THE INVOLUTIVE AUTOMORPHISMS OF τ -COMPACT OPERATORS AFFILIATED WITH A TYPE I VON NEUMANN ALGEBRA

K. K. KUDAYBERGENOV AND T. S. KALANDAROV

ABSTRACT. Let M be a type I von Neumann algebra with a center Z, and a faithful normal semi-finite trace τ . Consider the algebra $L(M,\tau)$ of all τ -measurable operators with respect to M and let $S_0(M,\tau)$ be the subalgebra of τ -compact operators in $L(M,\tau)$. We prove that any Z-linear involutive automorphisms of $S_0(M,\tau)$ is inner.

1. Introduction

The present paper is devoted to an investigation of *-automorphisms of τ -compact operators affiliated with a type I von Neumann algebra.

It is well known [5] that, if M is a type I von Neumann algebra and $\Phi: M \to M$ is an *-automorphism such that $\Phi(zx) = z\Phi(x)$ for all central elements z in M, then Φ is inner, i.e., $\Phi(x) = uxu^*$ for some unitary element $u \in M$. Some results of such a kind for unbounded operator algebras were obtained in [9]. Namely, it was proved that any *-automorphism of the maximal O^* -algebra is inner.

One of important classes of unbounded operator algebras are algebras of τ -compact operators affiliated with a von Neumann algebra.

In the present paper, using the description of the algebra of τ -measurable operators affiliated with a type I von Neumann algebra obtained in [1] and also the description of automorphisms of standard subalgebras of the algebra of bounded linear operators acting in Banach-Kantorovich modula from [2], we prove that any Z-linear *-automorphism of the algebra of τ -compact operators affiliated with a type I von Neumann algebra is inner.

2. Preliminaries

Let (Ω, Σ, μ) be a measurable space with a σ -finite measure μ , i. e., there is family $\{\Omega_i\}_{i\in J}\subset \Sigma,\ 0<\mu(\Omega_i)<\infty,\ i\in J,\ \text{such that for any }A\in \Sigma,\ \mu(A)<\infty,\ \text{there exists a countable subset }J_0\subset J\ \text{and a set }B\ \text{with zero measure such that }A=\bigcup_{i\in J_0}(A\cap\Omega_i)\cup B.$

We denote by $L^0 = L^0(\Omega, \Sigma, \mu)$ the algebra of all (classes of) complex measurable functions on (Ω, Σ, μ) equipped with the topology of convergence in measure. Then L^0 is a complete metrizable commutative regular algebra with the unit **1** given by $\mathbf{1}(\omega) = 1$, $\omega \in \Omega$.

Denote by ∇ the complete Boolean algebra of all idempotents from L^0 , i.e., $\nabla = \{\chi_A : A \in \Sigma\}$, where χ_A is the characteristic function of the set A.

A complex linear space E is said to be normed by L^0 if there is a map $\|\cdot\|: E \longrightarrow L^0$ such that for any $x, y \in E, \lambda \in \mathbb{C}$, the following conditions are fulfilled:

$$||x|| \ge 0$$
, $||x|| = 0 \iff x = 0$, $||\lambda x|| = |\lambda| ||x||$, $||x + y|| \le ||x|| + ||y||$.

²⁰⁰⁰ Mathematics Subject Classification. 46L10, 46L40.

Key words and phrases. Von Neumann algebras, measurable operator, τ -compact operator, involutive automorphisms, type I algebra.

The pair $(E, \|\cdot\|)$ is called a lattice-normed space over L^0 . A lattice-normed space E is called d-decomposable, if for any $x \in E$ with $\|x\| = \lambda_1 + \lambda_2$, where $\lambda_1, \lambda_2 \in L^0$, $\lambda_1 \lambda_2 = 0$, there exists $x_1, x_2 \in E$ such that $x = x_1 + x_2$ and $\|x_i\| = \lambda_i$, i = 1, 2. A net (x_α) in E is (bo)-converging to $x \in E$, if $\|x_\alpha - x\| \to 0$ μ -almost everywhere in L^0 . A lattice-normed space E which is d-decomposable and complete with respect to the (bo)-convergence is called a Banach-Kantorovich space.

It is known that every Banach-Kantorovich space E over L^0 is a module over L^0 and $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in L^0$, $x \in E$ (see [6]).

A module F over L^0 is said to be finite-generated, if there are $x_1, x_2, ..., x_n$ in F for any $x \in F$ there exists $\lambda_i \in L^0$ $(i = \overline{1,n})$ such that $x = \lambda_1 x_1 + ... + \lambda_n x_n$. The elements $x_1, x_2, ..., x_n$ are called generators of F. We denote by d(F) the minimal number of generators of F.

A finite-generated module F over L^0 is called homogeneous of type n, if for every nonzero $e \in \nabla$ we have n = d(eF).

Let \mathcal{K} be a module over L^0 . A map $\langle \cdot, \cdot \rangle : \mathcal{K} \times \mathcal{K} \to L^0$ is called an L^0 -valued inner product, if for all $x, y, z \in \mathcal{K}$, $\lambda \in L^0$, the following conditions are fulfilled: $\langle x, x \rangle \geq 0$; $\langle x, x \rangle = 0 \Leftrightarrow x = 0$; $\langle x, y \rangle = \overline{\langle y, x \rangle}$; $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$; $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

If $\langle \cdot, \cdot \rangle : \mathcal{K} \times \mathcal{K} \to L^0$ is an L^0 -valued inner product, then $||x|| = \sqrt{\langle x, x \rangle}$ defines an L^0 -valued norm on \mathcal{K} . The pair $(\mathcal{K}, \langle \cdot, \cdot \rangle)$ is called a *Kaplansky-Hilbert module* over L^0 , if $(\mathcal{K}, ||\cdot||)$ is a Banach-Kantorovich space over L^0 (see [6]).

Let X be a Banach space. A map $s:\Omega\to X$ is called a simple, if

$$s(\omega) = \sum_{k=1}^{n} \chi_{A_k}(\omega) c_k,$$

where $A_k \in \Sigma$, $A_i \cap A_j = \emptyset$, $i \neq j$, $c_k \in X$, $k = \overline{1, n}$, $n \in \mathbb{N}$. A map $u : \Omega \to X$ is said to be measurable, if there is a sequence (s_n) of simple maps such that $||s_n(\omega) - u(\omega)|| \to 0$ almost everywhere on any $A \in \Sigma$ with $\mu(A) < \infty$.

Let $\mathcal{L}(\Omega, X)$ be the set of all measurable maps from Ω into X, and let $L^0(\Omega, X)$ denote the factorization of this set with respect to equality almost everywhere. Denote by \hat{u} the equivalence class from $L^0(\Omega, X)$ which contains the measurable map $u \in \mathcal{L}(\Omega, X)$. Further we shall identity the element $u \in \mathcal{L}(\Omega, X)$ with the class \hat{u} . Note that the function $\omega \to \|u(\omega)\|$ is measurable for any $u \in \mathcal{L}(\Omega, X)$. The equivalence class containing the function $\|u(\omega)\|$ is denoted by $\|\hat{u}\|$. For $\hat{u}, \hat{v} \in L^0(\Omega, X), \lambda \in L^0$ put $\hat{u} + \hat{v} = u(\omega) + v(\omega), \lambda \hat{u} = \lambda(\omega)u(\omega)$.

It is known [6] that $(L^0(\Omega, X), \|\cdot\|)$ is a Banach-Kantorovich space over L^0 .

Put $L^{\infty}(\Omega, X) = \{x \in L^{0}(\Omega, X) : ||x|| \in L^{\infty}(\Omega)\}$. Then $L^{\infty}(\Omega, X)$ is a Banach space with respect the norm $||x||_{\infty} = |||x|||_{L^{\infty}(\Omega)}$.

If H is a Hilbert space, then $L^0(\Omega, H)$ can be equipped with an L^0 -valued inner product $\langle x, y \rangle = (\widehat{x(\omega)}, \widehat{y(\omega)})$, where (\cdot, \cdot) is the inner product on H.

Then $(L^0(\Omega, H), \langle \cdot, \cdot \rangle)$ is a Kaplansky-Hilbert module over L^0 .

Let E be a Banach-Kantorovich space over L^0 . An operator $T: E \to E$ is called L^0 -linear if $T(\lambda_1x_1 + \lambda_2x_2) = \lambda_1T(x_1) + \lambda_2T(x_2)$ for all $\lambda_1, \lambda_2 \in L^0, x_1, x_2 \in E$. An L^0 -linear operator $T: E \to E$ is called L^0 -bounded, if there exists an element $c \in L^0$ such that $||T(x)|| \le c||x||$ for any $x \in E$. For an L^0 -bounded linear operator T we put $||T|| = \sup\{||T(x)|| : ||x|| \le 1\}$.

An L^0 -linear operator $T: E \to E$ is called finite-generated (homogeneous of type n) if $T(E) = \{T(x) : x \in E\}$ is a finite-generated (respectively homogeneous of type n) submodule in E.

We denote by B(E) the algebra of all L^0 -linear L^0 -bounded operators on E and $\mathcal{F}(E)$ be the set of all finite-generated L^0 -linear L^0 -bounded operators on E.

An algebra $\mathcal{U} \subset B(E)$ is called *standard* over L^0 , if \mathcal{U} is a submodule in B(E) and $\mathcal{F}(E) \subset \mathcal{U}$.

Recall that bijective linear operator $\Phi: \mathcal{U} \to \mathcal{U}$ is said an automorphism, if $\Phi(xy) = \Phi(x)\Phi(y)$ for all $x,y \in \mathcal{U}$

Theorem 2.1. [2]. Let \mathcal{U} be a standard algebra in $B(L^0(\Omega, H))$ and let $\Phi: \mathcal{U} \to \mathcal{U}$ be an L^0 – linear automorphism of the algebra \mathcal{U} . Then there is an invertible element $a \in B(L^0(\Omega, H))$ such that

$$\Phi(A) = axa^{-1}$$

for all $x \in \mathcal{U}$.

3. The main result

A linear subspace D in H is said to be affiliated with M (denotes as $D\eta M$), if $u(D) \subset D$ for any unitary operator u from the commutant

$$M' = \{ y' \in B(H) : xy' = y'x, \forall x \in M \}$$

of the algebra M.

A linear operator x on H with domain D(x) is said to be affiliated with M (denoted as $x\eta M$) if $u(D(x)) \subset D(x)$ and $ux(\xi) = xu(\xi)$ for all $u \in M'$, $\xi \in D(x)$.

A linear subspace D in H is called τ -dense, if

- 1) $D\eta M$;
- 2) given any $\varepsilon > 0$ there exists a projection $p \in \mathcal{P}(M)$ such that $p(H) \subset D$ and $\tau(p^{\perp}) \leq \varepsilon$.

A closed linear operator x is said to be τ -measurable (or totally measurable) with respect to the von Neumann algebra M, if $x\eta M$ and D(x) is τ -dense in H.

We will denote by $L(M, \tau)$ the set of all τ -measurable operators affiliated with M. Let $\|\cdot\|_M$ stand for the uniform norm in M. The measure topology, t_{τ} , in $L(M, \tau)$ is the one given by the following system of neighborhoods of zero:

$$V(\varepsilon,\delta) = \{x \in L(M,\tau): \exists e \in \mathcal{P}(M), \tau(e^{\perp}) \leq \delta, xe \in M, \|xe\|_{M} \leq \varepsilon\},$$

where $\varepsilon > 0, \delta > 0$.

It is known [8] that $L(M, \tau)$ equipped with the measure topology is a complete metrizable topological *-algebra.

In the algebra $L(M,\tau)$ consider the subset $S_0(M,\tau)$ of all operators x such that given any $\varepsilon > 0$ there is a projection $p \in \mathcal{P}(M)$ with $\tau(p^{\perp}) < \infty$, $xp \in M$ and $||xp|| < \varepsilon$. Following [10] let us call the elements of $S_0(M,\tau)$ τ -compact operators affiliated with M. It is known [12], [7] that $S_0(M,\tau)$ is a *-subalgebra in $L(M,\tau)$ and an M-bimodule, i. e. $ax, xa \in S_0(M,\tau)$ for all $x \in S_0(M,\tau)$ and $a \in M$. It is clear that if the trace τ is finite then $S_0(M,\tau) = L(M,\tau)$.

The following properties of the algebra $S_0(M,\tau)$ of τ -compact operators are known [10], [3].

Let M be a von Neumann algebra with a faithful normal semi-finite trace τ . Then

- 1) $L(M, \tau) = M + S_0(M, \tau)$;
- 2) $S_0(M,\tau)$ is an ideal in $L(M,\tau)$.

Let $L^{\infty}(\Omega) \bar{\otimes} B(H)$ be the tensor product of von Neumann algebra $L^{\infty}(\Omega)$ and B(H), with the trace $\tau = \mu \otimes \text{Tr}$, where Tr is the canonical trace for operators in B(H) (with its natural domain).

Denote by $L^0(\Omega, B(H))$ the space of equivalence classes of measurable maps from Ω into B(H). Given $\hat{u}, \hat{v} \in L^0(\Omega, B(H))$ put $\hat{u}\hat{v} = u(\omega)v(\omega), \hat{u}^* = u(\omega)^*$.

Define

$$L^{\infty}(\Omega, B(H)) = \{ x \in L^{0}(\Omega, B(H)) : ||x|| \in L^{\infty}(\Omega) \}.$$

The space $(L^{\infty}(\Omega, B(H)), \|\cdot\|_{\infty})$ is a Banach *-algebra.

It is known [11] that the algebra $L^{\infty}(\Omega)\bar{\otimes}B(H)$ is *-isomorphic to the algebra $L^{\infty}(\Omega, B(H))$.

Note also that

$$\tau(x) = \int_{\Omega} \operatorname{Tr}(x(\omega)) d\mu(\omega).$$

Further we shall identity the algebra $L^{\infty}(\Omega)\bar{\otimes}B(H)$ with the algebra $L^{\infty}(\Omega,B(H))$. Denote by $B(L^{0}(\Omega,H))$ (resp. $B(L^{\infty}(\Omega,H))$) the algebra of all L^{0} -linear and L^{0} -bounded (resp. $L^{\infty}(\Omega)$ -linear and $L^{\infty}(\Omega)$ -bounded) operators on $L^{0}(\Omega,H)$ (resp. $L^{\infty}(\Omega,H)$).

Given any $f \in L^{\infty}(\Omega, B(H))$ consider the element $\Psi(f)$ from $B(L^{\infty}(\Omega, H))$ defined by

$$\Psi(f)(x) = \widehat{f(\omega)(x(\omega))}, \quad x \in L^{\infty}(\Omega, H).$$

Then the correspondence $f \to \Psi(f)$ gives an isometric *-isomorphism between the algebras $L^{\infty}(\Omega, B(H))$ and $B(L^{\infty}(\Omega, H))$ (see [6]).

It is known [1], that the algebra $L(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$ of all τ -measurable operators affiliated with the von Neumann algebra $L^{\infty}(\Omega)\bar{\otimes}B(H)$ is L^0 -linear *-isomorphic with the algebra $B(L^0(\Omega,H))$.

Therefore one has the following relations for the algebras mentioned above:

$$L(L^{\infty}(\Omega)\bar{\otimes}B(H)), \tau) \cong L^{0}(\Omega, B(H)) \cong B(L^{0}(\Omega, H)).$$

Let $\min (S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau))$ be the cyclic hull of the set $S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$, i. e. it consists of all elements of the form $x=(bo)-\sum_{\alpha}\pi_{\alpha}x_{\alpha}$, where (π_{α}) is a partition of the unit in ∇ , $(x_{\alpha})\subset S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$.

Since $S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$ is a module over $L^{\infty}(\Omega)$ and $L^0 = \min(L^{\infty}(\Omega))$, we have that $\min(S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau))$ is a module over L^0 .

Proposition 3.1. $\min (S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau))$ is a standard algebra in $L(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$.

Proof. First suppose that the measure μ is finite. Consider a finite-generated operator x from the algebra $L(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$. Let p be the orthogonal projection onto the image of x and n be the number of its generators. By ([4], Theorem 2), $\operatorname{Tr}(p(\omega)) = \dim p(\omega) \leq n$ for almost all $\omega \in \Omega$. Therefore $\tau(p) = \int_{\Omega} \operatorname{Tr}(p(\omega)) d\mu(\omega) \leq n\mu(\Omega)$, i. e. $\tau(p) < \infty$.

It is clear that $xp^{\perp} = 0$. Thus $\tau(p) < \infty$ and $xp^{\perp} = 0$, i. e. $x \in S_0(L^{\infty}(\Omega)\bar{\otimes}B(H), \tau)$. Now suppose that μ is σ -finite and x is a finite-generated operator from $L(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$. Since the measure μ is σ -finite, there exists a partition of the unit (e_{α}) in ∇ such that $e_{\alpha} = \chi_{A_{\alpha}}, A_{\alpha} \in \Sigma, \mu(A_{\alpha}) < \infty$. From the above it follows $e_{\alpha}x \in e_{\alpha}S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau)$ and therefore $x = (bo) - \sum_{\alpha}e_{\alpha}x$ belongs to $\min(S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau))$. Thus $\min(S_0(L^{\infty}(\Omega)\bar{\otimes}B(H),\tau))$ is a standard algebra. The proof is complete

Proposition 3.2. Let Φ be an *-automorphism of the algebra $S_0(L^{\infty}(\Omega, B(H)), \tau)$. Then there exists an unitary element $u \in L^{\infty}(\Omega, B(H))$ such that $\Phi(x) = uxu^*$ for all $x \in S_0(L^{\infty}(\Omega, B(H)), \tau)$.

Proof. First show that *-isomorphism Φ is continued till mix $(S_0(L^{\infty}(\Omega, B(H)), \tau))$. Put

$$\widetilde{\Phi}(x) = (bo) - \sum_{\alpha} e_{\alpha} \Phi(x_{\alpha}), \quad x \in \min(S_0(L^{\infty}(\Omega, B(H)), \tau)).$$

In the standard way, one can proved that $\widetilde{\Phi}$ is defined correctly and it is isomorphism. Now, show that $\widetilde{\Phi}$ is L^0 -linear. Let $\lambda \in L^0$, $x \in \min(S_0(L^\infty(\Omega, B(H)), \tau))$. Take a unit decomposition (e_α) in ∇ such that $e_\alpha \lambda \in L^\infty(\Omega)$, $e_\alpha x \in S_0(L^\infty(\Omega, B(H)), \tau)$ for all α . Since Φ is $L^\infty(\Omega)$ -linear, then $\Phi(e_\alpha \lambda x) = \Phi(e_\alpha \lambda e_\alpha x) = e_\alpha \lambda \Phi(e_\alpha x)$. Therefore $\widetilde{\Phi}(\lambda x) = (bo) - \sum_\alpha e_\alpha \Phi(e_\alpha \lambda x) = \sum_\alpha e_\alpha \lambda \Phi(e_\alpha x) = \lambda \widetilde{\Phi}(x)$, i.e. $\widetilde{\Phi}(\lambda x) = \lambda \widetilde{\Phi}(x)$.

Since mix $(S_0(L^{\infty}(\Omega, B(H)), \tau))$ is a standard algebra, then by Theorem 2.1, there exists an invertible operator $a \in B(L^0(\Omega, H))$ such that $\widetilde{\Phi}(x) = axa^{-1}$, $x \in \min(S_0(L^{\infty}(\Omega, B(H)), \tau))$.

Show that a^*a is a central element. Since Φ is *-automorphism, then $\Phi(x^*) = \Phi(x)^*$. Hence $ax^*a^{-1} = (axa^{-1})^* = (a^{-1})^*x^*a^* = (a^*)^{-1}x^*a^*$, i.e. $ax^*a^{-1} = (a^*)^{-1}x^*a^*$. That's why $a^*ax^* = x^*a^*a$. If we change x to x^* , then we have $a^*ax = xa^*a$ for all $x \in \min(S_0(L^\infty(\Omega, B(H)), \tau))$. Therefore $ea^*aexe = exea^*ae$ for all $x \in eL^0(\Omega, B(H))$ where e is a projector with the finite trace. That's why ea^*ae is a central element in $eL^0(\Omega, B(H))$. Hence a^*a is a central element in $L^0(\Omega, B(H))$.

Since the center of $L^0(\Omega, B(H))$ is isomorphic to L^0 , then $a^*a = \lambda e$ for any $\lambda \in L^0$. Since a is an invertible operator, then λ is also an invertible element in L^0 . Put $u = \lambda^{-\frac{1}{2}}a$. Then $u^*u = e$. Hence u is an unitary element. Moreover, $\Phi(x) = uxu^*$ for all $x \in \min(S_0(L^\infty(\Omega, B(H)), \tau))$, particularly, for all $x \in S_0(L^\infty(\Omega, B(H)), \tau)$. The proof is complete.

Recall that a von Neumann algebra M is an algebra of $type\ I$ if it is isomorphic to a von Neumann algebra with an Abelian commutant.

It is well-known [11] that if M is a type I von Neumann algebra then there is a unique (cardinal-indexed) orthogonal family of projections $(q_{\alpha})_{\alpha \in I} \subset \mathcal{P}(M)$ with $\sum_{\alpha \in I} q_{\alpha} = 1$ such that $q_{\alpha}M$ is isomorphic to the tensor product of an Abelian von Neumann algebra $L^{\infty}(\Omega_{\alpha}, \mu_{\alpha})$ and $B(H_{\alpha})$ with dim $H_{\alpha} = \alpha$, i. e.

$$q_{\alpha}M \cong \sum_{\alpha}^{\oplus} L^{\infty}(\Omega_{\alpha}, \mu_{\alpha})\bar{\otimes}B(H_{\alpha}).$$

Consider the faithful normal semi-finite trace τ on M, defined as

$$\tau(x) = \sum_{\alpha} \tau_{\alpha}(x_{\alpha}), \quad x = (x_{\alpha}) \in M, \quad x \ge 0,$$

where $\tau_{\alpha} = \mu_{\alpha} \otimes \operatorname{Tr}_{\alpha}$.

Let

$$\prod_{\alpha} S_0(L^{\infty}(\Omega_{\alpha}, \mu_{\alpha}) \bar{\otimes} B(H_{\alpha}), \tau_{\alpha})$$

be the topological (Tychonoff) product of the spaces $S_0(L^{\infty}(\Omega_{\alpha}, \mu_{\alpha})\bar{\otimes}B(H_{\alpha}), \tau_{\alpha})$. Then (see [7]) we have the topological embedding

$$S_0(M,\tau) \subset \prod_{\alpha} S_0(L^{\infty}(\Omega_{\alpha},\mu_{\alpha})\bar{\otimes}B(H_{\alpha}),\tau_{\alpha}).$$

Theorem 3.3. If M is a Type I von Neumann Algebra, then any Z-linear *-automorphism of the algebra $S_0(M,\tau)$ is inner.

Proof. Let q_{α} is a central projector in M, such that $q_{\alpha}M \cong L^{\infty}(\Omega_{\alpha}, B(H_{\alpha}))$. Then $q_{\alpha}S_{0}(M,\tau) \cong S_{0}(L^{\infty}(\Omega_{\alpha}, B(H_{\alpha})), \tau_{\alpha})$ for all α . Since Φ is Z-linearly then $\Phi(q_{\alpha}x) = q_{\alpha}\Phi(x)$ for all α . Hence Φ maps any algebra $q_{\alpha}S_{0}(M,\tau)$ into itself. By Proposition 3.2 there exists unitary elements $u_{\alpha} \in q_{\alpha}M$ such that

$$\Phi(q_{\alpha}x_{\alpha}) = u_{\alpha}x_{\alpha}u_{\alpha}$$

for all $x_{\alpha} \in q_{\alpha}S_0(M, \tau)$.

Put $u=(u_{\alpha})$. Then u is an unitary element in M. For $x \in S^{0}(M,\tau)$ we have $q_{\alpha}\Phi(x) = \Phi(q_{\alpha}x) = u_{\alpha}q_{\alpha}xu_{\alpha}^{*} = q_{\alpha}uxq_{\alpha}u^{*} = q_{\alpha}(uxu^{*})$, i.e. $q_{\alpha}\Phi(x) = q_{\alpha}(uxu^{*})$ in all α . Therefore $\Phi(x) = uxu^{*}$. The proof is complete.

References

- S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, Derivations on the algebra of measurable operators affiliated with a type I von Neumann algebra, SFB 611, Universtät Bonn, Preprint N 301, 2006.
- Sh. A. Ayupov, K. K. Kudaybergenov, Derivations and automorphisms of algebras of bounded operators on Banach-Kantorovich spaces, Central Asian J. Math. (to appear).
- A. Bikchentaev, Majorization for products of measurable operators, Internat. J. Theor. Phys. 37 (1998), 571–576.
- 4. I. G. Ganiev, K. K. Kudaybergenov, Finite dimensional modules over the ring of measurable functions, Uzbek Math. J. (2004), no. 4, 3–9.
- 5. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), no. 4, 839-858.
- 6. A. G. Kusraev, Dominated Operators, Kluwer Academic Publishers, Dordrecht, 2000.
- M. A. Muratov, V. I. Chilin, *-algebras of unbounded operators affiliated with a von Neumann algebra, Zapiski Nauchnyh Seminarov POMI 326 (2005), 183–197.
- 8. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1975), 91-102.
- 9. K. Schmudgen, Unbounded Operator Algebras and Representation Theory, vol. 37, in Operator Theory: Advances and Applications, Birkhauser, Basel, 1990.
- A. Stroh, G. P. West, τ-compact operators affiliated to a semifinite von Neumann algebra, Proc. Royal Irish Acad., vol. 93, 1993, pp. 73–86.
- 11. M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979.
- 12. F. J. Yeadon, Non-commutative L^p -spaces, Math. Proc. Cambridge Philos. Soc., vol. 77, 1975, pp. 91–102.

Institute of Mathematics and Information Technologies, Uzbekistan Academy of Sciences, $29~\mathrm{F.}$ Khodjaev, Tashkent, 100125, Uzbekistan

E-mail address: karim2006@mail.ru

Institute of Mathematics and Information Technologies, Uzbekistan Academy of Sciences, 29 F. Khodjaev, Tashkent, 100125, Uzbekistan

E-mail address: turaboy_kts@rambler.ru

Received 13/07/2007