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ABOUT NILPOTENT C0-SEMIGROUPS OF OPERATORS IN THE
HILBERT SPACES AND CRITERIA FOR SIMILARITY TO THE

INTEGRATION OPERATOR

G. V. LUKASHENKO AND G. M. GUBREEV

Abstract. In the paper, we describe a class of operators A that have empty spec-
trum and satisfy the nilpotency property of the generated C0-semigroup U(t) =
exp{−iAt}, t > 0, and such that the operatorA−1 is similar to the integration oper-
ator on the corresponding space L2(0, a).

Let U(t), t > 0, be a nilpotent semigroup of C0-class in the separable Hilbert space
H. We denote by a the nilpotency index, i.e., U(a) = 0 and U(a1) 6= 0 for each a1 < a.
In what follows, the formula U(t) = exp{−iAt} will mean that the operator −iA is a
generator of the C0-semigroup U(t). In such a way the resolvent representation

(1) −i(A− zI)−1 =

a∫
0

eiztU(t) dt

holds. From this equality, and also from the Wiener-Paley theorem it follows that if −iA
generates a C0-semigroup U(t), it will be nilpotent if and only if σ(A) = ∅ and the entire
operator-valued function (A− zI)−1 is of the finite exponential type.

We’ll get the most simple example of the nilpotent C0-semigroup Ũ(t) = exp{−iAt}
if we assume H = L2(0, a) and the inverse to the operator A will be given by formula

(
A−1h

)
(x) = i

x∫
0

h(t) dt, h ∈ L2(0, a).

Then Ũ is a translation semigroup,

Ũ(t)h = h̃(x− t), t > 0, x ∈ [0, a],

where h̃, by the function h, is defined by

h̃(x) = h(x), x ∈ [0, a], h̃(x) = 0, x 6 0.

In this article, we consider the problem of finding conditions on the operator A so that
the semigroup U(t) = exp{−iAt} is similar to the semigroup Ũ(t) in the space L2(0, a).
In another words, when there is an isomorphism S from H onto L2(0, a) such that

(2) A−1 = S−1JS, (Jh)(x) := i

x∫
0

h(t) dt.

Considerations in the paper are based on perturbations of the one-dimensional oper-
ator A−1 [2] and on the theory of the de Branges space [3].
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1. We denote by N the set of operators A on the separable Hilbert space H, which
satisfy the conditions: 1) σ(A) = ∅; 2) the exponential type of the resolvent (A− zB)−1

is finite. In what follows we’ll use the notation ImA−1 =
(
A−1 − (A−1)∗

)
/2i. If the

operator A−1(A ∈ N ) is dissipative (i.e. ImA−1 > 0) then the semigroup U(t) is con-
tractive and nilpotent. In the paper [2], criteria for a dissipative operator A−1 to be
similar to the integration operator are obtained. In this article, we consider the case
where the operator A−1 is non-dissipative.

We denote by N1 the set of operators A ∈ N such that for ImA−1 the representation

(3) ImA−1h = λ(h, u)u + Qh, λ > 0, Q 6 0,

holds with a some vector u ∈ H (‖u‖ = 1). For example, this representation takes place
if the positive spectrum ImA−1 consists of a unique point λ to which there corresponds
a one-dimensional eigen subspace. Let us recall that the operator J is defined by the
formula (2).

Theorem 1. Let A ∈ N1 and the exponential type of (A − zI)−1 be equal to a. The
semigroup U(t) = exp{−iAt}, t > 0 belongs to the C0-class if and only if the operator
A−1 is similar to the integration operator J in the space L2(0, a).

Proof. Let A ∈ N1, and the corresponding semigroup U(t) belong to the C0-class. We
consider, on H, the operator Kα of the type

(4) Kαh = Bh + iα(h, u)u, B := A−1,

where the vector u is contained in the representation (3), and α is a complex parameter.
Let us choose α in such a way that the following conditions hold:

(5) kerKα = kerK∗
α = {0}, ImKα 6 0.

Indeed, kerKα 6= {0} only if u ∈ D(A), moreover, the equality 1 + iα(Au, u) = 0 takes
place. Analogously, ker K∗

α 6= {0} only in the case where u ∈ D(A∗) and 1−iᾱ(A∗u, u) =
0. Further, if Reα 6 −λ (λ is contained in the representation (3)) then with regard for
(3) we’ll get

Im(Kαh, h) = Im(Bh, h) + Reα|(h, u)|2 = (ImA−1h, h) + Reα|(h, u)|2

= (λ + Reα)|(h, u)|2 + (Qh, h) 6 0, h ∈ H.

So, for the choosen α, a densely defined operator Lα := K−1
α exists. It is dissipative,

Im(Lαf, f) > 0, f ∈ D(Lα).

From the formula

(6) L−1
α h = Bh + iα(h, u)u, h ∈ H

one easily deduces that σ(Lα) is the same as the set of zeros of an entire function of the
exponential type,

ϕα(z) := 1− izα((I − zB)−1u, u).

We’ll show that α ∈ C can be selected in such a way that the conditions (5) hold, together
with the equalities

(7) h(π/2;ϕα) = 0, h(−π/2;ϕα) = a,

where h(θ;ϕα) is the growth indicator of the function ϕα,

h(θ;ϕα) := lim sup
r→∞

r−1 log
∣∣ϕα(reiθ)

∣∣ , −π < θ 6 π.
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If we assume the notation B = A−1, then it follows from the equality (1) that
h(π/2, ϕα) 6 0. Further, the inequality h(π/2, ϕα) < 0 is possible only for a unique
value of the parameter α, which can be determined from the equation

1 + α lim
y→+∞

y
(
(I − iyB)−1u, u

)
= 0.

So, we assume that the first equality (7) takes place. To prove the second equality
(7), we’ll make sure that

(8) H = closspan {(B∗)nu : n > 0} = closspan {Bnu : n > 0} .

Indeed, the subspace L is orthogonal to all the vectors (B∗)nu, n ∈ Z, n > 0, and it
is invariant with respect to the operator B. If we assume that L 6= {0}, then from the
resolvent formula

(Lα − zI)−1h = B(I − zB)−1h + iαϕ−1
α (z)

(
(I − zB)−1h, u

)
(I − zB)−1u,

it follows that L is invariant with respect to (Lα − zI)−1, z /∈ σ(Lα) and the equality

(9) (Lα − zI)−1
∣∣L = B(I − zB)−1

∣∣L = B1(I − zB1)−1, B1 := B| L

holds.
It follows from the formula (1) that

∥∥B1(I − zB1)−1
∥∥ 6 C(ε) in each half-plane Imz 6

−ε, ε > 0. On the other hand, since Lα is dissipative, from (9) we get the estimate∥∥B1(I − zB1)−1
∥∥ 6 C(ε), Imz 6 −ε, which contradicts the Liouville theorem. Thus,

the first equality (8) is proved. The second equality (8) is proved analogously.
We return to the second equality (7). From the formula (1) we conclude that h(−π/2;ϕα) 6

a, where a is an exponential type resolvent growth of (A − zI)−1. If we assume that
h(−π/2;ϕα) = a1 < a, then the representation

(10)
(
B(I − zB)−1u, u

)
= i

a1∫
0

eizt(U(t)u, u) dt

follows from the Wiener-Paley theorem. For each positive integer n > 2, the formula(
Bn(I − zB)−1u, u

)
= z−1

(
(Bn−1(I − zB)−1u, u)− (Bn−1u, u)

)
is true. This premits to express

(
Bn(I − zB)−1u, u

)
in terms of

(
B(I − zB)−1u, u

)
.

Therefore, it follows from (10) that

(
Bn(I − zB)−1u, u

)
= i

a1∫
0

eizt (U(t)Bnu, u) dt

and also (
B(I − zB)−1Bpu, (B∗)qu

)
= i

a1∫
0

eizt (U(t)Bpu, (B∗)qu) dt

for each positive integers p, q. With regard to (8), we conclude that the entire function
exponential types

(
B(I − zB)−1f, g

)
, f, g ∈ H do not overestimate a1 < a, which is

contradicting to the hypothesis of the theorem.
So, if the semigroup U(t) = exp{−iAt} belongs to the C0-class, under a suitable

selection of the parameter α ∈ C the operator Lα given by the formula (6) generates a
C0-semigroup exp{iLαt} and the function ϕα satisfies the equalities (7). In the paper
[2] (Theorem 4.4) it is proved that under this conditions the operator B is similar to the
operator J on space L2(0, a). �
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Corollary. Let A belong to the N1 class. If A−1 is similar to some dissipative operator,
then it is similar to the integration operator J on the space L2(0, a), where a is the
exponential type of the resolvent (A− zI)−1.

2. The earlier mentioned Theorem 4.4 [2] gives an additional information about
similarity of the operator A−1 to the integration operator. Let us use it for strengthening
of the formulation of Theorem 1.

It is proved in [2] that if for some operator A ∈ N1, the semigroup exp{−iAt}, t > 0,
belongs to the C0-class, then the weight w2(x) :=

∥∥(I − xB)−1u
∥∥2, where B = A−1,

satisfies the A2-Muckenhoupt condition [4] on the real axis. Therefore there exist outer
in C+(C−) functions w+(w−) such that

(11) |w+(x + i0)|2 a.e.= |w−(x− i0)|2 a.e.= w2(x), x ∈ R.

We denote by w+(x− i0) (w−(x− i0)) the existing almost everywhere non-tangent limit
values of the functions w+(z), z ∈ C+(w−(z), z ∈ C−). Let us consider the entire function

F (z) =
(
(I − zB)−1u, (I − z̄B)−1u

)
,

which belongs to the Cartwright class [1, p. 324] if the integral
+∞∫
−∞

|F (x)|
1 + x2

dx < ∞

converges. Since F (x) > 0, x ∈ R, from the Akhiezer theorem [1, p. 567] we get the
representation

(12)
(
(I − zB)−1u, (I − z̄B)−1u

)
= E(z)E∗(z), h(π/2;E) = a/2,

where E∗(z) := E(z) and roots of the function E lie in the lower half-plane of C−. Since
the function E is determined to within an exponential factor eiγz(γ ∈ R), the condition
h(π/2;E) = a/2 has a normalization nature. We note that the function E also belongs
to the Cartwright class. Because of the Krein theorem [5], E is a function of bounded
type in C+ and also the function Φ(z) := ei a

2 zE(z)(z− z0)−1, where z0 is the zero of the
function E, is such. Therefore [3, p. 32] Φ belongs to the Hardy class H2

+ in the upper
half-plane, and the function ei a

2 zE(z) is outer in C+ [4]. Also it follows from (12) that

w2(x) =
∣∣ei a

2 xE(x)
∣∣2 , x ∈ R.

Taking into account (11) we come to the formulas

(13) w+(z) = ei a
2 zE(z), w−(z) = e−i a

2 zE∗(z).

It is proved in the paper [2, p. 885] that the outer function w− assumes a special integral
representation. Taking into account the second formula (13) it can be written as

(14) e−i a
2 zE∗(z) = z

∞∫
0

e−iztyE(t)dt, z ∈ C−,

where yE ∈ Lloc
2 (R+). Then we can strengthen the formuation of Theorem 1. If for an

operator A ∈ N1, the semigroup U(t) = exp{−iAt} belongs to the C0-class then there is
an isomorphism S from H onto L2(0, a) such that

A−1 = S−1JS, Su = ya
E .

Here the vector u is contained in the representation (3) and ya
E denotes the restriction of

the function yE to [0, a]. The function yE is determined by the equality (14), [2, p. 915].
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The function E that solves the factorization problem (12) assumes the multiplicative
representation

E(z) = v.p.
∏

(1− z/µk)eiγz,

where µk ∈ C−, γ 6 0. So in the upper half-plane the equality

E∗(z)/E(z) = e−2iγzB(z)

is correct. Here the Blaschke product with zeroes on the sequence {µ̄k} is denoted by
B. Note, the convergence of B follows from the fact that the function E belongs to the
Cartwright class. In such a way, the inequality

|E∗(z)| < |E(z)|, z ∈ C+,

holds and, therefore, the function E generates the de Branges space H(E) [3]. Let us
recall that the de Branges space H(E) consists of entire functions f such that

(14a)
f

E
∈ H2

+,
f∗

E
∈ H2

+

and is a Hilbert space with respect to the inner product

〈f, g〉 :=

+∞∫
−∞

f(x)g∗(x)|E(x)|−2dx.

Comparing the formulas (13), (14a) we conclude that the function f ∈ H(E) is entire if
and only if the function fa(z) := ei a

2 zf(z) satisfies the conditions

(15)
fa(z)
w+(z)

∈ H2
+,

fa(z)e−iaz

w−(z)
∈ H2

−,

where H2
− denotes the Hardy class in C−. Entire functions satisfying the conditions (15)

assume the integral representations in form [2, p. 887]

(16) fa(z) =

a∫
0

yE(z, t)(Tf)(t) dt, f ∈ H(E),

where T is an isomorphism of space H(E) onto space L2(0, a). In this formula the kernel
yE(z, t) solves the integral equation

(17) yE(z, t)− iz

t∫
0

yE(z, s) ds = yE(t), t > 0,

the right-hand side of which is determined by formula (14). Let us now consider an
operator K on H(E) given by the formula

(Kf)(z) = z−1
(
f(z)− e−i a

2 zf(0)
)
, f ∈ H(E).

The operator K is compact and its spectrum consists of the unique point 0. Under the
action of the isomorphism T , the operator K is transformed as

(Kf)a(z) = ei a
2 z(Kf)(z) = z−1

(
ei a

2 zf(z)− f(0)
)

= z−1 (fa(z)− fa(0)) .

Now if we take into account the equality (16) then these calculations can be continued,

(Kf)a(z) = z−1

( a∫
0

yE(z, t)(Tf)(t) dt−
a∫

0

yE(0, t)(Tf)(t) dt

)

=

a∫
0

z−1 (yE(z, t)− yE(0, t)) (Tf)(t) dt.
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We note that by (17), the equality

z−1 (yE(z, t)− yE(0, t)) = i

t∫
0

yE(z, s) ds

holds and, therefore,

(Kf)a(z) =

a∫
0

yE(z, s)(J̃T f)(s) ds.

The operator J̃ is given by the formula

(J̃h)(t) := i

a∫
t

h(s) ds, h ∈ L2(0, a).

In such a way we come to the equality TK = J̃T and if we take into account that J̃
is unitarily equivalent to the operator J , we get that the operator K is similar to the
integration operator J on L2(0, a).

Finally, we’ll formulate an essential strengthening of Theorem 1, we mentioned at the
beginning of the subsection. Let us recall that, in the following formulation, A ∈ N1, the
vector u is contained in the representation (3), and B := A−1, the function E solves the
factorization problem (12). Further, we denote by ya

E the restriction of the function yE

to [0, a], which is given by the equality (14).

Theorem 2. Let an operator A belong to the class N1. Then the next conditions are
equivalent:

1) the semigroup U(t) = exp{−iAt} belongs to the C0-class;
2) the operator A−1 is similar to some dissipative operator;
3) the operator A−1 is similar to the operator (Jh)(t) = i

∫ t

0
h(s) ds, h ∈ L2(0, a),

where a is the exponential type of the resolvent;
4) the operator A−1 is similar to the operator J in the space L2(0, a) and there is

an isomorphism S that

A−1 = S−1JS, Su = ya
E ;

5) the operator A−1 is similar to the operator K given by the formula

(Kf)(z) = z−1
(
f(z)− e−i a

2 zf(0)
)
, f ∈ H(E),

in the de Branges space H(E) and the weight |E(x)|2 satisfies the condition (A2)
on R.

Recall remind that taking into account the definition of N1, we see that the C0-
semigroup U(t) is nilpotent.

3. Let us add to the formulated results the following remarks. If we start from an
operator A ∈ N1 and ImA−1 is nuclear, then we can give another expression for the
exponential type a. Indeed,, the operator L−1

α (reffer to formula (6)) has a complete
system of root subspaces [2] under the condition (7). If ImA−1 is a nuclear operator,
then the trace formula is true [6],

(18) SpImL−1
α =

∑
Imλ−1

k .

Here the sequence {λk} is the same as the function ϕα root set taking into account the
multiplicity. If the equalities (7) hold then, since ϕα belongs to the Cartwright class, we
have the representation

ϕα(z) = ei a
2 zv.p.

∏
(1− z/λk).
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Taking into account the definition of ϕα we obtain

iα(u, u) = −ϕ′α(0) = −ϕ′α(0)/ϕα(0) = − (log ϕα(z))′|z=0 = −a/2 + v.p.
∑

λ−1
k .

Now comparing the formulas (6) and (18) we conclude that∑
Imλ−1

k = SpImL−1
α = SpImA−1 + Im(iα(u, u)) = SpImA−1 − a/2 +

∑
Imλ−1

k ,

i.e., a = 2SpImA−1. So, the next statement holds.

Theorem 3. Let A ∈ N1 and let the exponential type of resolvent (A−zI)−1 be equal to
a. If the semigroup U(t) = exp{−iAt} belongs to the C0-class and the operator ImA−1

is nuclear, then a = 2SpImA−1.

Corollary. Let A ∈ N1 and the operator ImA−1 be nuclear. If A−1 is similar to some
dissipative operator, then SpImA−1 > 0.

The second remark deals with operators with two-dimensional imaginary parts. Let
us assume that σ(A) = ∅ and ImA−1 is a two-dimensional operator. Then its resolvent
(A − zI)−1 has a finite exponential type of growth [6]. Further, if the operator A−1

is non-dissipative, then the representation (3) with one-dimensional operator Q always
takes place. In such a way, such operators belong to the N1 class and so all the previous
theorems take place.

Theorem 4. Let the spectrum of an operator A be an empty set, A−1 be non-dissipative
and the operator ImA−1 be two-dimensional. If the semigroup exp{−iAt} belongs to the
C0-class, the operator A−1 is similar to the integration operator J in the space L2(0, a),
a = 2SpImA−1.
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