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A NOTE ON EQUILIBRIUM GLAUBER AND KAWASAKI
DYNAMICS FOR FERMION POINT PROCESSES

EUGENE LYTVYNOV AND NATALIYA OHLERICH

Abstract. We construct two types of equilibrium dynamics of infinite particle sys-
tems in a locally compact Polish space X, for which certain fermion point processes
are invariant. The Glauber dynamics is a birth-and-death process in X, while in
the case of the Kawasaki dynamics interacting particles randomly hop over X. We
establish conditions on generators of both dynamics under which corresponding con-
servative Markov processes exist.

1. Introduction

Let X be a locally compact Polish space. Let ν be a Radon measure on X and let
K be a linear, Hermitian, locally trace class operator on L2(X, ν) for which 000 ≤ K ≤ 111.
Then K is an integral operator and we denote by K(·, ·) the integral kernel of K.

Let Γ = ΓX denote the space of all locally finite subsets (configurations) in X. A
fermion point process (also called determinantal point process) corresponding to K is a
probability measure on Γ whose correlation functions are given by

(1.1) k(n)
µ (x1, . . . , xn) = det(K(xi, xj))n

i,j=1.

Fermion point processes were introduced by Macchi [20] (see also Girard [8] and
Menikoff [21]). These processes naturally arise in quantum mechanics, statistical me-
chanics, random matrix theory, and representation theory, see e.g. [4, 24, 25, 27] and the
references therein.

In [28], Spohn investigated a diffusion dynamics on the configuration space ΓR for
which the fermion process corresponding to the Dyson (sine) kernel

K(x, y) = sin(x− y)/(x− y)

is an invariant measure.
In the case where the operator K satisfies K < 111, Georgii and Yoo [7] (see also [30])

investigated Gibbsianness of fermion point processes. In particular, they proved that
every fermion process with K as above possesses Papangelou (conditional) intensity.

Using Gibbsianness of fermion point processes, Yoo [29] constructed an equilibrium
diffusion dynamics on the configuration space over Rd, which has the fermion process as
invariant measure. This Markov process is an analog of the gradient stochastic dynamics
which has the standard Gibbs measure corresponding to a potential of pair interaction
as invariant measure (see e.g. [1]).

On the other hand, in the case of a standard Gibbs measure, one considers further
classes of equilibrium processes on the configuration space: the so-called Glauber and
Kawasaki dynamics in continuum.
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The generator of the Glauber dynamics for a continuous particle system in Rd, which
is a birth-and-death process, is informally given by the formula

(1.2) (HGF )(γ) =
∑
x∈γ

d(x, γ \ x)(D−
x F )(γ) +

∫
Rd

b(x, γ)(D+
x F )(γ) dx,

where

(1.3) (D−
x F )(γ) = F (γ \ x)− F (γ), (D+

x F )(γ) = F (γ ∪ x)− F (γ).

Here and below, for simplicity of notations, we just write x instead of {x}. The coefficient
d(x, γ \ x) describes the rate at which the particle x of the configuration γ dies, while
b(x, γ) describes the rate at which, given the configuration γ, a new particle is born at x.

The Kawasaki dynamics of continuous particles is a process in which particles ran-
domly hop over the space Rd. The generator of such a process is then informally given
by

(1.4) (HKF )(γ) =
∑
x∈γ

∫
Rd

c(x, y, γ \ x)(D−+
xy F )(γ) dy,

where

(1.5) (D−+
xy F )(γ) = F (γ \ x ∪ y)− F (γ)

and the coefficient c(x, y, γ \ x) describes the rate at which the particle x of the configu-
ration γ jumps to y.

Glauber and Kawasaki dynamics of continuous particle systems in infinite volume
which have a standard Gibbs measure as symmetrizing measure were constructed in
[15, 16], see also [3, 9, 10, 12, 22, 31]. For further studies on Glauber and Kawasaki
dynamics, we refer to [5, 11, 14, 17].

The aim of the present note is to prove the existence of Glauber and Kawasaki dy-
namics of a continuous particle system which have a fermion point process as invariant
measure. Our choice of dynamics seems to be natural for a fermion system. We recall
that Shirai and Yoo [26] already constructed a Glauber dynamics on the lattice which
has a fermion point process on the lattice as invariant measure.

Using the theory of Dirichlet forms (see e.g. [19]), we will construct conservative
Markov processes on Γ with cadlag paths which have a fermion measure µ as symmetriz-
ing, hence invariant measure. Furthermore, we will discuss the explicit form of the
L2(µ)-generators of these process on a set of cylinder functions. These generators will
have the form (1.2) in the case of Glauber dynamics, and (1.4) in the case of Kawasaki
dynamics (with Rd replaced by a general topological space X). Since we significantly
use the Papangelou intensity of the fermion point process, our study here is restricted
by the assumption that K < 111.

Throughout the paper, we formulate our results for both dynamics, and give the proofs
only in the case of the Kawasaki dynamics. The reason is that the proofs in the Glauber
case are quite similar to, and simpler than the corresponding proofs for the Kawasaki
dynamics.

Finally, let us mention some open problems, which will be topics of our further re-
search:

(1) Construction of Glauber and Kawasaki dynamics for fermion point processes in
the case where 1 belongs to the spectrum of the operator K (which is, e.g., the
case when K has Dyson kernel).

(2) Finding a core for the generator of the dynamics (compare with [15]).
(3) Deciding whether the generator of the Glauber dynamics for a fermion point

process has a spectral gap. (Recall that, in the case of a standard Gibbs measure
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with a positive potential of pair interaction, there is a Glauber dynamics whose
generator has a spectral gap [15]).

(4) Study of different types of scalings of Glauber and Kawasaki dynamics, in partic-
ular, suffusion approximation for Kawasaki dynamics (compare with [5, 11, 14]).

2. Fermion (determinantal) point processes

Let X be a locally compact, second countable Hausdorff topological space. Recall
that such a space is known to be Polish. We denote by B(X) the Borel σ-algebra in X,
and by B0(X) the collection of all sets from B(X) which are relatively compact. We fix
a Radon, non-atomic measure ν on (X,B(X)).

The configuration space Γ := ΓX over X is defined as the set of all subsets of X which
are locally finite

Γ :=
{
γ ⊂ X : |γΛ| <∞ for each Λ ∈ B0(X)

}
,

where | · | denotes the cardinality of a set and γΛ := γ ∩ Λ. One can identify any γ ∈ Γ
with the positive Radon measure

∑
x∈γ εx ∈M(X), where εx is the Dirac measure with

mass at x,
∑

x∈∅ εx:=zero measure, and M(X) stands for the set of all positive Radon
measures on B(X). The space Γ can be endowed with the relative topology as a subset
of the space M(X) with the vague topology, i.e., the weakest topology on Γ with respect
to which all maps

Γ 3 γ 7→ 〈f, γ〉 :=
∫

X

f(x) γ(dx) =
∑
x∈γ

f(x), f ∈ C0(X),

are continuous. Here, C0(X) is the space of all continuous, real-valued functions on X
with compact support. We will denote the Borel σ-algebra on Γ by B(Γ). A point process
µ is a probability measure on (Γ,B(Γ)).

A point process µ is said to have correlation functions if, for any n ∈ N, there exists a
non-negative, measurable, symmetric function k(n)

µ on Xn such that, for any measurable,
symmetric function f (n) : Xn → [0,+∞]∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)µ(dγ)

=
1
n!

∫
Xn

f (n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn) ν(dx1) · · · ν(dxn).

Let K be a linear, bounded, Hermitian operator on the space L2(X, ν) (real or com-
plex) which satisfies the following assumptions:

(1) K is locally of trace class, i.e.,

Tr(PΛKPΛ) <∞ for all Λ ∈ B0(X),

where PΛ denotes the operator of multiplication by the indicator function χΛ of
the set Λ.

(2) We have 000 ≤ K ≤ 111.
Under the above assumptions, K is an integral operator, and its kernel can be chosen

as
K(x, y) =

∫
X

K1(x, z)K1(z, y) ν(dz),

where K1(·, ·) is any version of the kernel of the integral operator
√
K, [18] (see also [7,

Lemma A.4]).
A point process µ having correlation functions

k(n)
µ (x1, . . . , xn) = det(K(xi, xj))n

i,j=1.
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is called the fermion (or determinantal) point process corresponding to the operator K.
Under the above assumptions on K, such a point process µ exists and is unique, see e.g.
[18, 20, 24, 27].

Using the definition of a fermion process, it can be easily checked that µ has all local
moments finite, i.e.,∫

Γ

〈f, γ〉n µ(dγ) <∞, f ∈ C0(X), f ≥ 0, n ∈ N.

In what follows, we will always assume that the operator K is strictly less than 111, i.e.,
1 does not belong to the spectrum of K. Then, as has been shown in [7], the fermion
process µ has Papangelou (conditional) intensity. That is, there exists a measurable
function r : X × Γ → [0,+∞] such that

(2.1)
∫

Γ

µ(dγ)
∫

X

γ(dx)F (x, γ) =
∫

Γ

µ(dγ)
∫

X

ν(dx) r(x, γ)F (x, γ ∪ x)

for any measurable function F : X × Γ → [0,+∞].

Remark 2.1. Let us briefly explain the construction of the Papangelou intensity r(x, γ),
following [7].

For each Λ ∈ B0(X), consider KΛ := PΛKPΛ as an operator in L2(Λ, ν) and let
J[Λ] := KΛ(111 − KΛ)−1. Denote by J[Λ](·, ·) the kernel of the operator J[Λ] (chosen
analogously to the kernel of K). For any γ ∈ Γ, set

det J[Λ](γΛ, γΛ) := det
[
J[Λ](xi, xj)

]m
i,j=1

,

with γΛ = {x1, . . . , xm} being any numeration of points of γΛ (in the case γΛ = ∅, set
det J[Λ](∅,∅) := 0). Now, for any x ∈ Λ and γ ∈ Γ, set

rΛ(x, γΛ) :=
det J[Λ](x ∪ γΛ, x ∪ γΛ)

det J[Λ](γΛ, γΛ)
,

where the expression on the right hand side is assumed to be zero if detJ[Λ](γΛ, γΛ) = 0.
Let {Λn}n∈N be any sequence in B0(X) that increases to X. Then r(x, γ) is a ν⊗µ-a.e.

limit of rΛn(x, γΛn) as n→∞.

Set J := K(111 − K)−1. The operator J is integral and we choose its kernel J(·, ·)
analogously to choosing the kernel of K. Note that

Tr(PΛJPΛ) =
∫

Λ

J(x, x) ν(dx) <∞.

The following proposition is a direct corollary of [7, Theorem 3.7 and Lemma A.1].

Proposition 2.1. We have, for ν ⊗ µ-a.e. (x, γ) ∈ X × Γ:

r(x, γ) ≤ J(x, x).

3. Equilibrium dynamics

In what follows, we will consider a fermion point process µ corresponding to an oper-
ator K as defined in Section 2. We introduce the set FCb(C0(X),Γ) of all functions of
the form

Γ 3 γ 7→ F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),
where N ∈ N, ϕ1, . . . , ϕN ∈ C0(X) and g ∈ Cb(RN ). Here, Cb(RN ) denotes the set of
all continuous, bounded functions on RN .

For a function F : Γ → R, γ ∈ Γ, x, y ∈ X, we introduce the notations (D−
x F )(γ),

(D+
x F )(γ), and (D−+

xy F )(γ) by (1.3) and (1.5), respectively. We consider measurable
mappings

X × Γ 3 (x, γ) 7→ d(x, γ) ∈ [0,∞),
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X ×X × Γ 3 (x, y, γ) 7→ c(x, y, γ) ∈ [0,∞).

Assume that

(3.1) c(x, y, γ) = c(x, y, γ)χ{r(x,γ)>0, r(y,γ)>0}, x, y ∈ X, γ ∈ Γ.

Remark 3.1. As we will see below, the coefficient c(x, y, γ \ x) describes the rate of the
jump of particle x ∈ γ to y. For each γ ∈ Γ and x ∈ Rd \ γ, we interpret r(x, γ) as
exp[−E(x, γ)], where E(x, γ) is the relative energy of interaction between configuration
γ and particle x. Hence, if r(y, γ \x) = 0, then the relative energy of interaction between
the configuration γ\x and particle y is +∞. Hence, it is intuitively clear that the particle
x cannot jump to y, i.e., c(x, y, γ \ x) should be equal to zero. A symmetry reason also
implies that we should have c(x, y, γ \ x) = 0 if r(x, γ \ x) = 0, i.e., if the relative energy
of interaction between x ∈ γ and the rest of configuration is ∞.

Further, we assume that, for each Λ ∈ B0(X),∫
Γ

µ(dγ)
∫

Λ

γ(dx) d(x, γ \ x) <∞,(3.2) ∫
Γ

µ(dγ)
∫

X

γ(dx)
∫

X

ν(dy)c(x, y, γ \ x)(χΛ(x) + χΛ(y)) <∞.(3.3)

We define bilinear forms

EG(F,G) :=
∫

Γ

µ(dγ)
∫

X

γ(dx) d(x, γ \ x)(D−
x F )(γ)(D−

x G)(γ),(3.4)

EK(F,G) :=
∫

Γ

µ(dγ)
∫

X

γ(dx)
∫

X

ν(dy) c(x, y, γ \ x)(D−+
xy F )(γ)(D−+

xy G)(γ),(3.5)

where F,G ∈ FCb(C0(X),Γ).
We note that, for any F ∈ FCb(C0(X),Γ), there exist Λ ∈ B0(X) and C > 0 such

that

|(D−
x F )(γ)| ≤ CχΛ(x), |(D−+

xy F )(γ)| ≤ C(χΛ(x) + χΛ(y)), γ ∈ Γ, x, y ∈ X.

Therefore, by assumptions (3.2), (3.3) the right-hand sides of formulas (3.4) and (3.5)
are well-defined and finite.

Using (2.1) and (3.1), we have, for any F ∈ FCb(C0(X),Γ):

EK(F ) =
∫

Γ

µ(dγ)
∫

X

ν(dx)
∫

X

ν(dy) r(x, γ)c(x, y, γ)

× χ{r(y,γ)>0)}
r(y, γ)
r(y, γ)

(F (γ ∪ y)− F (γ ∪ x))2

=
∫

Γ

µ(dγ)
∫

X

ν(dx)
∫

X

γ(dy) r(x, γ \ y)c(x, y, γ \ y)

× χ{r(y,γ\y)>0}
1

r(y, γ \ y)
(D−+

yx F )2(γ).

Here, we used the notation
EK(F ) := EK(F, F ).

Therefore, for any F,G ∈ FCb(C0(X),Γ),

EK(F,G) =
∫

Γ

µ(dγ)
∫

X

γ(dx)
∫

X

ν(dy)c̃(x, y, γ \ x)(D−+
xy F )(γ)(D−+

xy G)(γ),

where

c̃(x, y, γ) :=
1
2

(
c(x, y, γ) + c(y, x, γ)χ{r(x,γ)>0}

r(y, γ)
r(x, γ)

)
.
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Note that, by (3.1), we have ˜̃c(x, y, γ) = c̃(x, y, γ). Therefore, without loss of generality,
in what follows we will assume that c̃(x, y, γ) = c(x, y, γ), i.e.,

(3.6) r(x, γ)c(x, y, γ) = r(y, γ)c(y, x, γ).

Lemma 3.1. We have E](F,G) = 0 for all F,G ∈ FCb(C0(X),Γ) such that F = 0
µ-a.e., ] = G,K.

Proof. It suffices to show that, for F ∈ FCb(C0(X),Γ) such that F = 0 µ-a.e., we have
(D−+

x,y F )(γ) = 0 µ̃-a.e. Here, µ̃ is the measure on X ×X × Γ defined by

(3.7) µ̃(dx, dy, dγ) := c(x, y, γ \ x)γ(dx) ν(dy)µ(dγ).

For any F as above, we evidently have that F (γ) = 0 µ̃-a.e. Next, by (2.1) and (3.1)∫
Γ

µ(dγ)
∫

Λ

γ(dx)
∫

Λ

ν(dy)|F (γ \ x ∪ y)|c(x, y, γ \ x)

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫

Λ

ν(dy)r(x, γ)|F (γ ∪ y)|c(x, y, γ)χ{r(y,γ)>0}
r(y, γ)
r(y, γ)

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫

Λ

γ(dy)|F (γ)|c(x, y, γ \ y) r(x, γ \ y)
r(y, γ \ y)

χ{r(y,γ\y)>0}

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫

Λ

γ(dy)|F (γ)|c(x, y, γ \ y)r(x, γ \ y)
r(y, γ \ y)

.(3.8)

Since F is bounded, by (3.3) the integral in (3.8) is finite. Therefore,

(3.9) |F (γ)| r(x, γ \ y)
r(y, γ \ y)

<∞ for µ̃-a.a. (x, y, γ) ∈ X ×X × Γ.

Because F = 0 µ̃-a.e., by (3.8) and (3.9), F (γ \ x ∪ y) = 0 µ̃-a.e. �

By Lemma 3.1, the bilinear forms (EG,FCb(C0(X),Γ)) and (EK,FCb(C0(X),Γ)) are
well defined on L2(Γ, µ).

Lemma 3.2. 1) The bilinear form (EG,FCb(C0(X),Γ)) is closable on L2(Γ, µ) and its
closure will be denoted by (EG, D(EG)).

2) Assume that, for some u ∈ R,

(3.10)
∫

Λ

ν(dx)
∫

Λ

γ(dy)r(x, γ \ y)r(y, γ \ y)uχ{r(y,γ\y)>0}c(x, y, γ \ y) ∈ L2(Γ, µ)

for all Λ ∈ B0(X). Then the bilinear form (EK,FCb(C0(X),Γ)) is closable on L2(Γ, µ)
and its closure will be denoted by (EK, D(EK)).

Proof. Let (Fn)∞n=1 be a sequence in FCb(C0(X),Γ) such that ‖Fn‖L2(Γ,µ) → 0 as n→∞
and

(3.11) EK(Fn − Fk) → 0 as n, k →∞.

To prove the closability of EK, it suffices to show that there exists a subsequence {Fnk
}∞k=1

such that EK(Fnk
) → 0 as k →∞.

Since ‖Fn‖L2(Γ,µ) → 0 as n → ∞, there exists a subsequence (F (1)
n )∞n=1 of (Fn)∞n=1

such that F (1)
n (γ) → 0 for µ̃-a.a. (x, y, γ) ∈ X ×X ×Γ. Next, by (3.10), we have, for any

Λ ∈ B0(X),∫
Γ

µ(dγ)
∫

Λ

γ(dx)
∫

Λ

ν(dy)c(x, y, γ \ x)r(y, γ \ x)u+1χ{r(y,γ\x)>0}|F (1)
n (γ \ x ∪ y)|

=
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫

Λ

ν(dy)r(x, γ)c(x, y, γ)r(y, γ)u+1χ{r(y,γ)>0}|F (1)
n (γ ∪ y)|
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=
∫

Γ

µ(dγ)
∫

Λ

ν(dx)
∫

Λ

γ(dy)r(x, γ \ y)r(y, γ \ y)u

× χ{r(y,γ\y)>0}c(x, y, γ \ y)|F (1)
n (γ)|

≤
(∫

Γ

µ(dγ)|F (1)
n (γ)|2

)1/2(∫
Γ

µ(dγ)
(∫

Λ

ν(dx)
∫

Λ

γ(dy)r(x, γ \ y)

× r(y, γ \ y)uχ{r(y,γ\y)>0}c(x, y, γ \ y)
)2)1/2

→ 0 as n→∞.

Therefore, there exists a subsequence (F (2)
n )∞n=1 of (F (1)

n )∞n=1 such that F (2)
n (γ\x∪y) → 0

as n→∞ for

c(x, y, γ \ x)r(y, γ \ x)uχ{r(y,γ\x)>0}γ(dx)ν(dy)µ(dγ)-a.e. (x, y, γ) ∈ X ×X × Γ.

By (3.1), the latter measure is equivalent to µ̃, and therefore

(3.12) (D−+
x,y F

(2)
n )(γ) → 0 for µ̃-a.e. (x, y, γ) ∈ X ×X × Γ.

Now, by (3.12) and Fatou’s lemma

EK(F (2)
n ) =

∫
(D−+

xy F
(2)
n )(γ)2 µ̃(dx, dy, dγ)

=
∫ (

(D−+
xy F

(2)
n )(γ)− lim

m→∞
(D−+

xy F
(2)
m )(γ)

)2

µ̃(dx, dy, dγ)

≤ lim inf
m→∞

∫
((D−+

xy F
(2)
n )(γ)− (D−+

xy F
(2)
m )(γ))2 µ̃(dx, dy, dγ)

= lim inf
m→∞

EK(F (2)
n − F (2)

m ),

which by (3.11) can be made arbitrarily small for n large enough. �

Before proceeding with our study of the bilinear forms (EG, D(EG)) and (EK, D(EK)),
let us briefly recall some definitions from the theory of Dirichlet forms, see [6, 19] for
details and further generality.

Let E be a Polish space, let B(E) be the Borel σ-algebra on E, and let m be a Radon
measure on (E,B(E)). Let (E , D(E)) be a closed, symmetric, non-negative, bilinear form
on L2(E,m). Then (E , D(E)) is called a Dirichlet form if, for each F ∈ D(E), we have
(F ∨ 0) ∧ 1 ∈ D(E) and

E((F ∨ 0) ∧ 1) ≤ E(F ).
Let (E , D(E)) be a Dirichlet form on L2(E,m). For a subset A ⊂ E, we define

D(E)A := {F ∈ D(E) | F = 0 on E \A}.
A sequence (An)n∈N of closed subsets of E is called an E-nest if⋃

n∈N
D(E)An

is dense in D(E) with respect to the norm

‖ · ‖D(E) :=
(
E(·) + ‖ · ‖L2(E,m)

)1/2
.

A subset N ⊂ E is called E-exceptional if

N ⊂
⋂
n∈N

Ac
n

for some E-nest (An)n∈N. Note that every Borel E-exceptional set has m measure zero.
A property of points in E holds E-quasi-everywhere (abbreviated E-q.e.) if the property
holds outside some E-exceptional set.
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Assume that there exists a subset F of D(E) ∩ C(E) which is dense in D(E) with
respect to the norm ‖ · ‖D(E) and such that the functions from F separate points of
E. Then, the Dirichlet form (E , D(E)) is called quasi-regular if there exists an E-nest
(An)n∈N consisting of compact sets in E.

Now, completely analogously to [16, Lemma 3.3], we get

Lemma 3.3. (EG, D(EG)) and (EK, D(EK)) are Dirichlet forms on L2(Γ, µ).

Remark 3.2. We note that the central idea of the proof of Lemma 3.3 is that, for each
function F : Γ → R and any γ ∈ Γ, x ∈ γ, and y ∈ Rd \ γ,

|(D−
x (F ∨ 0) ∧ 1))(γ)| ≤ |(D−

x F )(γ)|, |(D−+
xy (F ∨ 0) ∧ 1))(γ)| ≤ |(D−+

xy F )(γ)|.

We now need the bigger space
..

Γ consisting of all Z+ ∪ {∞}-valued Radon measures
on X, which is Polish, see e.g. [13]. Since Γ ⊂

..

Γ and B(
..

Γ)∩Γ = B(Γ), we can consider µ
as a measure on (

..

Γ,B(
..

Γ)) and correspondingly (EG, D(EG)) and (EK, D(EK)) as bilinear
forms on L2(

..

Γ, µ).

Lemma 3.4. Under the assumption of Lemma 3.2, (EG, D(EG)) and (EK, D(EK)) are
quasi-regular Dirichlet forms on L2(

..

Γ, µ).

The proof of Lemma 3.4 is analogous to that of [16, Lemmas 3.3 and 3.4], so we omit
it.

Lemma 3.5. The set
..

Γ \ Γ is exceptional for both (EG, D(EG)) and (EK, D(EK)).

Proof. We fix any metric on X which generates the topology on X. For any a ∈ X and
r > 0, we denote by B(a, r) the closed ball in X, with center at x and radius r. It suffices
to prove the lemma locally, i.e., to show that, for any fixed a ∈ X, there exists r > 0
such that

Na := {γ ∈ Γ̈ : sup
x∈B(a,r)

γ({x}) ≥ 2}

is EK-exceptional. So, we fix any a ∈ X and choose r > 0 so that B(a, 2r) ∈ B0(X).
By [23, Lemma 1], we need to prove that there exists a sequence un ∈ D(EK), n ∈ N,

such that each un is a continuous function on
..

Γ, un → χNa pointwise as n → ∞, and
supn∈N EK(un) <∞.

Fix any n ∈ N such that

(3.13) 2/n < r.

Let
{B(ak, 1/n) | k = 1, . . . ,Kn},

with ak ∈ B(a, r), k = 1, . . . ,Kn, be a finite covering of B(a, r). Let f : R → R be given
by f(u) := (1− |u|) ∨ 0.

For each k = 1, . . . ,Kn, we define a continuous function f (n)
k : X → R by

f
(n)
k (x) := f

(
n dist(x,B(ak, 1/n))

)
, x ∈ X.

Here, dist(x,B) denotes the distance from a point x ∈ X to a set B ⊂ X. We evidently
have:

(3.14) χB(ak,1/n) ≤ f
(n)
k ≤ χB(ak,2/n).

Let ψ ∈ C1
b(R) be such that χ[2,∞) ≤ ψ ≤ χ[1,∞) and

(3.15) 0 ≤ ψ′ ≤ 2χ(1,∞).
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We define a continuous function
..

Γ 3 γ 7→ un(γ):=ψ

(
sup

k∈{1,...,Kn}
〈f (n)

k , γ〉

)
,

whose restriction to Γ belongs to FCb(C0(X),Γ). Evidently, un → χNa pointwise as
n→∞.

By (3.13), (3.14), (3.15), and the mean value theorem, we have, for each γ ∈ Γ, x ∈ γ,
y ∈ X \ γ,

(D−+
xy un)2(γ) ≤ 4

(
sup

k∈{1,...,Kn}
〈f (n)

k , γ \ x ∪ y〉 − sup
k∈{1,...,Kn}

〈f (n)
k , γ〉

)2

≤ 4 sup
k∈{1,...,Kn}

|〈f (n)
k , γ \ x ∪ y〉 − 〈f (n)

k , γ〉|2

≤ 8
(

sup
k∈{1,...,Kn}

f
(n)
k (x)2 + sup

k∈{1,...,Kn}
f

(n)
k (y)2

)
≤ 8
(

sup
k∈{1,...,Kn}

χB(ak,2/n)(x) + sup
k∈{1,...,Kn}

χB(ak,2/n)(y)
)

≤ 8(χB(a,2r)(x) + χB(a,2r)(y)).

Hence, by (3.3),
sup

n
EK(un) <∞,

which implies the lemma. �

Let us briefly recall some notions appearing in Theorem 3.1 below, for further details
see e.g. [6, 19]. Let

M = (ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ)

be a Markov process Γ. Then M is called a conservative Hunt process if it satisfies the
following additional properties:

• (Normal property) Pγ(X(0) = γ) = 1 for all γ ∈ Γ.
• (Infinite life-time) Pγ(X(t) ∈ Γ for all t > 0) = 1 for all γ ∈ Γ.
• (Right continuity) For each ω ∈ ΩΩΩ, [0,∞) 3 t 7→ X(t, ω) ∈ Γ is right continuous.
• (Strong Markov property) For every (Ft)t≥0-stopping time τ and every probabil-

ity measure m on (Γ,B(Γ)),

Pm(X(τ + t) ∈ A | Fτ ) = PX(τ)(X(t) ∈ A) Pm-a.s.

for all A ∈ B(Γ) and t ≥ 0. Here, Pm(·) :=
∫
Γ
m(dγ)Pγ(·).

• (Left limits) For every probability measure m on (Γ,B(Γ)), lims↑t X(s) exists in
Γ for all t > 0 Pm-a.s.

• (quasi-left continuity) For every probability measure m on (Γ,B(Γ)), if τ , τn,
n ∈ N, are (FPm

t )t≥0-stopping times such that τn ↑ τ , then X(τn) → X(τ) as
n → ∞ Pm-a.s. Here, FPm

t denotes the completion of the σ-algebra Ft with
respect to the probability measure Pm

Let F : A → R, A ⊂ Γ, and let (E , D(E)) be a Dirichlet form on L2(Γ, µ). Then the
function F is called E-quasi-continuous if there exists an increasing sequence (An)n∈N
of closed subsets of Γ which form an E-nest,

⋃
n∈N An ⊂ A, and for each n ∈ N the

restriction of F to An is a continuous function.
Let M and M′ be two Hunt processes with state space Γ, and denote by (pt)t≥0,

(p′t)t≥0 their transition semigroups. Then M and M′ are called µ-equivalent if there
exists a set S ∈ B(Γ) such that
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• µ(Γ \ S) = 0;
• S is both M-invariant and M′-invariant;
• (ptF )(γ) = (p′tF )(γ) for each t > 0, each bounded measurable function F : Γ →

R, and each γ ∈ S.
Recall that S being M-invariant means that there exists ΩΩΩΓ\S ∈ F such that

ΩΩΩΓ\S ⊃ {Xt
0 ∩ (Γ \ S) 6= ∅ for some t ≥ 0}

and Pγ(ΩΩΩΓ\S) = 0 for all γ ∈ S. Here, Xt
0(ω) is the closure of {X(s, ω) | s ∈ [0, t]} in Γ.

We now ready to formulate the main result of this paper.

Theorem 3.1. Let (3.2), respectively (3.3) and (3.10), hold. Let ] = G,K. Then we
have:

1) There exists a conservative Hunt process

M] = (ΩΩΩ],F], (F]
t)t≥0, (ΘΘΘ

]
t)t≥0, (X](t))t≥0, (P]

γ)γ∈Γ)

on Γ which is properly associated with (E], D(E])), i.e., for all (µ-versions of ) F ∈
L2(Γ, µ) and all t > 0 the function

(3.16) Γ 3 γ 7→ p]
tF (γ):=

∫
ΩΩΩ

F (X](t)) dP]
γ

is an E]-quasi-continuous version of exp(−tH])F , where (H], D(H])) is the generator of
(E], D(E])). M] is up to µ-equivalence unique. In particular, M] is µ-symmetric (i.e.,∫
Gp]

tF dµ =
∫
F p]

tGdµ for all F,G : Γ → R+, B(Γ)-measurable), so has µ as an
invariant measure.

2) M] from 1) is up to µ-equivalence unique between all Hunt processes
M′ = (ΩΩΩ′,F′, (F′t)t≥0, (ΘΘΘ

′
t)t≥0, (X′(t))t≥0, (P′

γ)γ∈Γ) on Γ having µ as invariant measure
and solving the martingale problem for (−H], D(H])), i.e., for all G ∈ D(H])

G̃(X′(t))− G̃(X′(0)) +
∫ t

0

(H]G)(X′(s)) ds, t ≥ 0,

is an (F′t)-martingale under P′
γ for E]-q.e. γ ∈ Γ. (Here, G̃ denotes an E]-quasi-

continuous version of G.)

Remark 3.3. In Theorem 3.1, M] can be taken canonical, i.e., ΩΩΩ] is the set of all cadlag
functions ω : [0,∞) → Γ (i.e., ω is right continuous on [0,∞) and has left limits on
(0,∞)), X](t)(ω):=ω(t), t ≥ 0, ω ∈ ΩΩΩ], (F]

t)t≥0 is the filtration generated by (X](t))t≥0,
F] is the minimal σ-algebra containing all F]

t, t ≥ 0, and ΘΘΘ]
t, t ≥ 0, are the corresponding

natural time shifts.

Proof of Theorem 3.1. The first part of the theorem follows from Lemmas 3.4, 3.5,
the fact that 1 ∈ D(E]) and E](1, 1) = 0, ] = G,K, and [19, Chap. IV, Theorem 3.5
and Chap. V, Proposition 2.15]. The second part follows directly from the proof of [2,
Theorem 3.5]. �

Now we will derive explicit formulas for the generators of EG and EK. However, for
this, we will demand stronger conditions on the coefficients d(x, γ) and c(x, y, γ).

Theorem 3.2. 1) Assume that, for each Λ ∈ B0(X),∫
Λ

γ(dx) d(x, γ \ x) ∈ L2(Γ, µ),∫
Λ

ν(dx)b(x, γ) ∈ L2(Γ, µ),(3.17)
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where

(3.18) b(x, γ) := r(x, γ) d(x, γ), x ∈ X, γ ∈ Γ.

Then, for each F ∈ FCb(C0(X),Γ),

(3.19) (HGF )(γ) = −
∫

X

ν(dx) b(x, γ)(D+
x F )(γ)−

∫
X

γ(dx) d(x, γ\x)(D−
x F )(γ) µ-a.e.

and (HG, D(HG)) is the Friedrichs extension of (HG,FCb(C0(X),Γ)) in L2(Γ, µ).
2) Assume that, for each Λ ∈ B0(X),

(3.20)
∫

X

γ(dx)
∫

X

ν(dy) c(x, y, γ \ x)(χΛ(x) + χΛ(y)) ∈ L2(Γ, µ).

Then, for each F ∈ FCb(C0(X),Γ),

(3.21) (HKF )(γ) = −2
∫

X

γ(dx)
∫

X

ν(dy)c(x, y, γ \ x)(D−+
xy F )(γ) µ-a.e.

and (HK, D(HK)) is the Friedrichs extension of (HK,FCb(C0(X),Γ)) in L2(Γ, µ).

Proof. By (2.1) and (3.6), the theorem easily follows from our assumptions (3.17), (3.20).
�

3.1. Examples. For each s ∈ [0, 1], we define

(3.22) c(x, y, γ) := a(x, y)r(x, γ)s−1r(y, γ)sχ{r(x,γ)>0, r(y,γ)>0}.

Here, the function a : X2 → [0,∞) is measurable, symmetric (i.e., a(x, y) = a(y, x)),
bounded, and satisfies

(3.23) sup
x∈X

∫
X

a(x, y) ν(dy) <∞.

Assume also that there exists Λ ∈ B0(X) such that

(3.24) sup
x∈X\Λ

J(x, x) <∞.

Note that c(x, y, γ) satisfies the balance condition (3.6)

Proposition 3.1. Let the coefficient c(x, y, γ) be given by (3.22), and let conditions
(3.23), (3.24) hold. Then, for each s ∈ [0, 1], conditions (3.3) and (3.10) are satisfied,
and therefore the conclusion of Theorem 3.1 holds for the corresponding Dirichlet form.

Furthermore, for s = 1, condition (3.20) is satisfied, and hence the conclusion of
Theorem 3.2 holds for the corresponding generator (HK, D(HK)).

Proof. Let s ∈ [0, 1]. We have, by (2.1), (3.23), (3.24) and Proposition 2.1,∫
Γ

µ(dγ)
∫

X

γ(dx)
∫

X

ν(dy)c(x, y, γ \ x)(χΛ(x) + χΛ(y))

=
∫

Γ

µ(dγ)
∫

X

ν(dx)
∫

X

ν(dy)a(x, y)r(x, γ)sr(y, γ)s

× χ{r(x,γ)>0, r(y,γ)>0}(χΛ(x) + χΛ(y))

≤
∫

Γ

µ(dγ)
∫

X

ν(dx)
∫

X

ν(dy)a(x, y)

× (1 ∧ J(x, x))(1 ∧ J(y, y))(χΛ(x) + χΛ(y)) <∞,

so that condition (3.3) is satisfied.
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Next, setting u = −s, we see that in order to show that (3.10) is satisfied, it suffices
to prove that, for each Λ ∈ B0(X),∫

Λ

ν(dx)
∫

Λ

γ(dy)a(x, y)r(x, γ \ y)s ∈ L2(µ).

So, by Proposition 2.1, (2.1), (3.23), (3.24), and the boundedness of a, we have∫
Γ

µ(dγ)
(∫

Λ

ν(dx)
∫

Λ

γ(dy)a(x, y)r(x, γ \ y)s

)2

=
∫

Γ

µ(dγ)
∫

Λ

ν(dy)r(y, γ)
∫

Λ

ν(dx1)
∫

Λ

ν(dx2)a(x1, y)a(x2, y)r(x1, γ)sr(x2, γ)s

+
∫

Γ

µ(dγ)
∫

Λ

ν(dy1)
∫

Λ

ν(dy2)
∫

Λ

ν(dx1)
∫

Λ

ν(dx2)r(y2, γ)r(y1, γ ∪ y2)

× a(x1, y1)a(x2, y2)r(x1, γ ∪ y2)sr(x2, γ ∪ y1)s

≤
∫

Λ

ν(dy)J(y, y)
∫

Λ

ν(dx1)
∫

Λ

ν(dx2)a(x1, y)a(x2, y)(1 + J(x1, x1))(1 + J(x2, x2))

+
∫

Λ

ν(dy1)
∫

Λ

ν(dy2)
∫

Λ

ν(dx1)
∫

Λ

ν(dx2)a(x1, y1)a(x2, y2)

× J(y1, y1)J(y2, y2)(1 + J(x1, x1))(1 + J(x2, x2)) <∞.

Now, let s = 1. Analogously to the above, we have∫
Γ

µ(dγ)
(∫

X

γ(dx)
∫

X

ν(dy)c(x, y, γ \ x)(χΛ(x) + χΛ(y))
)2

=
∫

Γ

µ(dγ)
∫

X

ν(dx)r(x, γ)
∫

X

ν(dy1)
∫

X

ν(dy2)a(x, y1)a(x, y2)

× r(y1, γ)r(y2, γ)χ{r(x,γ)>0, r(y1,γ)>0, r(y2,γ)>0}(χΛ(x) + χΛ(y1))(χΛ(x) + χΛ(y2))

+
∫

Γ

µ(dγ)
∫

X

ν(dx1)
∫

X

ν(dx2)r(x2, γ)r(x1, γ ∪ x2)

×
∫

X

ν(dy1)
∫

X

ν(dy2)a(x1, y1)a(x2, y2)r(y1, γ ∪ x2)r(y2, γ ∪ x1)

× χ{r(x1,γ∪x2)>0, r(x2,γ∪x1)>0, r(y1,γ∪x2)>0, r(y2,γ∪x1)>0}

× (χΛ(x1) + χΛ(y1))(χΛ(x2) + χΛ(y2))

≤
∫

X

ν(dx)
∫

X

ν(dy1)
∫

X

ν(dy2)a(x, y1)a(x, y2)

× J(y1, y1)J(y2, y2)(χΛ(x) + χΛ(y1))(χΛ(x) + χΛ(y2))

+
∫

X

ν(dx1)
∫

X

ν(dx2)
∫

X

ν(dy1)
∫

X

ν(dy2)a(x1, y1)a(x2, y2)

× J(y1, y1)J(y2, y2)(χΛ(x1) + χΛ(y1))(χΛ(x2) + χΛ(y2)) <∞.

�

Next, for each s ∈ [0, 1], we define

(3.25) d(x, γ) := r(x, γ)s−1χ{r(x,γ)>0},

so that
b(x, γ) := r(x, γ)sχ{r(x,γ)>0}.

Analogously to Proposition 3.1, we get
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Proposition 3.2. Let the coefficient d(x, γ) be given by (3.25). Then, for each s ∈ [0, 1],
condition (3.2), is satisfied, and hence the conclusion of Theorem 3.1 holds for the
corresponding Dirichlet form.

Furthermore, for s = 1, condition (3.17) is satisfied, and hence the conclusion of
Theorem 3.2 holds for the corresponding generator (HG, D(HG)).

We finally note that all our assumptions are trivially satisfied in the case of bounded
coefficients c(x, y, γ) and d(x, γ), b(x, γ), respectively.
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