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THE INVOLUTIVE AUTOMORPHISMS OF τ-COMPACT
OPERATORS AFFILIATED WITH A TYPE I VON NEUMANN

ALGEBRA

K. K. KUDAYBERGENOV AND T. S. KALANDAROV

Abstract. Let M be a type I von Neumann algebra with a center Z, and a faithful
normal semi-finite trace τ. Consider the algebra L(M, τ) of all τ -measurable operators
with respect to M and let S0(M, τ) be the subalgebra of τ -compact operators in
L(M, τ). We prove that any Z-linear involutive automorphisms of S0(M, τ) is inner.

1. Introduction

The present paper is devoted to an investigation of ∗-automorphisms of τ -compact
operators affiliated with a type I von Neumann algebra.

It is well known [5] that, if M is a type I von Neumann algebra and Φ : M → M is
an ∗-automorphism such that Φ(zx) = zΦ(x) for all central elements z in M, then Φ is
inner, i.e., Φ(x) = uxu∗ for some unitary element u ∈ M. Some results of such a kind
for unbounded operator algebras were obtained in [9]. Namely, it was proved that any
∗-automorphism of the maximal O∗-algebra is inner.

One of important classes of unbounded operator algebras are algebras of τ -compact
operators affiliated with a von Neumann algebra.

In the present paper, using the description of the algebra of τ -measurable operators
affiliated with a type I von Neumann algebra obtained in [1] and also the description of
automorphisms of standard subalgebras of the algebra of bounded linear operators acting
in Banach-Kantorovich modula from [2], we prove that any Z-linear ∗-automorphism of
the algebra of τ -compact operators affiliated with a type I von Neumann algebra is inner.

2. Preliminaries

Let (Ω,Σ, µ) be a measurable space with a σ-finite measure µ, i. e., there is family
{Ωi}i∈J ⊂ Σ, 0 < µ(Ωi) < ∞, i ∈ J, such that for any A ∈ Σ, µ(A) < ∞, there exists a
countable subset J0 ⊂ J and a set B with zero measure such that A =

⋃
i∈J0

(A∩Ωi)∪B.

We denote by L0 = L0(Ω,Σ, µ) the algebra of all (classes of) complex measurable
functions on (Ω,Σ, µ) equipped with the topology of convergence in measure. Then L0

is a complete metrizable commutative regular algebra with the unit 1 given by 1(ω) = 1,
ω ∈ Ω.

Denote by ∇ the complete Boolean algebra of all idempotents from L0, i.e., ∇ = {χA :
A ∈ Σ}, where χA is the characteristic function of the set A.

A complex linear space E is said to be normed by L0 if there is a map ‖ · ‖ : E −→ L0

such that for any x, y ∈ E, λ ∈ C, the following conditions are fulfilled:

‖x‖ ≥ 0, ‖x‖ = 0 ⇐⇒ x = 0, ‖λx‖ = |λ|‖x‖, ‖x + y‖ ≤ ‖x‖+ ‖y‖.
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The pair (E, ‖·‖) is called a lattice-normed space over L0. A lattice-normed space E is
called d-decomposable, if for any x ∈ E with ‖x‖ = λ1+λ2, where λ1, λ2 ∈ L0, λ1λ2 = 0,
there exists x1, x2 ∈ E such that x = x1 + x2 and ‖xi‖ = λi, i = 1, 2. A net (xα) in E is
(bo)-converging to x ∈ E, if ‖xα − x‖ → 0 µ-almost everywhere in L0. A lattice-normed
space E which is d-decomposable and complete with respect to the (bo)-convergence is
called a Banach-Kantorovich space.

It is known that every Banach-Kantorovich space E over L0 is a module over L0 and
‖λx‖ = |λ|‖x‖ for all λ ∈ L0, x ∈ E (see [6]).

A module F over L0 is said to be finite-generated, if there are x1, x2, ..., xn in F
for any x ∈ F there exists λi ∈ L0 (i = 1, n) such that x = λ1x1 + ... + λnxn. The
elements x1, x2, ..., xn are called generators of F. We denote by d(F ) the minimal number
of generators of F.

A finite-generated module F over L0 is called homogeneous of type n, if for every
nonzero e ∈ ∇ we have n = d(eF ).

Let K be a module over L0. A map 〈·, ·〉 : K × K → L0 is called an L0-valued inner
product, if for all x, y, z ∈ K, λ ∈ L0, the following conditions are fulfilled: 〈x, x〉 ≥ 0;
〈x, x〉 = 0 ⇔ x = 0; 〈x, y〉 = 〈y, x〉; 〈λx, y〉 = λ〈x, y〉; 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

If 〈·, ·〉 : K × K → L0 is an L0-valued inner product, then ‖x‖ =
√
〈x, x〉 defines an

L0-valued norm on K. The pair (K, 〈·, ·〉) is called a Kaplansky-Hilbert module over L0,
if (K, ‖ · ‖) is a Banach-Kantorovich space over L0 (see [6]).

Let X be a Banach space. A map s : Ω → X is called a simple, if

s(ω) =
n∑

k=1

χAk
(ω)ck,

where Ak ∈ Σ, Ai ∩ Aj = ∅, i 6= j, ck ∈ X, k = 1, n, n ∈ N. A map u : Ω → X is said to
be measurable, if there is a sequence (sn) of simple maps such that ‖sn(ω)− u(ω)‖ → 0
almost everywhere on any A ∈

∑
with µ(A) < ∞.

Let L(Ω, X) be the set of all measurable maps from Ω into X, and let L0(Ω, X) denote
the factorization of this set with respect to equality almost everywhere. Denote by û
the equivalence class from L0(Ω, X) which contains the measurable map u ∈ L(Ω, X).
Further we shall identity the element u ∈ L(Ω, X) with the class û. Note that the
function ω → ‖u(ω)‖ is measurable for any u ∈ L(Ω, X). The equivalence class containing
the function ‖u(ω)‖ is denoted by ‖û‖. For û, v̂ ∈ L0(Ω, X), λ ∈ L0 put û + v̂ =

̂u(ω) + v(ω), λû = ̂λ(ω)u(ω).
It is known [6] that (L0(Ω, X), ‖ · ‖) is a Banach-Kantorovich space over L0.
Put L∞(Ω, X) = {x ∈ L0(Ω, X) : ‖x‖ ∈ L∞(Ω)}. Then L∞(Ω, X) is a Banach space

with respect the norm ‖x‖∞ = ‖‖x‖‖L∞(Ω).

If H is a Hilbert space, then L0(Ω,H) can be equipped with an L0-valued inner
product 〈x, y〉 = ̂(x(ω), y(ω)), where (·, ·) is the inner product on H.

Then (L0(Ω,H), 〈·, ·〉) is a Kaplansky-Hilbert module over L0.
Let E be a Banach-Kantorovich space over L0. An operator T : E → E is called

L0-linear if T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2) for all λ1, λ2 ∈ L0, x1, x2 ∈ E. An
L0-linear operator T : E → E is called L0-bounded, if there exists an element c ∈ L0

such that ‖T (x)‖ ≤ c‖x‖ for any x ∈ E. For an L0-bounded linear operator T we put
‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

An L0-linear operator T : E → E is called finite-generated (homogeneous of type n)
if T (E) = {T (x) : x ∈ E} is a finite-generated (respectively homogeneous of type n)
submodule in E.

We denote by B(E) the algebra of all L0-linear L0-bounded operators on E and F(E)
be the set of all finite-generated L0-linear L0-bounded operators on E.
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An algebra U ⊂ B(E) is called standard over L0, if U is a submodule in B(E) and
F(E) ⊂ U .

Recall that bijective linear operator Φ : U → U is said an automorphism, if Φ(xy) =
Φ(x)Φ(y) for all x, y ∈ U
Theorem 2.1. [2]. Let U be a standard algebra in B(L0(Ω,H)) and let Φ : U → U
be an L0 – linear automorphism of the algebra U . Then there is an invertible element
a ∈ B(L0(Ω,H)) such that

Φ(A) = axa−1

for all x ∈ U .

3. The main result

A linear subspace D in H is said to be affiliated with M (denotes as DηM), if
u(D) ⊂ D for any unitary operator u from the commutant

M ′ = {y′ ∈ B(H) : xy′ = y′x, ∀x ∈ M}
of the algebra M.

A linear operator x on H with domain D(x) is said to be affiliated with M (denoted
as xηM) if u(D(x)) ⊂ D(x) and ux(ξ) = xu(ξ) for all u ∈ M ′, ξ ∈ D(x).

A linear subspace D in H is called τ -dense, if
1) DηM ;
2) given any ε > 0 there exists a projection p ∈ P(M) such that p(H) ⊂ D and

τ(p⊥) ≤ ε.
A closed linear operator x is said to be τ -measurable (or totally measurable) with

respect to the von Neumann algebra M, if xηM and D(x) is τ -dense in H.
We will denote by L(M, τ) the set of all τ -measurable operators affiliated with M. Let

‖ · ‖M stand for the uniform norm in M. The measure topology, tτ , in L(M, τ) is the one
given by the following system of neighborhoods of zero:

V (ε, δ) = {x ∈ L(M, τ) : ∃e ∈ P(M), τ(e⊥) ≤ δ, xe ∈ M, ‖xe‖M ≤ ε},
where ε > 0, δ > 0.

It is known [8] that L(M, τ) equipped with the measure topology is a complete metriz-
able topological ∗-algebra.

In the algebra L(M, τ) consider the subset S0(M, τ) of all operators x such that given
any ε > 0 there is a projection p ∈ P(M) with τ(p⊥) < ∞, xp ∈ M and ‖xp‖ < ε.
Following [10] let us call the elements of S0(M, τ) τ -compact operators affiliated with M.
It is known [12], [7] that S0(M, τ) is a ∗-subalgebra in L(M, τ) and an M -bimodule, i. e.
ax, xa ∈ S0(M, τ) for all x ∈ S0(M, τ) and a ∈ M. It is clear that if the trace τ is finite
then S0(M, τ) = L(M, τ).

The following properties of the algebra S0(M, τ) of τ -compact operators are known
[10], [3].

Let M be a von Neumann algebra with a faithful normal semi-finite trace τ. Then
1) L(M, τ) = M + S0(M, τ);
2) S0(M, τ) is an ideal in L(M, τ).
Let L∞(Ω)⊗̄B(H) be the tensor product of von Neumann algebra L∞(Ω) and B(H),

with the trace τ = µ ⊗ Tr, where Tr is the canonical trace for operators in B(H) (with
its natural domain).

Denote by L0(Ω, B(H)) the space of equivalence classes of measurable maps from Ω
into B(H). Given û, v̂ ∈ L0(Ω, B(H)) put ûv̂ = ̂u(ω)v(ω), û∗ = û(ω)∗.

Define
L∞(Ω, B(H)) = {x ∈ L0(Ω, B(H)) : ‖x‖ ∈ L∞(Ω)}.

The space (L∞(Ω, B(H)), ‖ · ‖∞) is a Banach ∗-algebra.
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It is known [11] that the algebra L∞(Ω)⊗̄B(H) is ∗-isomorphic to the algebra L∞(Ω,
B(H)).

Note also that
τ(x) =

∫
Ω

Tr(x(ω)) dµ(ω).

Further we shall identity the algebra L∞(Ω)⊗̄B(H) with the algebra L∞(Ω, B(H)).
Denote by B(L0(Ω,H)) (resp. B(L∞(Ω,H))) the algebra of all L0-linear and L0-

bounded (resp. L∞(Ω)-linear and L∞(Ω)-bounded) operators on L0(Ω,H) (resp.
L∞(Ω,H)).

Given any f ∈ L∞(Ω, B(H)) consider the element Ψ(f) from B(L∞(Ω,H)) defined
by

Ψ(f)(x) = ̂f(ω)(x(ω)), x ∈ L∞(Ω,H).
Then the correspondence f → Ψ(f) gives an isometric ∗-isomorphism between the

algebras L∞(Ω, B(H)) and B(L∞(Ω,H)) (see [6]).
It is known [1], that the algebra L(L∞(Ω)⊗̄B(H), τ) of all τ -measurable operators

affiliated with the von Neumann algebra L∞(Ω)⊗̄B(H) is L0-linear ∗-isomorphic with
the algebra B(L0(Ω,H)).

Therefore one has the following relations for the algebras mentioned above:

L(L∞(Ω)⊗̄B(H)), τ) ∼= L0(Ω, B(H)) ∼= B(L0(Ω,H)).

Let mix (S0(L∞(Ω)⊗̄B(H), τ)) be the cyclic hull of the set S0(L∞(Ω)⊗̄B(H), τ), i. e.
it consists of all elements of the form x = (bo) −

∑
α

παxα, where (πα) is a partition of

the unit in ∇, (xα) ⊂ S0(L∞(Ω)⊗̄B(H), τ).
Since S0(L∞(Ω)⊗̄B(H), τ) is a module over L∞(Ω) and L0 = mix (L∞(Ω)), we have

that mix (S0(L∞(Ω)⊗̄B(H), τ)) is a module over L0.

Proposition 3.1. mix (S0(L∞(Ω)⊗̄B(H), τ)) is a standard algebra in L(L∞(Ω)⊗̄
B(H), τ).

Proof. First suppose that the measure µ is finite. Consider a finite-generated operator x
from the algebra L(L∞(Ω)⊗̄B(H), τ). Let p be the orthogonal projection onto the image
of x and n be the number of its generators. By ([4], Theorem 2), Tr(p(ω)) = dim p(ω) ≤ n
for almost all ω ∈ Ω. Therefore τ(p) =

∫
Ω

Tr(p(ω)) dµ(ω) ≤ nµ(Ω), i. e. τ(p) < ∞.

It is clear that xp⊥ = 0. Thus τ(p) < ∞ and xp⊥ = 0, i. e. x ∈ S0(L∞(Ω)⊗̄B(H), τ).
Now suppose that µ is σ-finite and x is a finite-generated operator from L(L∞(Ω)⊗̄

B(H), τ). Since the measure µ is σ-finite, there exists a partition of the unit (eα)
in ∇ such that eα = χAα , Aα ∈ Σ, µ(Aα) < ∞. From the above it follows eαx ∈
eαS0(L∞(Ω)⊗̄B(H), τ) and therefore x = (bo) −

∑
α

eαx belongs to mix (S0(L∞(Ω)⊗̄

B(H), τ)). Thus mix (S0(L∞(Ω)⊗̄B(H), τ)) is a standard algebra. The proof is com-
plete. �

Proposition 3.2. Let Φ be an ∗-automorphism of the algebra S0(L∞(Ω, B(H)), τ).
Then there exists an unitary element u ∈ L∞(Ω, B(H)) such that Φ(x) = uxu∗ for all
x ∈ S0(L∞(Ω, B(H)), τ).

Proof. First show that ∗-isomorphism Φ is continued till mix (S0(L∞(Ω, B(H)), τ)).
Put

Φ̃(x) = (bo)−
∑
α

eαΦ(xα), x ∈ mix (S0(L∞(Ω, B(H)), τ)).

In the standard way, one can proved that Φ̃ is defined correctly and it is isomorphism.
Now, show that Φ̃ is L0-linear.
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Let λ ∈ L0, x ∈ mix (S0(L∞(Ω, B(H)), τ)). Take a unit decomposition (eα) in ∇
such that eαλ ∈ L∞(Ω), eαx ∈ S0(L∞(Ω, B(H)), τ) for all α. Since Φ is L∞(Ω)-linear,
then Φ(eαλx) = Φ(eαλeαx) = eαλΦ(eαx). Therefore Φ̃(λx) = (bo) −

∑
α

eαΦ(eαλx) =∑
α

eαλΦ(eαx) = λΦ̃(x), i.e. Φ̃(λx) = λΦ̃(x).

Since mix (S0(L∞(Ω, B(H)), τ)) is a standard algebra, then by Theorem 2.1, there ex-
ists an invertible operator a ∈ B(L0(Ω,H)) such that Φ̃(x) = axa−1, x ∈ mix (S0(L∞(Ω,
B(H)), τ)).

Show that a∗a is a central element. Since Φ is ∗-automorphism, then Φ(x∗) = Φ(x)∗.
Hence ax∗a−1 = (axa−1)∗ = (a−1)∗x∗a∗ = (a∗)−1x∗a∗, i.e. ax∗a−1 = (a∗)−1x∗a∗.
That’s why a∗ax∗ = x∗a∗a. If we change x to x∗, then we have a∗ax = xa∗a for all
x ∈ mix (S0(L∞(Ω, B(H)), τ)). Therefore ea∗aexe = exea∗ae for all x ∈ eL0(Ω, B(H))
where e is a projector with the finite trace. That’s why ea∗ae is a central element in
eL0(Ω, B(H)). Hence a∗a is a central element in L0(Ω, B(H)).

Since the center of L0(Ω, B(H)) is isomorphic to L0, then a∗a = λe for any λ ∈ L0.
Since a is an invertible operator, then λ is also an invertible element in L0. Put u =
λ−

1
2 a. Then u∗u = e. Hence u is an unitary element. Moreover, Φ(x) = uxu∗ for all

x ∈ mix (S0(L∞(Ω, B(H)), τ)), particularly, for all x ∈ S0(L∞(Ω, B(H)), τ). The proof
is complete. �

Recall that a von Neumann algebra M is an algebra of type I if it is isomorphic to a
von Neumann algebra with an Abelian commutant.

It is well-known [11] that if M is a type I von Neumann algebra then there is a unique
(cardinal-indexed) orthogonal family of projections (qα)α∈I ⊂ P(M) with

∑
α∈I

qα = 1

such that qαM is isomorphic to the tensor product of an Abelian von Neumann algebra
L∞(Ωα, µα) and B(Hα) with dim Hα = α, i. e.

qαM ∼=
⊕∑
α

L∞(Ωα, µα)⊗̄B(Hα).

Consider the faithful normal semi-finite trace τ on M, defined as

τ(x) =
∑
α

τα(xα), x = (xα) ∈ M, x ≥ 0,

where τα = µα ⊗ Trα.
Let ∏

α

S0(L∞(Ωα, µα)⊗̄B(Hα), τα)

be the topological (Tychonoff) product of the spaces S0(L∞(Ωα, µα)⊗̄B(Hα), τα).
Then (see [7]) we have the topological embedding

S0(M, τ) ⊂
∏
α

S0(L∞(Ωα, µα)⊗̄B(Hα), τα).

Theorem 3.3. If M is a Type I von Neumann Algebra, then any Z-linear *-automor-
phism of the algebra S0(M, τ) is inner.

Proof. Let qα is a central projector in M, such that qαM ∼= L∞(Ωα, B(Hα)). Then
qαS0(M, τ) ∼= S0(L∞(Ωα, B(Hα)), τα) for all α. Since Φ is Z-linearly then Φ(qαx) =
qαΦ(x) for all α. Hence Φ maps any algebra qαS0(M, τ) into itself. By Proposition 3.2
there exists unitary elements uα ∈ qαM such that

Φ(qαxα) = uαxαuα

for all xα ∈ qαS0(M, τ).
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Put u = (uα). Then u is an unitary element in M. For x ∈ S0(M, τ) we have qαΦ(x) =
Φ(qαx) = uαqαxu∗α = qαuxqαu∗ = qα(uxu∗), i.e. qαΦ(x) = qα(uxu∗) in all α. Therefore
Φ(x) = uxu∗. The proof is complete. �
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