f (0)g(0) ∈ C, |f (0)|ext = |f (0)|.

Example. It is easy to see that for n = 1,

〈f (1), g(1)〉ext = 〈f (1), g(1)〉 =
∫

R+

f (1)(t)g(1)(t)σ(dt).

Further, for n = 2,

〈f (2), g(2)〉ext = 〈f (2), g(2)〉+
∫

R+

f (2)(t, t)g(2)(t, t)η(t)σ(dt).

If η = 0 (this means that µ is the Gaussian or Poissonian measure, see Remark 1.3) then
〈f (n), g(n)〉ext = 〈f (n), g(n)〉 for all n ∈ Z+; in general, 〈f (n), g(n)〉ext = 〈f (n), g(n)〉+ . . . .

Theorem 1.2. ([29]) The generalized Meixner polynomials are orthogonal in (L2) in the
sense that

(1.4)
∫

D′
〈Pn(x), f (n)〉〈Pm(x), g(m)〉µ(dx) = δmnn!〈f (n), g(n)〉ext.

By H(n)
ext (n ∈ N) denote the closure of D

b⊗n
C with respect to the norm | · |ext, H(0)

ext := C.
Of course, H(n)

ext , n ∈ Z+, are Hilbert spaces; for the scalar products in these spaces it is
natural to preserve the notation 〈·, ·〉ext.

Remark 1.7. It is not difficult to prove by analogy with [6] that the space H(n)
ext is,

generally speaking, an orthogonal sum of Hb⊗n
C ≡ L2(R+, σ)b⊗n

C and some other Hilbert
spaces (as a ”limit case” one can consider η = 0, in this case H(n)

ext = Hb⊗n
C ). In this sense

H(n)
ext is an extension of Hb⊗n

C .
One can give another explanation of the fact that H(n)

ext is a more wide space than
Hb⊗n

C . Namely, let F (n) ∈ Hb⊗n
C (F (n) is an equivalence class in Hb⊗n

C ). We select a
representative (a function) F̃ (n) ∈ F (n) with a ”zero diagonal”, i.e., F̃ (n) is such that
F̃ (n)(t1, . . . , tn) = 0 if ti = tj for i 6= j, where i, j ∈ {1, . . . , n}. This function generates
the equivalence class F̂ (n) in H(n)

ext that can be identified with F (n) (see [21] for details).

Definition 1.5. For F (n) ∈ H(n)
ext (n ∈ Z+) we define 〈Pn, F (n)〉 ∈ (L2) as an (L2)-limit

〈Pn, F (n)〉 := lim
k→∞

〈Pn, f
(n)
k 〉,
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where (f (n)
k ∈ D

b⊗n
C )∞k=1 is a sequence of ”smooth” functions such that f

(n)
k → F (n) (as

k →∞) in H(n)
ext .

The correctness of this definition was proved in [21].
The following statement follows from results of [29].

Theorem 1.3. A function F ∈ (L2) if and only if there exists a sequence of kernels
(F (n) ∈ H(n)

ext)∞n=0 such that F can be presented in the form

(1.5) F =
∞∑

n=0

〈Pn, F (n)〉,

where the series converges in (L2), i.e., the (L2)-norm of F

‖F‖2(L2) =
∞∑

n=0

n!|F (n)|2ext < ∞.

Furthermore, the system {〈Pn, F (n)〉, F (n) ∈ H(n)
ext , n ∈ Z+} plays a role of an orthogonal

basis in (L2) in the sense that for F,G ∈ (L2)

(F,G)(L2) =
∞∑

n=0

n!〈F (n), G(n)〉ext,

where F (n), G(n) are the kernels from decompositions (1.5) for F,G (in particular, (1.4)
for F (n) ∈ H(n)

ext, G(m) ∈ H(m)
ext holds true).

Now let us introduce the Kondratiev-type spaces of regular test and generalized func-
tions (cf. [14, 17, 16]). First we consider the set P := {f =

∑Nf

n=0〈Pn, f (n)〉, f (n) ∈
H(n)

ext , Nf ∈ Z+} ⊂ (L2) of polynomials and ∀q ∈ N introduce on this set the scalar
product (·, ·)q by setting for f =

∑Nf

n=0〈Pn, f (n)〉, g =
∑Ng

n=0〈Pn, g(n)〉

(f, g)q :=
min(Nf ,Ng)∑

n=0

(n!)22qn〈f (n), g(n)〉ext.

Let ‖ · ‖q be the corresponding norm, ‖f‖q =
√

(f, f)q =
√∑Nf

n=0(n!)22qn|f (n)|2ext.

Definition 1.6. We define the Kondratiev-type spaces of (”regular”) test functions (L2)1q
(q ∈ N) as the closures of P with respect to the norms ‖ · ‖q, (L2)1 := pr limq∈N(L2)1q.

It is not difficult to see that f ∈ (L2)1q if and only if f can be presented in the form

(1.6) f =
∞∑

n=0

〈Pn, f (n)〉

with

‖f‖2q := ‖f‖2(L2)1q
=

∞∑
n=0

(n!)22qn|f (n)|2ext < ∞,

and for f, g ∈ (L2)1q (f, g)q := (f, g)(L2)1q
=

∑∞
n=0(n!)22qn〈f (n), g(n)〉ext, where f (n), g(n) ∈

H(n)
ext are the kernels from decompositions (1.6) for f and g correspondingly. Therefore

the generalized Meixner polynomials play a role of an orthogonal basis in (L2)1q.
It was proved in [21] that for each q ∈ N, (L2)1q is densely and continuously embedded

in (L2). Therefore one can consider the chain

(L2)−1 = ind limeq∈N
(L2)−1

−eq ⊃ (L2)−1
−q ⊃ (L2) ⊃ (L2)1q ⊃ (L2)1,
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where (L2)−1
−q, (L2)−1 are the dual to (L2)1q, (L2)1 with respect to (L2) spaces corre-

spondingly.

Definition 1.7. The spaces (L2)−1
−q, (L2)−1 are called the Kondratiev-type spaces of

regular generalized functions.

Theorem 1.4. ([21]) A regular generalized function F ∈ (L2)−1
−q (q ∈ N) if and only if

there exists a sequence

(1.7) (F (n) ∈ H(n)
ext)

∞
n=0

such that F can be presented in form (1.5), where the series converges in (L2)−1
−q, i.e.,

the norm

(1.8) ‖F‖2−q := ‖F‖2
(L2)−1

−q

=
∞∑

n=0

2−qn|F (n)|2ext < ∞.

Furthermore, the system {〈Pn, F (n)〉: F (n) ∈ H(n)
ext, n ∈ Z+} plays a role of an orthogonal

basis in (L2)−1
−q in the sense that for F,G ∈ (L2)−1

−q,

(F,G)(L2)−1
−q

=
∞∑

n=0

2−qn〈F (n), G(n)〉ext,

where F (n), G(n) ∈ H(n)
ext are the kernels from decompositions (1.5) for F and G corre-

spondingly.

Remark 1.8. It is easy to see that F ∈ (L2)−1 if and only if there exists a sequence (1.7)
such that F can be presented in form (1.5) with finite norm (1.8) for some q ∈ N.

The generated by the scalar product in (L2) (real) dual pairing between elements of
(L2)−1

−q and (L2)1q (in the same way as (L2)−1 and (L2)1) will be denoted by 〈〈·, ·〉〉. It
was proved in [21] that for a generalized function F of form (1.5) and a test function f
of form (1.6),

(1.9) 〈〈F, f〉〉 =
∞∑

n=0

n!〈F (n), f (n)〉ext.

Remark 1.9. In [21, 20] the test function spaces (Hτ )q, (Hτ ) = pr limq∈N(Hτ )q, (D) =
pr limq∈N,τ∈T (Hτ )q and the corresponding dual to them with respect to (L2) spaces of
nonregular generalized functions (H−τ )−q, (H−τ ), (D′)′ were introduced (f ∈ (Hτ )q if
and only if f has form (1.6) with ‖f‖2(Hτ )q

=
∑∞

n=0(n!)22qn|f (n)|2
H b⊗n

τ,C
< ∞).

Now let us recall elements of the Wick calculus.

Definition 1.8. For F ∈ (L2)−1 we define an S-transform (SF ) as a formal series

(1.10) (SF )(λ) =
∞∑

n=0

〈F (n), λ⊗n〉ext,

where F (n) ∈ H(n)
ext , n ∈ Z+ are the kernels from decomposition (1.5) for F . In particular,

(SF )(0) = F (0), S1 ≡ 1.

Definition 1.9. For F,G ∈ (L2)−1 and a holomorphic at (SF )(0) function h : C → C
we define the Wick product F♦G ∈ (L2)−1 and the Wick version of h h♦(F ) ∈ (L2)−1

by setting
F♦G := S−1(SF · SG), h♦(F ) := S−1h(SF ).

The correctness of this definition and, moreover, the fact that the Wick multiplication
is continuous in the topology of (L2)−1 were proved in [21].



GENERALIZED STOCHASTIC DERIVATIVES . . . 39

Remark 1.10. It is easy to see that the Wick multiplication ♦ is commutative, associative
and distributive (over the field C). Further, if h from Definition 1.9 is presented in the
form

(1.11) h(u) =
∞∑

n=0

hn(u− (SF )(0))n

then h♦(F ) =
∑∞

n=0 hn(F − (SF )(0))♦n, where F♦n := F♦ . . .♦F︸ ︷︷ ︸
n times

.

Let us write out the ”coordinate form” of F♦G and h♦(F ) (this form is necessary for
calculations).

Lemma 1.1. ([21]) Let F (n) ∈ H(n)
ext, G(m) ∈ H(m)

ext , n, m ∈ Z+. We define the element
F (n) �G(m) ∈ H(n+m)

ext as follows. Let Ḟ (n) ∈ F (n), Ġ(m) ∈ G(m) be some representatives
(functions) from the equivalence classes F (n), G(m). Set

(1.12)
( ˜̇
F (n)G(m))(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
Ḟ (n)(t1, . . . , tn)Ġ(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj
,

0, in other cases

̂̇
F (n)G(m) := Pr ˜̇

F (n)G(m), where Pr is the symmetrization operator. Then F (n) � G(m)

is the generated by ̂̇
F (n)G(m) equivalence class in H(n+m)

ext , this class is well-defined and
does not depend on a choice of representatives Ḟ (n), Ġ(m). Moreover,

(1.13) |F (n) �G(m)|ext ≤ |F (n)|ext|G(m)|ext.

Remark 1.11. Note that non-strictly speaking F (n) �G(m) is the symmetrization of the
function

˜F (n)G(m)(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F (n)(t1, . . . , tn)G(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj
,

0, in other cases

with respect to n + m variables.

It is obvious that the ”multiplication” � is commutative, associative and distributive
(over the field C).

Remark 1.12. Note that for η = 0 F (n) �G(m) = F (n)⊗̂G(m) (we recall that in this case
H(n)

ext = Hb⊗n
C for each n ∈ Z+). In a general case let us denote by D′

C
(n) and D′

C
b⊗n

the spaces that are dual to DC
b⊗n with respect to H(n)

ext and Hb⊗n
C correspondingly; and

let Un : D′
C

(n) → D′
C

b⊗n (n ∈ Z+) be the natural isomorphisms that are defined by the
formulas

(1.14) 〈UnF (n), f (n)〉 = 〈F (n), f (n)〉ext

for all F (n) ∈ D′
C

(n) and f (n) ∈ DC
b⊗n. It was proved in [21] that

(1.15) F (n) �G(m) = U−1
n+m(UnF (n)⊗̂UmG(m)).

It was shown in [21] (see also [16]) that

(1.16) F♦G =
∞∑

n=0

〈
Pn,

n∑
k=0

F (k) �G(n−k)
〉
,
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(1.17) h♦(F ) = h0 +
∞∑

n=1

〈
Pn,

n∑
k=1

hk

∑
m1,...,mk∈N:m1+···+mk=n

F (m1) � · · · � F (mk)
〉
,

where F (k), G(k) ∈ H(k)
ext are the kernels from decompositions (1.5) for F and G corre-

spondingly, hk ∈ C (k ∈ Z+) are the coefficients from decomposition (1.11) for h.

Remark 1.13. It follows from (1.16) that, in particular,

(1.18)

〈Pn, F (n)〉♦〈Pm, G(m)〉 = 〈Pn+m, F (n) �G(m)〉,

F♦〈Pm, G(m)〉 =
∞∑

n=0

〈Pn+m, F (n) �G(m)〉.

The first formula can be used in order to define the Wick product (and then the Wick
version of a holomorphic function as a series) without the S-transform. Formulas (1.16)
and (1.17) also can be used as definitions.

Finally, we recall the construction of the extended stochastic integral in the Meixner
analysis (see [21] for a detailed presentation).

Let F ∈ (L2)⊗HC. It follows from Theorem 1.3 that F can be presented in the form

(1.19) F (·) =
∞∑

n=0

〈Pn, F
(n)
· 〉, F

(n)
· ∈ H(n)

ext ⊗HC

with

‖F‖2(L2)⊗HC
=

∞∑
n=0

n!|F (n)
· |2

H(n)
ext⊗HC

< ∞.

Lemma 1.2. ([21]) For given F
(n)
· ∈ H(n)

ext⊗HC and t ∈ [0,+∞] we construct the element
F̂

(n)
[0,t) ∈ H

(n+1)
ext by the following way. Let Ḟ

(n)
· ∈ F

(n)
· be some representative (function)

from the equivalence class F
(n)
· . We set

(1.20) ˜̇F (n)

[0,t)(u1, . . . , un, u) :=

{
Ḟ

(n)
u (u1, . . . , un)1[0,t)(u), if u 6= u1, . . . , u 6= un,

0, in other cases

(here and below 1A is the indicator of a set A), ̂̇F (n)

[0,t) := Pr ˜̇F (n)

[0,t), where Pr is the

symmetrization operator. Let F̂
(n)
[0,t) ∈ H

(n+1)
ext be the generated by ̂̇F (n)

[0,t) equivalence class

in H(n+1)
ext . This class is well-defined, does not depend on the representative Ḟ

(n)
· , and

the estimate
|F̂ (n)

[0,t)|ext ≤ |F (n)
· 1[0,t)(·)|H(n)

ext⊗HC
≤ |F (n)

· |H(n)
ext⊗HC

is valid.

Let {Ms := 〈P1, 1[0,s)〉}s≥0 be the Meixner random process (this process is a locally
square integrable normal martingale with independent increments, see [21, 29] for more
details).

Definition 1.10. Let t ∈ [0,+∞] and F ∈ (L2)⊗HC be such that
∞∑

n=0

(n + 1)!|F̂ (n)
[0,t)|

2
ext < ∞,

where F̂
(n)
[0,t) ∈ H

(n+1)
ext (n ∈ Z+) are constructed in Lemma 1.2 starting from the kernels

F
(n)
· ∈ H(n)

ext ⊗HC from decomposition (1.19) for F . We define the extended stochastic
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integral with respect to the Meixner process
∫ t

0
F (s)d̂Ms ∈ (L2) by setting

(1.21)
∫ t

0

F (s)d̂Ms :=
∞∑

n=0

〈Pn+1, F̂
(n)
[0,t)〉.

Since ‖
∫ t

0
F (s)d̂Ms‖2(L2) =

∑∞
n=0(n + 1)!|F̂ (n)

[0,t)|
2
ext < ∞, this definition is correct. �

It was shown in [21] that
∫ t

0
◦(s)d̂Ms is a generalization of the Itô stochastic integral.

The extended stochastic integral can be generalized to the spaces (L2)−1
−q⊗HC ∀q ∈ N,

(L2)−1 ⊗HC. More exactly, it follows from Theorem 1.4 that for F ∈ (L2)−1
−q ⊗HC (or

(L2)−1 ⊗ HC) decomposition (1.19) holds true. The corresponding extended stochastic
integral can be defined by formula (1.21).

Moreover,
∫ t

0
◦(s)d̂Ms can be generalized on (H−τ )−q⊗HC, q ∈ N, τ ∈ T , (H−τ )⊗HC,

(D′)′ ⊗HC (see Remark 1.9), the details are described in [21, 20].
Let {M ′

s := 〈P1, δs〉 ∈ (H−τ )}s≥0 (here δ is the Dirac delta-function) be the Meixner
white noise (the mentioned in Theorem 1.1 generalized stochastic process). The intercon-
nection between the Wick calculus and the extended stochastic integration is described
by the following

Theorem 1.5. ([21]) For all t ∈ [0,+∞] and F ∈ (L2)−1 ⊗HC
∫ t

0
Fs♦M ′

sσ(ds) can be
considered as a linear continuous functional on (L2)1 that coincides with

∫ t

0
F (s)d̂Ms,

i.e.,

(1.22)
∫ t

0

F (s)♦M ′
sσ(ds) =

∫ t

0

F (s)d̂Ms ∈ (L2)−1.

2. Generalized stochastic derivatives on (L2)−1

We begin from some ”technical preparation”. For F (n) ∈ H(n)
ext and f (m) ∈ H(m)

ext

(n > m) we define a ”pairing” 〈F (n), f (m)〉ext ∈ H(n−m)
ext by the formula

(2.1) 〈〈F (n), f (m)〉ext, g
(n−m)〉ext = 〈F (n), f (m) � g(n−m)〉ext ∀g(n−m) ∈ H(n−m)

ext .

Since (see (1.13))

|〈F (n), f (m) � g(n−m)〉ext| ≤ |F (n)|ext|f (m) � g(n−m)|ext ≤ |F (n)|ext|f (m)|ext|g(n−m)|ext,

this definition is correct and

|〈F (n), f (m)〉ext|ext ≤ |F (n)|ext|f (m)|ext.

In order to define a generalized stochastic derivative on (L2)−1 we need the following
statement.

Lemma 2.1. ([21]) For given F (n) ∈ H(n)
ext (n ∈ N) we construct the element F (n)(·) ∈

H(n−1)
ext ⊗ HC by the following way. Let Ḟ (n) ∈ F (n) be some representative (function)

from the equivalence class F (n). We consider Ḟ (n)(·) (i.e., separate a one argument
of Ḟ (n)). Let F (n)(·) ∈ H(n−1)

ext ⊗ HC be the generated by Ḟ (n)(·) equivalence class in
H(n−1)

ext ⊗HC. This class is well-defined, does not depend on the representative Ḟ (n), and

(2.2) |F (n)(·)|H(n−1)
ext ⊗HC

≤ |F (n)|ext.

Remark 2.1. Note that for each f (1) ∈ HC

(2.3)
∫

R+

F (n)(s)f (1)(s)σ(ds) = 〈F (n), f (1)〉ext ∈ H(n−1)
ext .
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In fact, for each g(n−1) ∈ H(n−1)
ext and for F (n) ∈ D

b⊗n
C ⊂ H(n)

ext〈 ∫
R+

F (n)(s)f (1)(s)σ(ds), g(n−1)
〉

ext
=

∫
R+

〈F (n)(s), g(n−1)〉extf
(1)(s)σ(ds)

=
∫

R+

〈F (n)(s), Un−1g
(n−1)〉f (1)(s)σ(ds) = 〈F (n), (Un−1g

(n−1))⊗̂f (1)〉

= 〈F (n), g(n−1) � f (1)〉ext = 〈〈F (n), f (1)〉ext, g
(n−1)〉ext

(see (1.14), (1.15)); in a general case the result can be obtained by the corresponding
passing to a limit.

Definition 2.1. Let F ∈ (L2)−1. We define the generalized stochastic derivative ∂·F ∈
(L2)−1 ⊗HC by setting

(2.4) ∂·F :=
∞∑

n=1

n〈Pn−1, F
(n)(·)〉 ≡

∞∑
n=0

(n + 1)〈Pn, F (n+1)(·)〉,

where the kernels F (n)(·) ∈ H(n−1)
ext ⊗HC are constructed in Lemma 2.1 starting from the

kernels F (n) ∈ H(n)
ext from decomposition (1.5) for F .

Since F ∈ (L2)−1, there exists q ∈ N such that F ∈ (L2)−1
−(q−1). We have

‖∂·F‖2(L2)−1
−q⊗HC

=
∞∑

n=1

2−q(n−1)n2|F (n)(·)|2
H(n−1)

ext ⊗HC

≤ 2q
∞∑

n=1

[n22−n]2−(q−1)n|F (n)|2ext ≤ 9 · 2q−3‖F‖2−(q−1) < ∞

(we used the equality maxn∈N[n22−n] = 9/8). Hence ∂· is a well-defined linear continuous
operator acting from (L2)−1 to (L2)−1 ⊗HC. �

Remark 2.2. Note that Definition 2.1 is a direct generalization of the definition of the
stochastic derivative ∂· on (L2), see [21] and Section 3. In the Gaussian analysis such
stochastic derivative is called the Hida derivative. Simultaneously we note that the
restriction on (L2)−1 of introduced in [20] stochastic derivative ∂· on (H−τ ) (see Re-
mark 1.9) differs from derivative (2.4) if η 6= 0, this is a consequence of properties of the
generalized Meixner measure.

It was shown in [21] that the extended stochastic integral on (L2)⊗HC is connected
with the generalized stochastic derivative on (L2) by the formula

〈〈
∫ t

0

F (s)d̂Ms, G〉〉 =
∫ t

0

〈〈F (s), ∂sG〉〉σ(ds)

(also this result holds true for a generalized function F ). The operator ∂· on (L2)−1 has
a similar property. More exactly, we have

Theorem 2.1. Let t ∈ [0,+∞], F ∈ (L2)−1, f ∈ (L2)1 ⊗HC. Then
(2.5)

E
[
F

∫ t

0

f(s)d̂Ms

]
≡ 〈〈F,

∫ t

0

f(s)d̂Ms〉〉 =
∫ t

0

〈〈∂sF, f(s)〉〉σ(ds) ≡
∫ t

0

E[(∂sF )f(s)]σ(ds)

(here and below by E an expectation is denoted).

Proof. Since ∂·F ∈ (L2)−1 ⊗ HC and, as it was shown in [21],
∫ t

0
f(s)d̂Ms ∈ (L2)1, all

terms in (2.5) are well-defined. The equality in (2.5) can be proved in the same manner
as in the case F ∈ (L2), see the proof of Theorem 3.2 in [21]. �
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Let ∂∗· : (L2)1 ⊗ HC → (L2)1 be the adjoint to ∂· operator. Since ∀F ∈ (L2)−1,
∀f ∈ (L2)1 ⊗HC

(∂·F, f)(L2)⊗HC ≡
∫

R+

〈〈∂sF, f(s)〉〉σ(ds) = 〈〈F, ∂∗· f〉〉,

it is natural to write formally∫
R+

〈〈∂sF, f(s)〉〉σ(ds) =
∫

R+

〈〈F, ∂†sf(s)〉〉σ(ds) = 〈〈F,

∫
R+

∂†sf(s)σ(ds)〉〉,

where we accepted the notation
∫

R+
∂†sf(s)σ(ds) := ∂∗· f (cf. ∂†x in [29]). Also we denote∫ t

0
∂†sf(s)σ(ds) :=

∫
R+

∂†sf(s)1[0,t)(s)σ(ds) = ∂∗· (f1[0,t)) (here t ∈ [0,+∞]).

Remark 2.3. Formally one can understand ∂†s (s ∈ R+) as the adjoint to ∂s with respect
to the scalar product in (L2) operator. Strictly speaking, if we consider ∂· on (L2)−1 (or
even on (L2)) then such a ”definition” of ∂†s is incorrect because for f (n+1)(·) ∈ H(n)

ext⊗HC
f (n+1)(s) is not determined and therefore ∂s is not determined. But for the ”Hida
derivative” ∂· on (Hτ )q (see Remark 1.9) ∂s is a linear continuous operator in (Hτ )q for
each s ∈ R+, therefore ∀s ∈ R+ ∂†s is well-defined as a linear continuous operator in
(H−τ )−q, see [21] for more details.

Corollary. Let t ∈ [0,+∞] and f ∈ (L2)1 ⊗HC. Then∫ t

0

f(s)d̂Ms = ∂∗· (f1[0,t)) =
∫ t

0

∂†sf(s)σ(ds),

and, therefore, ( ∫ t

0

◦d̂M
)∗
·

= 1[0,t)(·)∂·

(here and below by (
∫ t

0
◦d̂M)∗· the operator that is adjoint to the extended stochastic

integral on [0, t) is denoted), the last equality can be accepted as a definition of ∂·.

In the classical Gaussian analysis the following result is well-known as the Clark-Ocone
theorem (see, e.g., [9, 28, 25, 1]): if F ∈ L2(D′, γ) (where γ is the Gaussian measure)
and differentiable then

F = EF +
∫

R+

E(∂sF |Fs)dBs,

where {Fs := σ(Bu : u ≤ s)}s≥0 is the flow of the generated by the Brownian motion B
full σ-algebras, E(◦|Fs) denotes a conditional expectation with respect to Fs. In [11] this
result was generalized to the case of a general Lévy process instead of B (this corresponds
to constants α and β in our notation); but for η 6= 0 (see (1.1)), i.e., for not Gaussian and
not Poissonian cases a special family of differential operators and integrators was used.

Now we’ll formulate and prove a generalization of the Clark-Ocone theorem for F ∈
(L2)−1 in the Gaussian and Poissonian cases, and explain what kind of problems arise
in a general Meixner analysis. A more general (but less convenient for applications)
approach to the non-Gaussian Clark-Ocone theory is presented in [20].

Lemma 2.2. Let F (n) ∈ H(n)
ext, t ∈ [0,+∞]. We define F (n)1[0,t]n ∈ H

(n)
ext as the equiva-

lence class in H(n)
ext that is generated by a function Ḟ (n)1[0,t]n , where Ḟ (n) ∈ F (n). This

definition is correct and

(2.6) |F (n)1[0,t]n |ext ≤ |F (n)|ext.

Proof. It is obvious that

|Ḟ (n)1[0,t]n |ext ≤ |Ḟ (n)|ext = |F (n)|ext < ∞,
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therefore F (n)1[0,t]n is well-defined as an element of H(n)
ext and (2.6) is valid. Let Ḟ

(n)
1 ∈

F (n) be another representative from F (n), F
(n)
1 1[0,t]n be the corresponding equivalence

class in H(n)
ext . Since

|F (n)
1 1[0,t]n − F (n)1[0,t]n |ext = |Ḟ (n)

1 1[0,t]n − Ḟ (n)1[0,t]n |ext

= |(Ḟ (n)
1 − Ḟ (n))1[0,t]n |ext ≤ |Ḟ (n)

1 − Ḟ (n)|ext = 0,

F
(n)
1 1[0,t]n = F (n)1[0,t]n . �

Definition 2.2. (cf. [11]) Let F =
∑∞

n=0〈Pn, F (n)〉 ∈ (L2)−1, t ∈ [0,+∞). We define the
conditional expectation E(F |Ft) ∈ (L2)−1 (where Ft := σ(Ms : s ≤ t) is the generated
by Ms, s ≤ t full σ-algebra) by setting

E(F |Ft) :=
∞∑

n=0

〈Pn, F (n)1[0,t]n〉.

The correctness of this definition from estimate (2.6) follows. �

Remark 2.4. It follows from results of [29] that ∀n ∈ N 〈Pn, F (n)〉 is a ”measurable
combination” of polynomials of power 1 (for the Gaussian and Poissonian cases this fact
is well-known). Therefore if F =

∑∞
n=0〈Pn, F (n)〉 then F is Ft-measurable if and only

if ∀n ∈ N F (n) = F (n)1[0,t]n . Hence for F ∈ (L2) the defined above E(F |Ft) is Ft-
measurable, and ∀A ∈ Ft

∫
A

F (x)µ(dx) =
∫

A
E(F (x)|Ft)µ(dx). Thus, our definition of

a conditional expectation is natural. The reader can find a more detailed discussion in,
e.g., [11].

Theorem 2.2. Let η = 0 (see (1.1)), F ∈ (L2)−1. Then

(2.7) F = EF +
∫

R+

E(∂sF |Fs
)d̂Ms = EF +

∫
R+

E(∂sF |Fs)♦M ′
sσ(ds).

Proof. Note that now H(n)
ext = Hb⊗n

C , therefore F =
∑∞

n=0〈Pn, F (n)〉, F (n) ∈ Hb⊗n
C .

Lemma 2.3. ([20]) Let F (n) ∈ Hb⊗n
C , n ∈ N. Then Pr(F (n)(·)1[0,·]n−1) = 1

nF (n) in Hb⊗n
C

(here F (n)(·) ∈ Hb⊗n−1
C ⊗HC is obtained from F (n) by ”separating a one argument”, Pr

is the symmetrization operator).

Taking into consideration the result of this lemma, we obtain

EF = F (0) = 〈P0, F
(0)〉,

∂·F =
∞∑

n=1

n〈Pn−1, F
(n)(·)〉, F (n)(·) ∈ Hb⊗n−1

C ⊗HC,

E(∂·F |F·) =
∞∑

n=1

n〈Pn−1, F
(n)(·)1[0,·]n−1〉,

∫
R+

E(∂sF |Fs)d̂Ms =
∞∑

n=1

n〈Pn, ̂F (n)(·)1[0,·]n−1〉

=
∞∑

n=1

n〈Pn,Pr(F (n)(·)1[0,·]n−1)〉 =
∞∑

n=1

〈Pn, F (n)〉.

The second equality in (2.7) from Theorem 1.5 follows. �

Remark 2.5. If η 6= 0, i.e., if M is not a Gaussian or a Poissonian random process then a
direct analog of (2.7) can not be obtained. In fact, now Pr(F (n)(·)1[0,·]n−1) 6= 1

nF (n) even
for n = 2, generally speaking (from the ”proof of Lemma 2.3 point of view” (see [20]) we
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can not ignore processions with coinciding arguments). This is connected with ”loss of
an information” during construction of F (n)(·) ∈ H(n−1)

ext ⊗HC starting from F (n) ∈ H(n)
ext ,

see Lemma 2.1: there are different F (n) with the same F (n)(·). In order to ”do not loss
an information” one has to introduce another differential operator. Such an operator is
introduced and studied in [20], here we note only that this ”another ∂·” is not adjoint to
the extended stochastic integral. Finally we notice that (2.7) holds true in the case η 6= 0
if F ∈ (L2)−1 is such that all kernels from decomposition (1.5) F (n) ∈ Hb⊗n

C ⊂ H(n)
ext (the

embedding in the sense of Remark 1.7).

By analogy with [4, 15, 16, 20] we consider now another stochastic differential operator
(this new operator is closely connected with ∂·, see Proposition 2.1 below).

Definition 2.3. For each f (n) ∈ H(n)
ext (n ∈ Z+) we define an operator (Dn◦)(f (n)) ∈

L((L2)−1, (L2)−1) (here and below L denotes the set of linear continuous operators) by
setting for F =

∑∞
m=0〈Pm, F (m)〉 ∈ (L2)−1

(2.8) (DnF )(f (n)) :=
∞∑

m=0

(m + n)!
m!

〈Pm, 〈F (m+n), f (n)〉ext〉 ∈ (L2)−1

(see (2.1)).

Since for each F ∈ (L2)−1 there exists q ∈ N such that F ∈ (L2)−1
−(q−2), we have

‖(DnF )(f (n))‖2−q = ‖
∞∑

m=0

(m + n)!
m!

〈Pm, 〈F (m+n), f (n)〉ext〉‖2−q

≤
∞∑

m=0

2−qm(
(m + n)!

m!
)2|F (m+n)|2ext|f (n)|2ext

≤ (n!)2|f (n)|2ext

∞∑
m=0

2−qm22(m+n)|F (m+n)|2ext

= 2qn(n!)2|f (n)|2ext

∞∑
m=0

2−(q−2)(m+n)|F (m+n)|2ext

≤ 2qn(n!)2|f (n)|2ext‖F‖2−(q−2) < ∞

(we used the estimate (m+n)!
m! = n!Cm

m+n ≤ n!2m+n), therefore this definition is correct
and, moreover, for each F ∈ (L2)−1 (DnF )(◦) ∈ L(H(n)

ext , (L2)−1). �

Remark 2.6. We note that for η 6= 0 the restriction on (L2)−1 of introduced in [20]
operator (Dn◦)(f (n)) differs from operator (2.8), cf. Remark 2.2.

Remark 2.7. Let DF := D1F . It can be shown by analogy with the Gamma analysis
(see [16]) that for g

(1)
1 , g

(1)
2 , . . . , g

(1)
n ∈ HC = H(1)

ext

(D(. . . (D((D︸ ︷︷ ︸
n times

F )(g(1)
1 )))(g(1)

2 ) . . . ))(g(1)
n ) = (DnF )(g(1)

1 � g
(1)
2 � · · · � g(1)

n ).

Theorem 2.3. For each F ∈ (L2)−1 the kernels F (n) ∈ H(n)
ext, n ∈ Z+ from decomposi-

tion (1.5) can be presented in the form

(2.9) F (n) =
1
n!

E(DnF ).

Proof. Using (2.8), for each f (n) ∈ H(n)
ext we obtain

E((DnF )(f (n))) = 〈〈(DnF )(f (n)), 1〉〉 = n!〈F (n), f (n)〉ext,

this equality can be formally rewritten in form (2.9). �
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Let us calculate the adjoint to (Dn◦)(f (n)), f (n) ∈ H(n)
ext operator. For F ∈ (L2)−1

and g ∈ (L2)1 we have (see (2.8), (1.6), (1.9), (2.1), (1.5))

〈〈(DnF )(f (n)), g〉〉 = 〈〈
∞∑

m=0

(m + n)!
m!

〈Pm, 〈F (m+n), f (n)〉ext〉,
∞∑

k=0

〈Pk, g(k)〉〉〉

=
∞∑

m=0

(m + n)!〈〈F (m+n), f (n)〉ext, g
(m)〉ext

=
∞∑

m=0

(m + n)!〈F (m+n), f (n) � g(m)〉ext

= 〈〈
∞∑

k=0

〈Pk, F (k)〉,
∞∑

m=0

〈Pm+n, f (n) � g(m)〉〉〉 = 〈〈F, (Dng)(f (n))∗〉〉,

therefore (see (1.18))

(2.10) (Dng)(f (n))∗ =
∞∑

m=0

〈Pm+n, f (n) � g(m)〉 = g♦〈Pn, f (n)〉,

where g(m) ∈ H(m)
ext , m ∈ Z+ are the kernels from decomposition (1.6) for g.

Now we focus on the operator D = D1. The interconnection between D and ∂· is given
by

Proposition 2.1. For all F ∈ (L2)−1, f (1) ∈ HC

(2.11)
∫

R+

∂sF · f (1)(s)σ(ds) = (DF )(f (1)).

Proof. Using (2.4), (1.9), (2.3), (2.1) and (2.8) it is easy to show (by analogy with
the proof of Proposition 2.2 in [16]) that ∀g ∈ (L2)1 〈〈

∫
R+

∂sF · f (1)(s)σ(ds), g〉〉 =

〈〈(DF )(f (1)), g〉〉, from where the result follows. �

Remark 2.8. Note that formally ∂·◦ = (D◦)(δ·), where δ is the Dirac delta-function.

Taking into consideration the result of Proposition 2.1, we preserve for D the name
”a generalized stochastic derivative”, cf. [4, 15, 16, 20].

Theorem 2.1 can be reformulated ”in terms of D” as follows:

Theorem 2.4. For all F ∈ (L2)−1, f ∈ (L2)1 and g(1) ∈ HC

(2.12) 〈〈F,

∫ ∞

0

f · g(1)(s)d̂Ms〉〉 = 〈〈F, f♦〈P1, g
(1)〉〉〉 = 〈〈(DF )(g(1)), f〉〉.

Proof. The equality
∫∞
0

f · g(1)(s)d̂Ms = f♦〈P1, g
(1)〉 follows from (1.18), (1.21) and the

following

Lemma 2.4. Let F (n) ∈ H(n)
ext, g(1) ∈ HC. Then F (n) � g(1) = F̂

(n)
[0,+∞) ∈ H

(n+1)
ext , where

F̂
(n)
[0,+∞) is constructed in Lemma 1.2 starting from F (n) ⊗ g(1) and with t = +∞.

Proof. This result follows directly from Lemmas 1.1, 1.2, see (1.12), (1.20). �

The second equality in (2.12) follows from (2.10) (with n = 1). �

Note that (2.12) can be used as a definition of D.
As is well known, in the classical Gaussian and Poissonian analysis (the case η = 0)

the operator D is a pre-image of the directional derivative under the S-transform (see
[15] for more details). In the Gamma analysis the situation is more complicated, but
the similar result holds true (see [16]). Now the situation is very similar to the Gamma
analysis, let us explain this explicitly.
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Definition 2.4. We define a set of formal series B (a characterization set of (L2)−1 in
terms of the S-transform) by setting B := S

(
(L2)−1

)
≡

{
K|∃F ∈ (L2)−1 : K = SF

}
.

Definition 2.5. Let g ∈ HC. We define a ”directional derivative” D�
g : B → B by

setting for (SF )(·) =
∑∞

m=0〈F (m), ·⊗m〉ext ∈ B
(2.13)

(D�
gSF )(·) :=

∞∑
m=1

m〈F (m), ·⊗(m−1) � g〉ext ≡
∞∑

m=0

(m + 1)〈〈F (m+1), g〉ext, ·⊗m〉ext ∈ B.

The correctness of this definition can be proved by analogy with the ”Gamma case”
(it is necessary to estimate the (L2)−1

−q-norm of S−1(D�
gSF ), where q ∈ N is such that

F ∈ (L2)−1
−q+1), see [16]. �

Remark 2.9. Note that if η = 0 then D�
g is the usual directional derivative.

Theorem 2.5. The generalized stochastic derivative (D◦)(g) is a pre-image of the ”di-
rectional derivative” D�

g of S◦ under the S-transform, i.e., for all F ∈ (L2)−1 and g ∈ HC

(DF )(g) = S−1(D�
gSF ).

Proof. Using (2.8) (with n = 1) and the obvious formula S−1(D�
gSF ) =

∑∞
m=0〈Pm, (m+

1)〈F (m+1), g〉ext〉 (see (2.13), (1.10); F (m) ∈ H(m)
ext , m ∈ Z+ are the kernels from decom-

position (1.5) for F ) we obtain

(DF )(g) =
∞∑

m=0

〈Pm, (m + 1)〈F (m+1), g〉ext〉 = S−1(D�
gSF ).

�

It was established in [4] that in the Gaussian analysis D is a differentiation with
respect to the Wick product. In [15, 16] it was shown that this property of D holds true
in the Poissonian and Gamma analysis (we remind that in the Gamma analysis (in the
same way as in the Meixner one) on the spaces of nonregular and regular generalized
functions the operators D are different; nevertheless the result is true for both operators).
Therefore it is natural to expect that D is a differentiation in the Meixner analysis too.
In fact, in [20] the corresponding result was established for D on the spaces of nonregular
generalized functions; and now we have the following statement:

Theorem 2.6. The generalized stochastic derivative D is a differentiation with respect
to the Wick product, i.e., ∀F,G ∈ (L2)−1 we have

(2.14) D(F♦G) = (DF )♦G + F♦(DG).

Proof. Since the proof of this statement is completely analogous to the proof of the
corresponding statement in the Gamma analysis (see the proof of Theorem 2.5 in [16]),
we shall confine ourselves to the short description of main steps.

1. Applying the S-transform to the left- and right hand sides of (2.14) and taking
into account the result of Theorem 2.5 one can show that it is sufficient to prove
that

(2.15) D�
g(SF · SG) = D�

g(SF ) · SG + SF ·D�
g(SG).

(Note that in the case η = 0 we can stop here because a usual directional deriv-
ative has this property.)
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2. Using the definitions of the S-transform and D�
g one can show that (2.15) is true

if ∀n, m ∈ Z+

(2.16)

(n + m)〈F (n) �G(m), λ⊗(n+m−1) � g〉ext

= n〈F (n), λ⊗(n−1) � g〉ext〈G(m), λ⊗m〉ext

+ m〈F (n), λ⊗n〉ext〈G(m), λ⊗(m−1) � g〉ext

(here F (n) ∈ H(n)
ext , G(m) ∈ H(m)

ext are the kernels from decompositions (1.5) for F
and G correspondingly).

3. Formula (2.16) can be verified by the direct calculation that is based on (1.3).

�

By induction we obtain from Theorem 2.6

Corollary. Let n ∈ N, F ∈ (L2)−1, and h : C → C be a holomorphic at (SF )(0)
function. Then we have

(2.17)
D(F♦n) = nF♦(n−1)♦(DF ),

Dh♦(F ) = h′
♦(F )♦(DF ),

where h′ denotes the usual derivative of h.

Finally, let us calculate a commutator between the extended stochastic integral and
the generalized stochastic derivative (known as a fundamental theorem of the Malliavin
calculus, cf. [10]).

Theorem 2.7. Let F ∈ (L2)−1 ⊗HC. Then ∀t ∈ [0,+∞]

(2.18) (D
∫ t

0

Fsd̂Ms)(◦) =
∫ t

0

(DFs)(◦)d̂Ms +
∫ t

0

Fs ◦ (s)σ(ds).

Proof. Since, as above, the proof of this statement is completely analogous to the proof
of the corresponding statement in the Gamma analysis (see the proof of Theorem 2.6 in
[16]), again we shall confine ourselves to the short description of main steps.

1. Using the definitions of the extended stochastic integral and D one can show that
in order to prove (2.18) it is sufficient to establish that ∀n ∈ Z+

(n + 1)〈F̂ (n)
[0,t), ◦〉ext = n

̂〈F (n)
· , ◦〉ext[0,t) +

∫ t

0

F (n)
s ◦ (s)σ(ds),

where F
(n)
· ∈ H(n)

ext ⊗ HC (n ∈ Z+) are the kernels from decomposition (1.19)

for F ; F̂
(n)
[0,t) ∈ H(n+1)

ext , ̂〈F (n)
· , ◦〉ext[0,t) ∈ H(n)

ext are constructed in Lemma 1.2

starting from F
(n)
· , 〈F (n)

· , ◦〉ext correspondingly. Of course, this equality is true
if ∀g(1) ∈ HC, ∀f (n) ∈ H(n)

ext

(2.19)
(n + 1)〈〈F̂ (n)

[0,t), g
(1)〉ext, f

(n)〉ext

= n〈 ̂〈F (n)
· , g(1)〉ext[0,t), f

(n)〉ext +
〈 ∫ t

0

F (n)
s g(1)(s)σ(ds), f (n)

〉
ext

.

2. Using the formula 〈F̂ (n)
[0,t), f

(n+1)〉ext =
∫ t

0
〈F (n)

s , f (n+1)(s)〉extσ(ds) (formula (3.22)

in [21], f (n+1)(·) ∈ H(n)
ext ⊗HC is obtained from f (n+1) ∈ H(n+1)

ext in Lemma 2.1)
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and the nonatomicity of σ we obtain (using the notation of Lemma 1.1)

(2.20)

(n + 1)〈〈F̂ (n)
[0,t), g

(1)〉ext, f
(n)〉ext = (n + 1)〈F̂ (n)

[0,t), f
(n) � g(1)〉ext

= (n + 1)
∫ t

0

〈F (n)
s , (f (n) � g(1))(s)〉extσ(ds)

=
∫ t

0

〈F (n)
s , ˜f (n)(·1, . . . , ·n)g(1)(s) + ˜f (n)(·2, . . . , s)g(1)(·1) + · · ·

+ ˜f (n)(s, . . . , ·n−1)g(1)(·n)〉extσ(ds) = 〈
∫ t

0

F (n)
s g(1)(s)σ(ds), f (n)〉ext

+
∫ t

0

〈F (n)
s , ˜f (n)(·2, . . . , s)g(1)(·1) + · · ·+ ˜f (n)(s, . . . , ·n−1)g(1)(·n)〉extσ(ds).

Rewriting by analogy with (2.20) the right hand side of (2.19) we obtain the
necessary result.

�

By analogy with [4, 15] as an application of our results we will calculate the generalized
stochastic derivative of the solution of the stochastic equation

(2.21) (L2)−1 3 Ft = F0 +
∫ t

0

h♦(Fs)d̂Ms,

where h : C → C is some entire function, F0 ∈ C. Under certain conditions on h a unique
solution of (2.21) Ft ∈ (L2)−1 exists. Applying D to (2.21) and taking into account (2.18)
and (2.17), for each g ∈ HC we obtain

(2.22)
(DFt)(g) = (D

∫ t

0

h♦(Fs)d̂Ms)(g)

=
∫ t

0

h′
♦(Fs)♦(DFs)(g)d̂Ms +

∫ t

0

h♦(Fs)g(s)σ(ds).

Let φg
s(λ) := S((DFs)(g))(λ). Applying the S-transform to (2.22) and taking into ac-

count (1.22) we obtain

φg
t (λ) =

∫ t

0

h′((SFs)(λ))φg
s(λ)λ(s)σ(ds) +

∫ t

0

h((SFs)(λ))g(s)σ(ds).

The solution of this equation is

φg
t (λ) =

∫ t

0

h((SFs)(λ))g(s) · exp
{∫ t

s

h′((SFu)(λ))λ(u)σ(du)
}

σ(ds).

By the inverse S-transform we obtain

(2.23) (DFt)(g) =
∫ t

0

h♦(Fs)g(s)♦ exp♦
{∫ t

s

h′
♦(Fu)d̂Mu

}
σ(ds) ∈ (L2)−1.

Remark 2.10. Let D̃ be the generalized stochastic derivative on (H−τ ), see Remark 1.9
and [20]. This operator can be defined by the formula (D̃F )(g) := S−1(DgSF ), where
F ∈ (H−τ ), g ∈ Hτ,C, Dg is the directional derivative operator (in the direction g). It
is easy to see that the restriction of D̃ on (L2)−1 does not coincide with D, generally
speaking. Nevertheless, it follows from [20] and (2.23) that (D̃Ft)(g) = (DFt)(g) for
Ft ∈ (L2)−1 and g ∈ Hτ,C. This strange at first sight result is connected with a form of
Ft and properties of the extended stochastic integral: roughly speaking, when integrating
we exclude a one ”diagonal” of the integrand, but the difference between D and D̃ is
connected namely with this ”diagonal”.
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3. Some properties of stochastic derivatives on (L2)

The stochastic derivative ∂· on (L2) was considered in [21]. Here we study some
properties of ∂· and Dn that were not considered therein.

First we note that since (L2) is embedded in (L2)−1, ∂· and (Dn◦)(f (n)) (f (n) ∈ H(n)
ext)

are well-defined as operators acting from (L2) to (L2)−1 (here we understand (L2) as a
subset of (L2)−1). But if we want to consider these operators on the topological space (L2)
then the situation is not so trivial because now ∂· and (Dn◦)(f (n)) are not continuous.

We begin our consideration from the operator ∂·.

Definition 3.1. We define the stochastic derivative ∂· : (L2) → (L2) ⊗ HC with the
domain dom ∂· = {F ∈ (L2) : ‖∂·F‖2(L2)⊗HC

=
∑∞

n=0(n + 1)!(n + 1)|F (n+1)(·)|2
H(n)

ext⊗HC
<

∞} by formula (2.4) (here the kernels F (n+1)(·) ∈ H(n)
ext ⊗ HC, n ∈ Z+ are obtained in

Lemma 2.1 starting from the kernels F (n+1) ∈ H(n+1)
ext from decomposition (1.5) for F ).

Theorem 3.1. For each t ∈ [0,+∞]

1[0,t)(·)∂· =
( ∫ t

0

◦d̂M
)∗
·
.

In particular, 1[0,t)(·)∂· (and, specifically, ∂· = 1[0,+∞)(·)∂·) is a closed operator.

Proof. It is sufficient to prove that dom(1[0,t)(·)∂·) = dom(
∫ t

0
◦d̂M)∗· , then the result

follows from formula (3.21) in [21]. Note that dom(1[0,t)(·)∂·) = {F ∈ (L2) :
∑∞

n=0(n +
1)!(n + 1)|F (n+1)(·)1[0,t)(·)|2H(n)

ext⊗HC
< ∞} (here the kernels F (n+1)(·), n ∈ Z+ are ob-

tained in Lemma 2.1 from the kernels F (n+1) from decomposition (1.5) for F ). Let us
find dom(

∫ t

0
◦d̂M)∗· . By definition,

{F ∈ dom(
∫ t

0

◦d̂M)∗· }

⇔ {(L2)⊗HC ⊃ dom
∫ t

0

◦(s)d̂Ms 3 G 7→ 〈〈
∫ t

0

G(s)d̂Ms, F 〉〉

is a linear continuous functional}.

By Riesz’s theorem this is possible if and only if there exists H ∈ (L2) ⊗HC such that
∀G ∈ dom

∫ t

0
◦(s)d̂Ms 〈〈

∫ t

0
G(s)d̂Ms, F 〉〉 = (G, H)(L2)⊗HC . For G ∈ dom

∫ t

0
◦(s)d̂Ms and

F ∈ (L2) we have (see (1.21), (1.5), (1.9))

〈〈
∫ t

0

G(s)d̂Ms, F 〉〉 = 〈〈
∞∑

n=0

〈Pn+1, Ĝ
(n)
[0,t)〉,

∞∑
m=0

〈Pm, F (m)〉〉〉 =
∞∑

n=0

(n+1)!〈Ĝ(n)
[0,t), F

(n+1)〉ext.

On the other hand, using decompositions (1.19) for G and H, and the formula

〈Ĝ(n)
[0,t), F

(n+1)〉ext =
∫ t

0

〈G(n)
s , F (n+1)(s)〉extσ(ds) = (G(n)

· , F (n+1)(·)1[0,t)(·))H(n)
ext⊗HC

,

where F (n+1)(·) ∈ H(n)
ext⊗HC is obtained from F (n+1) ∈ H(n+1)

ext in Lemma 2.1 (see formula
(3.22) in [21]), we can conclude that (G, H)(L2)⊗HC =

∑∞
n=0(n + 1)!〈Ĝ(n)

[0,t), F
(n+1)〉ext if

and only if H(·) =
∑∞

m=0〈Pm, (m + 1)F (m+1)(·)1[0,t)(·)〉. This H belongs to (L2) ⊗HC
if and only if ‖H‖2(L2)⊗HC

=
∑∞

m=0(m + 1)!(m + 1)|F (m+1)(·)1[0,t)(·)|2H(m)
ext ⊗HC

< ∞,

therefore

dom
( ∫ t

0

◦d̂M
)∗
·

=
{

F ∈ (L2) :
∞∑

m=0

(m + 1)!(m + 1)|F (m+1)(·)1[0,t)(·)|2H(m)
ext ⊗HC

< ∞
}

= dom(1[0,t)(·)∂·).
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�

Clarc-Ocone formula (2.7) holds true for F ∈ (L2) and η = 0; but, generally speaking,
now E(∂·F |F·) ∈ (L2)−1⊗HC. If

∑∞
n=0(n+1)!(n+1)|F (n+1)|20 < ∞ then ∂·F,E(∂·F |F·) ∈

(L2) ⊗ HC. The statement of Remark 2.5 holds true for F ∈ (L2) (up to obvious
modifications).

Now let us consider the operator Dn.

Definition 3.2. For each f (n) ∈ H(n)
ext (n ∈ Z+) we define an operator (Dn◦)(f (n)) :

(L2) → (L2) with the domain dom(Dn◦)(f (n)) = {F ∈ (L2) : ‖(DnF )(f (n))‖2(L2) =∑∞
m=0

((m+n)!)2

m! |〈F (m+n), f (n)〉ext|2ext < ∞} by formula (2.8) (here F (m) ∈ H(m)
ext , m ∈ Z+

are the kernels from decomposition (1.5) for F ).

Theorem 3.2. The operator (Dn◦)(f (n)) (f (n) ∈ H(n)
ext, n ∈ Z+) is closed.

Proof. It is clear that dom(Dn◦)(f (n)) is dense in (L2), therefore there exists the adjoint
to (Dn◦)(f (n)) operator (Dn◦)(f (n))∗ : (L2) → (L2), this operator is defined by the
formula 〈〈(DnF )(f (n)), G〉〉 = 〈〈F, (DnG)(f (n))∗〉〉. By analogy with the calculation before
(2.10) one can show that (see (1.18))

(3.1) (DnG)(f (n))∗ = G♦〈Pn, f (n)〉 =
∞∑

k=0

〈Pk+n, G(k) � f (n)〉,

where G(k) ∈ H(k)
ext, k ∈ Z+ are the kernels from decomposition (1.5) for G. Therefore

dom(Dn◦)(f (n))∗ = {G ∈ (L2) : ‖G♦〈Pn, f (n)〉‖2(L2) =
∑∞

k=0(k+n)!|G(k)�f (n)|2ext < ∞}.
Since dom(Dn◦)(f (n))∗ is dense in (L2), it is possible to consider the adjoint to

(Dn◦)(f (n))∗ operator (Dn◦)(f (n))∗∗ : (L2) → (L2), this operator is defined by the
formula 〈〈(DnF )(f (n))∗∗, G〉〉 = 〈〈F, (DnG)(f (n))∗〉〉. Let us find dom(Dn◦)(f (n))∗∗. By
definition{

F ∈ dom(Dn◦)(f (n))∗∗
}
⇔

{
(L2) ⊃ dom(Dn◦)(f (n))∗ 3 G 7→ 〈〈F, (DnG)(f (n))∗〉〉

is a linear continuous functional
}
.

By Riesz’s theorem the functional G 7→ 〈〈F, (DnG)(f (n))∗〉〉 is continuous if and only if
(see (1.5), (3.1) and (1.9))

〈〈F, (DnG)(f (n))∗〉〉 = 〈〈
∞∑

m=0

〈Pm, F (m)〉,
∞∑

k=0

〈Pk+n, G(k) � f (n)〉〉

=
∞∑

k=0

(k + n)!〈F (k+n), G(k) � f (n)〉ext = 〈〈H,G〉〉

with H ∈ (L2). It follows from Theorem 1.3 in [21], (1.9) and (2.1) that this H must
have the form H =

∑∞
m=0

(m+n)!
m! 〈Pm, 〈F (m+n), f (n)〉ext〉, hence{

F ∈ dom(Dn◦)(f (n))∗∗
}
⇔

{
H ∈ (L2)

}
⇔

{
‖H‖2(L2) =

∞∑
m=0

((m + n)!)2

m!
|〈F (m+n), f (n)〉ext|2ext < ∞

}
⇔

{
F ∈ dom(Dn◦)(f (n))

}
.

But it means that (Dn◦)(f (n))∗∗ = (Dn◦)(f (n)), therefore (Dn◦)(f (n)) is closed as an
adjoint operator. �

Remark 3.1. Let Mn := {F ∈ (L2) :
∑∞

m=0
((m+n)!)2

m! |F (m+n)|2ext < ∞}. For each
f (n) ∈ H(n)

ext we define the operator (Dn◦)(f (n)) : Mn → (L2) by formula (2.8). It follows
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from Theorem 3.2 that this operator (as an operator acting in the topological space
(L2)) is closable. Moreover, for each F ∈ Mn the operator (DnF )(◦) : H(n)

ext → (L2) is
continuous:

‖(DnF )(f (n))‖2(L2) =
∞∑

m=0

((m + n)!)2

m!
|〈F (m+n), f (n)〉ext|2ext

≤ |f (n)|ext ·
∞∑

m=0

((m + n)!)2

m!
|F (m+n)|2ext.

Since the operators ∂· and Dn on (L2) are the restrictions of the corresponding ope-
rators acting on (L2)−1, we have the following results.

The interconnection between ∂· and D ≡ D1 on (L2) is given by formula (2.11); now,
of course, F ∈ (L2) must be from the domain of (D◦)(g(1)), g(1) ∈ HC, if we need
(DF )(g(1)) ∈ (L2). Generally speaking, in this case ∂·F in the left hand side of (2.11)
can be a generalized function. Note that ∂·F and (DF )(g(1)) will be not generalized
functions if, for example, F ∈ M1 (see Remark 3.1); this statement follows from (2.2)
and the definition of (DF )(g(1)).

Further, formula (2.12) holds true for F ∈ dom(D◦)(g(1)), f ∈ (L2), g(1) ∈ HC. We
note that now

(3.2)
∫ ∞

0

f · g(1)(s)d̂Ms = f♦〈P1, g
(1)〉 = (Df)(g(1))∗

can be a generalized function if we do not accept the additional restriction
∑∞

n=0(n +
1)!|f (n) � g(1)|2ext < ∞, here f (n) ∈ H(n)

ext , n ∈ Z+ are the kernels from decomposition
(1.5) for f .

Formula (3.2) can be generalized in the following sense. For a general n ∈ N, g(n) ∈
H(n)

ext , F ∈ (L2)−1 one can define a multiple extended stochastic integral∫
Rn

+

F · g(n)(u1, . . . , un)d̂Mu1 . . . d̂Mun
:= F♦〈Pn, g(n)〉 = (DnF )(g(n))∗ ∈ (L2)−1

(see (3.1)). It is easy to see that for g(n) = g
(1)
1 �· · ·�g

(1)
n , g

(1)
1 , . . . , g

(1)
n ∈ HC this integral

is a repeated extended stochastic one: (DnF )(g(1)
1 � · · · � g

(1)
n )∗ =

∫∞
0

(. . . (
∫∞
0

(
∫∞
0

F ·
g
(1)
1 (u1)d̂Mu1)g

(1)
2 (u2)d̂Mu2) . . . )g(1)

n (un)d̂Mun (cf. Remark 2.7).
The result of Theorem 2.3 (formula (2.9)) holds true.
Finally, the result of Theorem 2.7 (formula (2.18)) holds true for F ∈ (L2)⊗HC; and all

terms in (2.18) are the operators acting fromHC to (L2) if
∑∞

n=0(n+1)!(n+1)|F̂ (n)
[0,t)|

2
ext <

∞ (here F̂
(n)
[0,t) ∈ H

(n+1)
ext , n ∈ Z+ are the kernels constructed in Lemma 1.2 starting from

F
(n)
· ∈ H(n)

ext ⊗ HC from decomposition (1.19) for F , t ∈ [0,+∞]). The integrands in
(2.18) can be generalized functions; in order to make these functions not generalized
ones it is necessary to accept obvious (but not simply verifiable) additional restrictions.

References

1. K. Aase, B. Oksendal, N. Privault, J. Uboe, White noise generalizations of the Clark-
Haussmann-Ocone theorem with application to mathematical finance, Finance Stochastics 4
(2000), 465–496.

2. S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev, L. Streit, Non-Gaussian infinite-dimensional
analysis, J. Funct. Anal. 138 (1996), no. 2, 311–350.

3. S. Albeverio, Yu. G. Kondratiev, L. Streit, How to generalize white noise analysis to non-
Gaussian spaces, in Dynamics of Complex and Irregular Systems, Ph. Blanchard, L. Streit, M.
Sirugue-Collin, and D. Testard, eds., World Scientific, Singapore, 1993, pp. 120–130.

4. F. E. Benth, The Gross derivative of generalized random variables, Infin. Dimens. Anal. Quan-
tum Probab. Relat. Top. 2 (1999), no. 3, 381–396.



GENERALIZED STOCHASTIC DERIVATIVES . . . 53

5. Yu. M. Berezansky, Infinite dimensional analysis related to generalized translation operators,
Ukrainian Math. J. 49 (1997), no. 3, 403–450.

6. Yu. M. Berezansky, D. A. Merzejewski, The structure of the extended symmetric Fock space,
Methods Funct. Anal. Topology 6 (2000), no. 4, 1–13.

7. Yu. M. Berezansky, Z. G. Sheftel, G. F. Us, Functional Analysis, Vol. II, in Operator Theory:
Advances and Applications, Birkhäuser, Basel, Vol. 86, 1996.
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Itô formulae for Lévy processes, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2005),
no. 2, 235–258.

11. G. Di Nunno, B. Oksendal, F. Proske, White noise analysis for Lévy processes, J. Funct. Anal.
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