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INTERPOLATION WITH A FUNCTION PARAMETER AND
REFINED SCALE OF SPACES

VLADIMIR A. MIKHAILETS AND ALEKSANDR A. MURACH

Abstract. The interpolation of couples of separable Hilbert spaces with a function
parameter is studied. The main properties of the classical interpolation are proved.
Some applications to the interpolation of isotropic Hörmander spaces over a closed
manifold are given.

1. Introduction

In this paper we study the interpolation of couples of separable Hilbert spaces with a
functional parameter. We generalize the classical theorems on interpolation with a power
parameter with the index θ ∈ (0, 1) to a maximal class of functions.

As an application, we consider the interpolation of isotropic Hörmander spaces over a
closed manifold

(1.1) Hs,ϕ := H
〈·〉s ϕ(〈·〉)
2 , 〈ξ〉 :=

(
1 + |ξ|2

)1/2
.

Here, s ∈ R and ϕ is a functional parameter slowly varying at +∞ in Karamata’s sense.
In particular, every standard function

ϕ(t) = (log t)r1(log log t)r2 . . . (log . . . log t)rn , {r1, r2, . . . , rn} ⊂ R, n ∈ N,
is admissible. This scale was introduced and investigated by the authors in [1, 2]. It
contains the Sobolev scale {Hs} ≡ {Hs,1} and is attached to it by the number parameter
s and being considerably finer.

Spaces of form (1.1) arise naturally in different spectral problems: convergence of
spectral expansions of self-adjoint elliptic operators almost everywhere, in the norm of
the spaces Lp with p > 2 or C (see survey [3]); spectral asymptotics of general self-
adjoint elliptic operators in a bounded domain, the Weyl formula, a sharp estimate of
the remainder in it (see [4, 5]) and others. They may be expected to be useful in other
”fine” questions. Due to their interpolation properties, the spaces Hs,ϕ occupy a special
position among the spaces of a generalized smoothness which are actively investigated
and used today (see survey [6], recent articles [7, 8] and the bibliography given there).

One of the main results of the article is a description of the refined scale by means of
regularly varying functions of a positive elliptic pseudodifferential operator. The related
questions were studied in [9, 10] and by the authors in [11–20].

2. An interpolation with a function parameter

2.1. A definition of the interpolation.

Definition 2.1. An ordered couple [X0, X1] of complex Hilbert spaces X0 and X1 is
called admissible if the spaces X0, X1 are separable and the continuous embedding
X1 ↪→ X0 holds.
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Let an admissible couple X = [X 0, X1] of Hilbert spaces be given. It is known
[21, Ch. 1, Sec. 2.1], [22, Ch. IV, Sec. 9.1] that for this coupleX there exists an isometric
isomorphism J : X1 ↔ X 0 such that J is a self-adjoint positive operator on the space
X 0 with the domain X1. The operator J is called a generating one for the couple X.
This operator is uniquely determined by the couple X. Indeed, assume that J1 is also
a generating operator for the couple X. Then the operators J and J1 are metrically
equal, i.e., ‖Ju‖X 0 = ‖u‖X1 = ‖J1u‖X 0 for any u ∈ X1. Moreover, these operators are
positive. Hence, they are equal.

We denote by B the set of all functions ψ : (0,+∞) → (0,+∞) such that

a) ψ is Borel measurable on the semiaxis (0,+∞);
b) ψ is bounded on each closed interval [a, b], where 0 < a < b < +∞;
c) 1/ψ is bounded on each set [r,+∞), where r > 0.

Let ψ ∈ B. Generally, the unbounded operator ψ(J) is defined on the space X0 as a
function of J . We denote by [X0, X1]ψ or, simply, byXψ the domain of the operator ψ(J),
equipped with the inner product (u, v)Xψ := (ψ(J)u, ψ(J)v)X0 and the corresponding
norm ‖u ‖Xψ = (u, u)1/2Xψ

.
The space Xψ is Hilbert separable and, moreover, the continuous dense embedding

Xψ ↪→ X0 is fulfilled. Indeed, we have Spec J ⊆ [r,+∞) and ψ(t) ≥ c for t ≥ r,
where r, c are some positive numbers. Hence, Specψ(J) ⊆ [c,+∞), that implies the
isometric isomorphism ψ(J) : Xψ ↔ X0. It follows that the space Xψ is complete and
separable as well as that the function ‖ · ‖Xψ is positive definite, so this is a norm. Next,
since the operator ψ−1(J) is bounded on the space X0, a bounded embedding operator
I = ψ−1(J)ψ(J) : Xψ → X0 exists. The embedding Xψ ↪→ X0 is dense because the
domain of the operator ψ(J) is a dense linear manifold in the space X0.

Further, it is useful to note the following. Let functions ϕ,ψ ∈ B be such that ϕ � ψ
in a neighborhood of +∞. Then, by the definition of the set B, we have ϕ � ψ on Spec J .
Hence, Xϕ = Xψ up to equivalent norms.

Definition 2.2. A function ψ ∈ B is called an interpolation parameter if the following
condition is satisfied for all admissible couples X = [X0, X1], Y = [Y0, Y1] of Hilbert
spaces and an arbitrary linear mapping T given on X0: if the restriction of the mapping
T to the space Xj is a bounded operator T : Xj → Yj for each j = 0, 1, then the
restriction of the mapping T to the space Xψ is also a bounded operator T : Xψ → Yψ.

Otherwise speaking, ψ is an interpolation parameter if and only if the mapping X 7→
Xψ is an interpolation functor given on the category of all admissible couples X of Hilbert
spaces [23, Sec. 1.2.2], [24, Sec. 2.4]. In the case where ψ is an interpolation parameter,
we will say that the space Xψ is obtained by the interpolation with the function parameter
ψ of the admissible couple X.

Further we will investigate the main properties of the mapping X 7→ Xψ.

2.2. Embeddings of spaces.

Theorem 2.1. Let ψ ∈ B be an interpolation parameter and X = [X0, X1] be an admis-
sible couple of Hilbert spaces. Then the continuous dense embeddings X1 ↪→ Xψ ↪→ X0

hold.

Proof. According to Subsection 2.1 it only remains to prove the continuous dense em-
bedding X1 ↪→ Xψ. Let us consider two bounded embedding operators I : X1 → X0

and I : X1 → X1. Since ψ is an interpolation parameter, these operators imply
the bounded embedding operator I : X1 → Xψ. Thus, the continuous embedding
X1 ↪→ Xψ is valid. We will prove that it is dense. For an arbitrary u ∈ Xψ, we
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have v := (1 +ψ2(J))1/2 u ∈ X0. Since X1 is dense in X0, there is a sequence (vk) ⊂ X1

such that vk → v in X0 as k →∞. From this and from (1.1) it follows that

uk := (1 + ψ2(J))−1/2 vk → u in Xψ for k →∞.

It remains to note that

uk = (1 + ψ2(J))−1/2J−1Jvk = J−1(1 + ψ2(J))−1/2Jvk ∈ X1.

Theorem 2.1 is proved. �

Theorem 2.2. Let functions ψ, χ ∈ B be given such that the function ψ/χ is bounded in
a neighborhood of +∞. Then, for each admissible couple X = [X0, X1] of Hilbert spaces,
the continuous and dense embedding Xχ ↪→ Xψ holds. If the embedding X1 ↪→ X0 is
compact and ψ(t)/χ(t) → 0 as t→ +∞, then the embedding Xχ ↪→ Xψ is also compact.

Proof. Let J be a generating operator for the couple X. Let us note that Spec J ⊆
[r,+∞) for some number r > 0. According to the condition of the theorem, we have
ψ(t)/χ(t) ≤ c for t ≥ r. Therefore

Xχ = Domχ(J) ⊆ Domψ(J) = Xψ, ‖ψ(J)u‖X0 ≤ c ‖χ(J)u‖X0 .

From these formulae and from the definition of the spaces Xχ, Xψ we obtain the contin-
uous embedding Xχ ↪→ Xψ. Let us prove its density.

We consider the isometric isomorphisms ψ(J) : Xψ ↔ X0 and χ(J) : Xχ ↔ X0.
For any given u ∈ Xψ, we have ψ(J)u ∈ X0. Since the space Xχ is densely embedded
into X0, a sequence (vk) ⊂ Xχ such that vk → ψ(J)u in X0 as k → ∞ exists. Hence,
ψ−1(J) vk → u in Xψ as k →∞, where

ψ−1(J) vk = ψ−1(J)χ−1(J)χ(J) vk = χ−1(J)ψ−1(J)χ(J) vk ∈ Xχ.

Thus, we have proved the density of the embedding Xχ ↪→ Xψ.
Now let us assume that the embedding X1 ↪→ X0 is compact and ψ(t)/χ(t) → 0

as t → +∞. We will prove the compactness of the embedding Xχ ↪→ Xψ. Let (uk)
be an arbitrary bounded sequence belonging to Xχ. Since the sequence of elements
wk := J−1 χ(J)uk is bounded in X1, we can select a subsequence of elements wkn =
J−1 χ(J)ukn being the Cauchy sequence in X0. We will show that (ukn) is the Cauchy
sequence in Xψ.

Let Et, t ≥ r, be a resolution of the unity in X0, corresponding to the self-adjoint
operator J . We can write

(2.1)
‖ukn − ukm‖2Xψ = ‖ψ(J) (ukn − ukm)‖2X0

= ‖ψ(J)χ−1(J) J (wkn − wkm)‖2X0

=
∫ +∞

r

ψ2(t)χ−2(t) t2 d ‖Et(wkn − wkm)‖2X0
.

Let us choose an arbitrary number ε > 0. There is a number ρ = ρ(ε) > r such that

ψ(t)/χ(t) ≤ (2c0)−1ε for t ≥ ρ and c0 := sup { ‖wk‖X1 : k ∈ N } <∞.

Hence, for all indices n,m we have

(2.2)

∫ +∞

ρ

ψ2(t)χ−2(t) t2 d ‖Et(wkn − wkm)‖2X0

≤ (2c0)−2 ε2
∫ +∞

ρ

t2 d ‖Et(wkn − wkm)‖2X0

≤ (2c0)−2 ε2 ‖J (wkn − wkm)‖2X0
= (2c0)−2 ε2 ‖wkn − wkm‖2X1

≤ ε2.

In addition, by the inequality ψ(t)/χ(t) ≤ c for t ≥ r, we can write the following:

(2.3)

∫ ρ

r

ψ2(t)χ−2(t) t2 d ‖Et(wkn − wkm)‖2X0
≤ c2ρ2

∫ ρ

r

d ‖Et(wkn − wkm)‖2X0

≤ c2ρ2 ‖wkn − wkm‖2X0
→ 0 as n,m→∞.



84 VLADIMIR A. MIKHAILETS AND ALEKSANDR A. MURACH

Now formulae (2.1)–(2.3) imply the inequality ‖ukn − ukm‖Xψ ≤ 2ε for sufficiently large
n,m. Therefore (ukn) is the Cauchy sequence in the space Xψ which means the com-
pactness of the embedding Xχ ↪→ Xψ. Theorem 2.2 is proved. �

2.3. Reiteration.

Theorem 2.3. Let functions f, g, ψ ∈ B be given. Suppose that the function f/g is
bounded in a neighborhood of +∞. Then [Xf , Xg]ψ = Xω holds with the equality of
norms for each admissible couple X of Hilbert spaces. Here the function ω ∈ B is given
by the formula ω(t) := f(t)ψ(g(t)/f(t)) for t > 0. If f, g, ψ are interpolation parameters,
so is ω.

Proof. Since the function f/g is bounded in a neighborhood of +∞, the couple [Xf , Xg]
is admissible by the Theorem 2.2 and, in addition, ω ∈ B. So, the spaces [Xf , Xg]ψ and
Xω are well defined. We will prove them to be equal.

Let an operator J be generating for the couple X = [X0, X1], where Spec J ⊆ [r,+∞)
for some number r > 0. We have three isometric isomorphisms

f(J) : Xf ↔ X0, g(J) : Xg ↔ X0, B := f−1(J) g(J) : Xg ↔ Xf .

Let us consider B as a closed operator on the space Xf , defined on Xg. The operator B
is generating for the couple [Xf , Xg] because B is positive and self-adjoint on Xf . The
positiveness of B follows from the condition f(t)/g(t) ≤ c for t ≥ r which implies

(Bu, u)Xf = (g(J)u, f(J)u)X0 ≥ c−1 (f(J)u, f(J)u)X0 = c−1 ‖u‖2Xf .
The self-adjointness follows from the fact that 0 is a regular point for the operator B.

Using the spectral theorem, we reduce the self-adjoint on X0 operator J to the form
of multiplication by a function: J = I−1(α · I). Here, I : X0 ↔ L2(U, dµ) is an isometric
isomorphism, (U, µ) is a space with a finite measure, α : U → [r,+∞) is a measurable
function. The isometric isomorphism If(J) : Xf ↔ L2(U, dµ) reduces the self-adjoint in
Xf operator B to the form of multiplication by the function (g/f) ◦ α:

If(J)B u = Ig(J)u = (g◦α) Iu = (g◦α) If−1(J)f(J)u = ((g/f)◦α) If(J)u, u ∈ Xg.

Therefore, for an arbitrary u ∈ Xω, we have

‖ψ(B)u‖Xf = ‖(ψ◦(g/f)◦α) ·(If(J)u)‖L2(U,dµ) = ‖(ω◦α) ·(Iu)‖L2(U,dµ) = ‖ω(J)u‖X0 .

Let us note that the function f/ω is bounded in a neighborhood of +∞. Hence, Xω ↪→ Xf

and the expression f(J)u is well defined. Thus, the equality [Xf , Xg]ψ = Xω is proved.
We now assume that f, g, ψ are interpolation parameters. We will show that ω is also

an interpolation parameter. Let arbitrary admissible couples X = [X0, X1], Y = [Y0, Y1]
and a linear mapping T be the same as those in Definition 2.2. We have the bounded
operators T : Xf → Yf and T : Xg → Yg which imply the boundedness of the operator
T : [Xf , Xg]ψ → [Yf , Yg]ψ. We have already proved that [Xf , Xg]ψ = Xω and [Yf , Yg]ψ =
Yω. So, a bounded operator T : Xω → Yω exists. It means that ω is an interpolation
parameter. Theorem 2.3 is proved. �

2.4. The interpolation of dual spaces. Let H be a Hilbert space. We denote by H ′

the space dual to H. Thus, H ′ is the Banach space of all linear continuous functionals
l : H → C. By the Riesz theorem, the mapping S : v 7→ ( ·, v)H , where v ∈ H, establishes
the antilinear isometric isomorphism S : H ↔ H ′. This implies that H ′ is the Hilbert
space with respect to the inner product (l,m)H′ := (S−1l, S−1m)H . We emphasize that
we do not identify H ′ as H by means of the isomorphism S.

Theorem 2.4. Let ψ ∈ B be such that the function ψ(t)/t is bounded in a neighborhood
of +∞. Then, for each admissible couple [X0, X1] of Hilbert spaces, the equality of the
spaces [X ′

1, X
′
0]ψ = [X0, X1]′χ with the equality of norms hold. Here the function χ ∈ B
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is given by the formula χ(t) := t/ψ(t) for t > 0. If ψ is an interpolation parameter, so
is χ.

Proof. Note that the couple [X ′
1, X

′
0] is admissible, provided that we naturally identify

functionals from X ′
0 as their restrictions to the space X1. From the condition of the

theorem it follows that ϕ ∈ B. Thus, the spaces [X ′
1, X

′
0]ψ and [X0, X1]′χ are well defined.

Let us prove these spaces to be equal.
Let J : X1 ↔ X0 be a generating operator for the couple [X0, X1]. Let us consider

the isometric isomorphisms Sj : Xj ↔ X ′
j , j = 0, 1, which appear in the Riesz theorem.

The operator J ′, being adjoint to J , satisfies the equality J ′ = S1J
−1S−1

0 . This results
from the following:

(J ′l)u = l(Ju) = (Ju, S−1
0 l)X0 = (u, J−1S−1

0 l)X1 = (S1J
−1S−1

0 l)u

for each l ∈ X ′
0, u ∈ X1.

Thus, the isometric isomorphism

(2.4) J ′ = S1J
−1S−1

0 : X ′
0 ↔ X ′

1

exists.
Let us note that the equalities

(u, JS−1
1 l)X0 = (J−1u, S−1

1 l)X1 = l(J−1u),

(u, J−1S−1
0 l)X0 = (J−1u, S−1

0 l)X0 = l(J−1u),

where l ∈ X ′
0 ↪→ X ′

1, u ∈ X0, imply the property

(2.5) JS−1
1 l = J−1S−1

0 l ∈ X1 for each l ∈ X ′
0.

Let us consider J ′ as a closed operator on the space X ′
1 with the domain X ′

0. The
operator J ′ is generating for the couple [X ′

1, X
′
0] because J ′ is positive and self-adjoint on

X ′
1. The positiveness of J ′ results from the positiveness of the operator J on the space

X0 and from (2.5) in the following way:

(J ′l, l)X′1 = (S1J
−1S−1

0 l, l)X′1 = (J−1S−1
0 l, S−1

1 l)X1 = (JJ−1S−1
0 l, JS−1

1 l)X0

= (JJS−1
1 l, JS−1

1 l)X0 ≥ c ‖JS−1
1 l‖2X0

= c ‖S−1
1 l‖2X1

= c ‖l‖2X′1 .

Here the number c > 0 does not depend on l ∈ X ′
0. The operator J ′ is self-adjoint

because 0 is its regular point for the operator J ′ (see (2.4)). Let us reduce the operator
J to the form of multiplication by a function: J = I−1(α · I) as it has been done in the
proof of Theorem 2.3. The isometric isomorphism

(2.6) IJS−1
1 : X ′

1 ↔ L2(U, dµ)

reduces the operator J ′ to the form of multiplication by the same function α

(IJS−1
1 )J ′l = IS−1

0 l = IJJ−1S−1
0 l = α · IJ−1S−1

0 l = α · IJS−1
1 l for each l ∈ X ′

0.

The last equality follows from (2.5).
By Theorem 2.2, two continuous dense embeddings X ′

0 ↪→ [X ′
1, X

′
0]ψ and [X0, X1]χ ↪→

X0 hold. The second embedding implies the continuous dense embeddingX ′
0 ↪→ [X0, X1]′χ.

Let us show that the norms in the spaces [X ′
1, X

′
0]ψ and [X0, X1]′χ are equal on the dense

subset X ′
0. For each l ∈ X ′

0, u ∈ [X0, X1]χ, we can write

l(u) = (u, S−1
0 l)X0 = (χ(J)u, χ−1(J)S−1

0 l)X0 = (v, χ−1(J)S−1
0 l)X0
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with v := χ(J)u ∈ X0. It implies the following:

‖l‖ [X0,X1]′χ
= sup { |l(u)| / ‖u‖ [X0,X1]χ : u ∈ [X0, X1]χ, u 6= 0 }

= sup { |(v, χ−1(J)S−1
0 l)X0 | / ‖v‖X0 : v ∈ X0, v 6= 0 }

= ‖χ−1(J)S−1
0 l‖X0 = ‖Iχ−1(J)S−1

0 l‖L2(U,dµ) = ‖(χ−1 ◦ α) · IS−1
0 l‖L2(U,dµ).

On the other hand, using isomorphisms (2.6), (2.4), we have

‖l‖ [X′1,X
′
0]ψ

= ‖ψ(J ′)l‖X′1 = ‖χ−1(J ′)J ′l‖X′1 = ‖(IJS−1
1 )χ−1(J ′)J ′l‖L2(U,dµ)

= ‖(χ−1 ◦ α) · (IJS−1
1 )J ′l‖L2(U,dµ) = ‖(χ−1 ◦ α) · IS−1

0 l‖L2(U,dµ).

Thus, norms in the spaces [X ′
1, X

′
0]ψ and [X0, X1]′χ are equal on the dense subset X ′

0.
So, these spaces coincide.

Now suppose ψ to be an interpolation parameter. We will show that so is χ. Let
admissible couples X = [X0, X1], Y = [Y0, Y1] and a linear mapping T be the same as
those in Definition 2.2. Passing to the adjoint operator T ′, we get the bounded operators
T ′ : Y ′j → X ′

j , j = 0, 1. Since ψ is an interpolation parameter, a bounded operator
T ′ : [Y ′1 , Y

′
0 ]ψ → [X ′

1, X
′
0]ψ exists. As we have already proved, [X ′

1, X
′
0]ψ = [X0, X1]′χ

and [Y ′1 , Y
′
0 ]ψ = [Y0, Y1]′χ with equalities of norms. Therefore a bounded operator T ′ :

[Y0, Y1]′χ → [X0, X1]′χ exists. Thus, passing to the second adjoint operator T ′′, we get
the bounded operator T ′′ : [X0, X1]′′χ → [Y0, Y1]′′χ. It remains to identify the second dual
spaces with original spaces which leads us to the bounded operator T : [X0, X1]χ →
[Y0, Y1]χ. This means that χ is an interpolation parameter. Theorem 2.4 is proved. �

2.5. The interpolation of direct products of spaces.

Theorem 2.5. Let a finite or countable set of admissible couples of Hilbert spaces
X(k) := [X(k)

0 , X
(k)
1 ], k ∈ ω be given. Suppose that the set of norms of the embed-

ding operators X(k)
1 ↪→ X

(k)
0 , k ∈ ω, is bounded. Then, for an arbitrary function ψ ∈ B,

the equality of the spaces[ ∏
k∈ω

X
(k)
0 ,

∏
k∈ω

X
(k)
1

]
ψ

=
∏
k∈ω

[
X

(k)
0 , X

(k)
1

]
ψ

and the equality of norms in them hold.

Proof. We assume that ω = N (the case of finite set ω is treated analogously and easier).
The spaces X0 :=

∏∞
k=1X

(k)
0 , X1 :=

∏∞
k=1X

(k)
1 are Hilbert and separable ones. The

continuous embedding X1 ↪→ X0 is evident due to the condition of the theorem. Let u :=
(u1, u2, . . .) ∈ X0. For all indices n, k an element vn,k ∈ X(k)

1 such that ‖uk−vn,k‖X(k)
0

<

1/n exists. Let us form a sequence of vectors v(n) := (vn,1, . . . , vn,n, 0, 0, . . .) ∈ X1. We
have

‖u− v(n)‖2X0
=

n∑
k=1

‖uk − vn,k‖2X0
+

∞∑
k=n+1

‖uk‖2X0

≤ n

n2
+

∞∑
k=n+1

‖uk‖2X0
→ 0 as n→∞.

Thus, the couple X := [X0, X1] is admissible.
Let us denote by Jk a generating operator for the couple X(k). An operator J :=

(J1, J2, . . .) is generating for the couple X which may be proved directly. Moreover, it is
natural to expect that ψ(J) = (ψ(J1), ψ(J2), . . .) and Domψ(J) =

∏∞
k=1X

(k)
ψ . Now we

will prove these equalities. Let us reduce the operator Jk to the form of multiplication by
a function: IkJk = αk · Ik. Here Ik : X(k)

0 ↔ L2(Vk, dµk) is an isometric isomorphism, Vk
is a space with a finite measure µk and αk : Vk → (0,+∞) is a measurable function. We
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may consider the sets Vk to be mutually disjoint. Let us set V :=
⋃∞
k=1 Vk. We call Ω ⊆ V

a measurable set if, for every index k, the set Ω∩Vk is µk-measurable. On the σ-algebra of
all measurable sets Ω ⊆ V , we introduce the σ-finite measure µ(Ω) :=

∑∞
k=1 µk(Ω∩ Vk).

Further, for a vector u := (u1, u2, . . .) ∈ X0, we consider the measurable functions Iu
and α, defined on the set V by the formulae (Iu)(λ) := (Ikuk)(λ) and α(λ) := αk(λ)
with λ ∈ Vk. Now we have the isometric isomorphism I : X0 ↔ L2(V, dµ). It reduces
the operator J to the form of multiplication by the function α because

(IJu)(λ) = (IkJkuk)(λ) = αk(λ)(Ikuk)(λ) = α(λ)(Iu)(λ) for u ∈ X1, λ ∈ Vk.
Hence, we can write down the following:

Xψ = Domψ(J) = {u ∈ X0 : (ψ ◦ α) · (Iu) ∈ L2(V, dµ) }

=
{
u ∈ X0 :

∞∑
k=1

‖(ψ ◦ αk) · (Ikuk)‖2L2(Vk,dµk)
<∞

}
=

{
u : uk ∈ Domψ(Jk),

∞∑
k=1

‖ψ(Jk)uk‖2X(k)
0

<∞
}

=
∞∏
k=1

X
(k)
ψ .

Furthermore, for each u ∈ Domψ(J), we have

(Iψ(J)u)(λ) = ψ(α(λ)) (Iu)(λ) = ψ(αk(λ)) (Ikuk)(λ)

= (Ikψ(Jk)uk)(λ) =
(
I(ψ(J1)u1, ψ(J2)u2, . . .)

)
(λ) for λ ∈ Vk.

Therefore ψ(J)u = (ψ(J1)u1, ψ(J2)u2, . . .) which implies

‖u‖2Xψ = ‖ψ(J)u‖2X0
=

∞∑
k=1

‖ψ(Jk)uk‖2X(k)
0

=
∞∑
k=1

‖uk‖2X(k)
ψ

.

Theorem 2.5 is proved. �

2.6. An operator norm in interpolation spaces.

Theorem 2.6. For given interpolation parameter ψ ∈ B and number m > 0, there is a
number c = c(ψ,m) > 0 such that

‖T‖Xψ→Yψ ≤ cmax
{
‖T‖Xj→Yj : j = 0, 1

}
.

Here X = [X0, X1] and Y = [Y0, Y1] are admissible couples of Hilbert spaces for which
the norms of the embedding operators X1 ↪→ X0 and Y1 ↪→ Y0 do not exceed the number
m, and T is any linear mapping defined on the space X0 and establishing the bounded
operators T : Xj → Yj with j = 0, 1.

Proof. Let us suppose the contrary. Then we can write

(2.7) ‖Tk‖X(k)
ψ →Y

(k)
ψ

> kmk for each index k.

Here, X(k) := [X(k)
0 , X

(k)
1 ] and Y (k) := [Y (k)

0 , Y
(k)
1 ] are some admissible couples of Hilbert

spaces for which the norms of the embedding operators X(k)
1 ↪→ X

(k)
0 and Y

(k)
1 ↪→ Y

(k)
0

do not exceed the number m. Furthermore, Tk is a certain linear mapping defined on
the space X(k)

0 and establishing the bounded operators Tk : X(k)
j → Y

(k)
j with j = 0, 1.

We also use the notation

mk := max
{
‖Tk‖X(k)

0 →Y
(k)
0
, ‖Tk‖X(k)

1 →Y
(k)
1

}
> 0.

Now let us consider the bounded operators

(2.8)

T : u = (u1, u2, . . .) 7→ (m−1
1 T1u1,m

−1
2 T2u2, . . .),

T :
∞∏
k=1

X
(k)
j →

∞∏
k=1

Y
(k)
j , j = 0, 1.
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Their boundedness results from the following inequalities:
∞∑
k=1

∥∥m−1
k Tkuk

∥∥2

Y
(k)
j

≤
∞∑
k=1

m−2
k ‖Tk‖2X(k)

j →Y
(k)
j

‖uk‖2X(k)
j

≤
∞∑
k=1

‖uk‖2X(k)
j

.

Since ψ is an interpolation parameter, the boundedness of operators (2.8) implies the
existence of the bounded operator

T :
[ ∞∏
k=1

X
(k)
0 ,

∞∏
k=1

X
(k)
1

]
ψ

→
[ ∞∏
k=1

Y
(k)
0 ,

∞∏
k=1

Y
(k)
1

]
ψ

which by Theorem 2.5 means the boundedness of the operator

T :
∞∏
k=1

X
(k)
ψ →

∞∏
k=1

Y
(k)
ψ .

Let c0 be the norm of the last operator. For every index k we consider a vector u(k) :=
(u1, . . . , uk, . . .) such that uk ∈ X(k)

ψ and uj = 0 for j 6= k. We have

‖Tkuk‖Y (k)
ψ

= mk ‖Tu(k)‖Q∞
j=1 Y

(j)
ψ

≤ mk c0 ‖u(k)‖Q∞
j=1X

(j)
ψ

= mk c0 ‖uk‖X(k)
ψ

for each uk ∈ X(k)
ψ . Hence,

‖Tk‖X(k)
ψ →Y

(k)
ψ

≤ c0mk for every index k,

contrary to inequality (2.7). Thus, our supposition is false and the theorem is true. �

2.7. A criterion for a function to be an interpolation parameter. Using Peetre’s
results [25], [24, Sec. 5.4] (see also [27]), we prove the following criterion.

Definition 2.3. Let a function ψ : (0,+∞) → (0,+∞) and a number r ≥ 0 be given.
The function ψ is called pseudoconcave on the semiaxis (r,+∞) if a concave function
ψ1 : (r,+∞) → (0,+∞) such that ψ(t) � ψ1(t) for t > r exists. The function ψ is called
pseudoconcave in a neighborhood of +∞ if it is pseudoconcave on a certain semiaxis
(r,+∞), where r is a sufficiently large number.

Theorem 2.7. A function ψ ∈ B is an interpolation parameter if and only if it is
pseudoconcave in a neighborhood of +∞.

To prove this theorem we need two lemmas.

Lemma 2.1. Let a function ψ belong to the set B and be pseudoconcave in a neighborhood
of +∞. Then there is a concave function ψ0 : (0,+∞) → (0,+∞) such that for every
number ε > 0 it holds ψ(t) � ψ0(t) with t ≥ ε.

Proof is evident. �

Lemma 2.2. Let a function ψ ∈ B and a number r ≥ 0 be given. The function ψ is
pseudoconcave on the semiaxis (r,+∞) if and only if there is a number c > 0 such that

ψ(t)/ψ(s) ≤ c max{1, t/s} for each t, s > r.

Proof. In the case where r = 0 this lemma was proved by J. Peetre [25], [24, Lemma 5.4.3]
(the condition ψ ∈ B being superfluous). In the case where r > 0 the sufficiency can
be proved analogously. The necessity is be reduced to the case r = 0 with the help of
Lemma 2.1. Indeed, let us put ε = r in this lemma. Then we have a function ψ0 such
that

ψ(t)/ψ(s) � ψ0(t)/ψ0(s) ≤ c0 max{1, t/s} for each t, s > r.

(In fact, c0 = 1 for a concave function ψ0 [25]). Lemma 2.2 is proved. �
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Proof of theorem 2.7. Sufficiency. Let us suppose that a function ψ ∈ B is pseudocon-
cave in a neighborhood of +∞. We need to prove that ψ is an interpolation parameter.

Let admissible couples X = [X0, X1], Y = [Y0, Y1] and a linear mapping T be the same
as those in Definition 2.2. In addition, let operators JX : X1 ↔ X0 and JY : Y1 ↔ Y0

be generating once for the couples X and Y respectively. Using the spectral theorem
we reduce these operators, self-adjoint in X0 and in Y0 respectively, to the form of
multiplication by a function

(2.9) JX = I−1
X (α · IX) and JY = I−1

Y (β · IY ).

Here, IX : X0 ↔ L2(U, dµ) and IY : Y0 ↔ L2(V, dν) are certain isometric isomorphisms,
(U, µ) and (V, ν) are spaces with finite measures and α : U → (0,+∞) and β : V →
(0,+∞) are some measurable functions. Since the operators T : X0 → Y0 and T : X1 →
Y1 are bounded, so are the operators

(2.10) IY T I
−1
X : L2(U, dµ) → L2(V, dν),

(2.11) IY JY T J
−1
X I−1

X : L2(U, dµ) → L2(V, dν).

By virtue of (2.9), we can write

IY JY T J
−1
X I−1

X = (β · IY )T (α−1 · I−1
X ).

Hence (2.11) implies the boundedness of the operator

(2.12) IY T I
−1
X = β−1 · (IY JY T J−1

X I−1
X ) · α : L2(U,α2dµ) → L2(V, β2dν).

Let a concave function ψ0 : (0,+∞) → (0,+∞) be the same as that in Lemma 2.1.
Let us note that ψ0 ∈ B and (see Subsection 2.1)

(2.13) Xψ = Xψ0 , Yψ = Yψ0 with equivalence of norms.

J. Peetre [25], [24, Theorem 5.4.4] proved that a positive function is pseudoconcave on
(0,+∞) if and only if it is an interpolation function in the sense of the definition stated in
[24, Definition 5. 4.2]. Hence, for the function ψ0, the boundedness of operators (2.10),
(2.12) implies the existence of a bounded operator

(2.14) IY T I
−1
X : L2(U, (ψ0 ◦ α2) dµ) → L2(V, (ψ0 ◦ β2) dν).

Let us pass from (2.14) to the operator T : Xψ0 → Yψ0 with the help of the isometric
isomorphisms ψ0(JX) : Xψ0 ↔ X0 and ψ0(JY ) : Yψ0 ↔ Y0. We reduce these isomor-
phisms (which are self-adjoint operators in X0 and Y0 respectively) to the form of the
multiplication by a function

IX ψ0(JX) = (ψ0 ◦ α) · IX : Xψ0 ↔ L2(U, dµ),

IY ψ0(JY ) = (ψ0 ◦ β) · IY : Yψ0 ↔ L2(V, dν).

We get the isometric isomorphisms

IX = (ψ−1
0 ◦ α) · (IX ψ0(JX)) : Xψ0 ↔ L2(U, (ψ2 ◦ α) dµ),

IY = (ψ−1
0 ◦ β) · (IY ψ0(JY )) : Yψ0 ↔ L2(V, (ψ2 ◦ β) dν).

From this and (2.14) the existence of the bounded operator

T = I−1
Y (IY T I−1

X )IX : Xψ0 → Yψ0

follows.
Thus, due to equations (2.13) we have

(T : Xj → Yj , j = 0, 1) ⇒ (T : Xψ0 → Yψ0) ⇒ (T : Xψ → Yψ),

where the linear operators are bounded. So, by Definition 2.2 the function ψ is an
interpolation parameter. Sufficiency is proved.

Necessity. Now we suppose that a function ψ ∈ B is an interpolation parameter. We
need to prove that ψ is pseudoconcave in a neighborhood of +∞. The proof is similar
to [25], [24, Sec. 5.4].
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Let us consider the space L2(U, dµ) with U = {0, 1}, µ({0}) = µ({1}) = 1 and
define on it the linear mapping T by the formula (Tu)(0) := 0, (Tu)(1) := u(0), where
u ∈ L2(U, dµ). Let us choose arbitrary numbers s, t > 1 and put ω(0) := s2, ω(1) := t2.
We have the admissible couple X := [L2(U, dµ), L2(U, ω dµ)] and bounded operators

T : L2(U, dµ) → L2(U, dµ) and T : L2(U, ω dµ) → L2(U, ω dµ)

with norms 1 and t/s respectively. From this, since ψ is an interpolation parameter, it
follows that the bounded operator T : Xψ → Xψ exists. By Theorem 2.6 with Y = X
and m = 1 we conclude that the norm of this operator satisfies the inequality

(2.15) ‖T‖Xψ→Xψ ≤ c max{1, t/s}.
Here, the number c > 0 does not depend on t, s > 1.

It is not difficult to calculate the norm in the space Xψ. Indeed, the operator J of
multiplication by the function ω1/2 is a generating one for the couple X. Hence, since
ψ(J) is the operator of multiplication by the function ψ ◦ ω1/2, we can write∥∥u∥∥2

Xψ
=

∥∥(ψ◦ω1/2)u
∥∥2

L2(U,dµ)
= ψ2(s) |u(0)|2 +ψ2(t) |u(1)|2, ‖Tu‖2Xψ = ψ2(t) |u(0)|2.

It follows that

(2.16) ‖T‖Xψ→Xψ = ψ(t)/ψ(s).

Now relations (2.15), (2.16) imply the inequality

ψ(t) ≤ c max{1, t/s}ψ(s) for each t, s > 1.

According to Theorem 2.2, the last statement is equivalent to the quasiconcavity of the
function ψ on the semiaxis (1,+∞). Necessity is proved. �

3. A refined scale of spaces

3.1. Quasiregularly varying functions. We recall the following:

Definition 3.1. A positive function ψ defined on a semiaxis [b,+∞) is called a function
regularly varying at +∞ with the index θ ∈ R if ψ is Borel measurable on [b 0,+∞) for
some number b 0 ≥ b and

lim
t→+∞

ψ(λ t)/ψ(t) = λθ for each λ > 0.

A function regularly varying at +∞ with the index θ = 0 is called slowly varying at +∞.

The theory of regularly varying functions was founded by J. Karamata in the 1930s.
These functions are closely related to the power functions and have numerous applica-
tions, mainly due to their special role in Tauberian-type theorems [26, 28, 29, 30]. A
standard example of functions regularly varying at +∞ with the index θ is

ψ(t) = tθ (ln t)r1 (ln ln t)r2 . . . (ln . . . ln t)rk for t� 1,

where r1, r2, . . . , rk ∈ R. In the case where θ = 0 these functions form the logarithmic
multiscale which has a number of applications in the theory of function spaces.

Definition 3.2. A positive function ψ defined on a semiaxis [b,+∞) is called a function
quasiregularly varying at +∞ with the index θ ∈ R if there exist a number b1 ≥ b and
a function ψ1 : [b1,+∞) → (0,+∞) regular varying at +∞ with the index θ such that
ψ(t) � ψ1(t) with t ≥ b1. A function quasiregularly varying at +∞ with the index θ = 0
is called quasislowly varying at +∞.

Let us denote by QSV the set of all functions quasislowly varying at +∞. It is
evident that ψ is a function quasiregularly varying at +∞ with the index θ if and only
if ψ(t) = tθϕ(t), t� 1, for some function ϕ ∈ QSV. From the known [26, Theorem 1.2]
integral representation of a slowly varying function it immediately results the following
description of the set QSV.
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Theorem 3.1. Let ϕ ∈ QSV. Then

(3.1) ϕ(t) = exp
(
β(t) +

∫ t

r

α(τ)
τ

dτ

)
, t ≥ r,

for some number r > 0, a continuous function α : [r,+∞) → R approaching zero at +∞
and a bounded function β : [r,+∞) → R. The converse statement is also true: every
function of form (3.1) belongs to the set QSV.

Following interpolation property of quasiregularly varying functions will play a decisive
role in further.

Theorem 3.2. Let ψ ∈ B be a function quasiregularly varying at +∞ with the index θ
where 0 < θ < 1. Then ψ is an interpolation parameter.

Proof. We can write ψ(t) = tθϕ(t) for t > 0 with ϕ ∈ QSV. According to Theorem 3.1,
the function ϕ can be represented in form (3.1). Let us set ε := min{θ, 1 − θ} > 0 and
choose a number rε ≥ r such that |α(t)| < ε for t > rε. For each t, s > rε, we have by
virtue of (3.1) the following:

ϕ(t)
ϕ(s)

= exp
(
β(t)− β(s) +

∫ t

s

α(τ)
τ

dτ

)
≤ c exp

∣∣∣∣ ∫ t

s

ε

τ
dτ

∣∣∣∣ = cmax {(t/s)ε, (s/t)ε} .

Here, the number c > 0 does not depend on t and s because the function β is bounded.
From this and from the inequality 0 ≤ θ ± ε ≤ 1 it follows that

ψ(t)/ψ(s) = (tθϕ(t))/(sθϕ(s)) ≤ cmax
{
(t/s)θ+ε, (t/s)θ−ε

}
≤ cmax{1, t/s}.

Hence, by Theorem 2.2 the function ψ ∈ B is pseudoconcave in a neighborhood of +∞.
According to Theorem 2.7, this is equivalent to the statement that ψ is an interpolation
parameter. Theorem 3.2 is proved. �

We need the following properties of the set QSV.

Theorem 3.3. Let ϕ, χ ∈ QSV. The following assertions are true.

(i) There is a positive function ϕ1 ∈ C∞((0;+∞)) regularly varying at +∞ such
that ϕ(t) � ϕ1(t) with t� 1.

(ii) For each θ > 0, the limits t−θϕ(t) → 0 and tθϕ(t) → +∞ as t→ +∞ hold.
(iii) The functions ϕ+ χ, ϕχ, ϕ/χ and ϕσ, where σ ∈ R, belong to the set QSV.
(iv) Let θ ≥ 0, in the case where θ = 0 suppose that ϕ(t) → ∞ as t → +∞. Then

the composite function χ(tθϕ(t)) of the argument t belongs to the set QSV.

Proof. For regularly varying functions ϕ, χ these assertions are known [26, Sec. 1.5] (even
with the strong equivalence being in assertion (i)). This implies immediately assertions
(i), (ii), (iii) for the functions ϕ, χ ∈ QSV.

It remains to prove assertion (iv). Let λ > 0. Since ϕ ∈ QSV, the functions ϕ(λt)/ϕ(t)
and ϕ(t)/ϕ(λt) are bounded in a neighborhood of +∞. Therefore applying the theorem
[26, Sec. 1.2] on uniform convergence to a positive slowly varying function χ1 such that
χ1(τ) � χ(τ) with τ � 1, we can write

χ1

(
(λt)θϕ(λt)

) /
χ1

(
tθϕ(t)

)
= χ1

(
λθϕ(λt)
ϕ(t)

tθϕ(t)
)/

χ1

(
tθϕ(t)

)
→ 1 as t→ +∞.

Here we use the limit tθϕ(t) →∞ as t→ +∞. Hence, the function χ1(tθϕ(t)) is slowly
varying at +∞. In addition, χ(tθϕ(t)) � χ1(tθϕ(t)) with t � 1. Thus, the function
χ(tθϕ(t)) belongs to the set QSV. Assertion (iv) is proved. �
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3.2. A refined scale over the Euclidean space. Let n ∈ N. As usual, Rn denotes
the n-dimensional Euclidean space and S ′(Rn) denotes the linear topological Schwartz
space of tempered distributions in Rn. We use also the following notations: 〈ξ〉 =
(1 + ξ21 + · · · + ξ2n)

1/2 denotes the smoothed modulus of a vector ξ = (ξ1, . . . , ξn) ∈ Rn
and û denotes the Fourier transform of the distribution u ∈ S ′(Rn). We will write an
integral evaluated over the space Rn without limits.

Let M denote the set of all functions ϕ : [1; +∞) → (0;+∞) such that
a) ϕ is Borel measurable on the set [1;+∞);
b) functions ϕ and 1/ϕ are bounded on every closed interval [1; b], where 1 < b <

+∞;
c) ϕ ∈ QSV.

Let s ∈ R, ϕ ∈M.

Definition 3.3. We denote by Hs,ϕ(Rn) the space of all distributions u ∈ S ′(Rn) such
that the Fourier transform û is a function locally Lebesgue integrable on Rn which
satisfies the inequality ∫

〈ξ〉2sϕ2(〈ξ〉) |û(ξ)|2 dξ <∞.

The inner product in the space Hs,ϕ(Rn) is defined by the formula

(u, v)Hs,ϕ(Rn) :=
∫
〈ξ〉2sϕ2(〈ξ〉) û(ξ) v̂(ξ) dξ

and generates the norm in the usual way.

The space Hs,ϕ(Rn) is a special isotropic Hilbert case of the spaces introduced by
L. Hörmander [31, Sec. 2.2], [32, Sec. 10.1] and L. R. Volevich, B. P. Paneah [33, Sec. 2],
[34, Sec. 1.4.2]. Let us note that this space is actually defined with the help of the
function ϕs(t) = tsϕ(t) regularly varying at +∞ with the index s. However it is more
convenient for us to represent the parameter ϕs as the couple of two parameters s and
ϕ.

In the particular case where ϕ ≡ 1 the space Hs,ϕ(Rn) coincides with the Sobolev
space Hs(Rn). In general, the following inclusions are true:

(3.2)
⋃
ε>0

Hs+ε(Rn) =: Hs+(Rn) ⊂ Hs,ϕ(Rn) ⊂ Hs−(Rn) :=
⋂
ε>0

Hs−ε(Rn).

They result from assertion (ii) of Theorem 3.3 and from the definition of the set M,
according to which, for each ε > 0, there is a number cε ≥ 1 such that c−1

ε t−ε ≤ ϕ(t) ≤
cεt

ε for t ≥ 1. Inclusions (3.2) mean that, in the collection of the spaces

(3.3) {Hs,ϕ(Rn) : s ∈ R, ϕ ∈M},
the function parameter ϕ refines the basic (power) s-smoothness. Therefore it is natural
to give the following definition.

Definition 3.4. The collection of function spaces (3.3) is called a refined scale over Rn
(with respect to the Sobolev scale).

Besides the properties inherent to the Hörmander spaces [31, Sec. 2.2 ], [32, Sec. 10.1]
and the Volevich-Paneah spaces [33, Ch. I, II], [34, Sec. 1.4], the refined scale over Rn
possesses the following fundamental interpolation property:

Theorem 3.4. Let a function ϕ ∈ M and positive numbers ε, δ be given. Let ψ(t) :=
t ε/(ε+δ) ϕ(t1/(ε+δ)) for t ≥ 1 and ψ(t) := ϕ(1) for 0 < t < 1. Then the following
assertions are true:

(i) The function ψ belongs to the set B and is an interpolation parameter.
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(ii) For an arbitrary s ∈ R, the equality of spaces[
Hs−ε(Rn),Hs+δ(Rn)

]
ψ

= Hs,ϕ(Rn)

and equality of norms in them hold.

Proof. Assertion (i). By virtue of assertions (ii), (iv) of Theorem 3.3, the function ψ
belongs to the set B and is a function regular varying at +∞ with the index θ = ε/(ε+δ) ∈
(0, 1) . Therefore ψ is an interpolation parameter because of Theorem 3.2. Assertion (i)
is proved.

Assertion (ii). Let s ∈ R. It follows from the properties of the Sobolev spaces
that the couple [Hs−ε(Rn),Hs+δ(Rn)] is admissible and the pseudodifferential operator
with symbol 〈ξ〉ε+δ is a generating operator J for this couple. Applying the Fourier
transform F : Hs−ε(Rn) ↔ L2(Rn, 〈ξ〉2(s−ε)dξ), we reduce the operator J to the form
of multiplication by the function 〈ξ〉ε+δ of ξ ∈ Rn. Hence, the operator ψ(J) is reduced
to the form of multiplication by the function ψ(〈ξ〉ε+δ) = 〈ξ〉εϕ(〈ξ〉). This permits us to
write the following in view of (3.2):[

Hs−ε(Rn),Hs+δ(Rn)
]
ψ

=
{
u ∈ Hs−ε(Rn) : 〈ξ〉εϕ(〈ξ〉) û(ξ) ∈ L2(Rn, 〈ξ〉2(s−ε)dξ)

}
=

{
u ∈ Hs−ε(Rn) :

∫
〈ξ〉2sϕ2(〈ξ〉) |û(ξ)|2 dξ <∞

}
= Hs−ε(Rn) ∩Hs,ϕ(Rn) = Hs,ϕ(Rn).

In addition the norm in the space
[
Hs−ε(Rn),Hs+δ(Rn)

]
ψ

is equal to

‖ψ(J)u‖Hs−ε(Rn) =
(∫

|〈ξ〉εϕ(〈ξ〉) û(ξ)|2 〈ξ〉2(s−ε) dξ
)1/2

= ‖u‖Hs,ϕ(Rn).

Assertion (ii) is proved. �

3.3. A refined scale over a closed manifold. Further let Γ be a closed (i.e., compact
and without a boundary) infinitely smooth manifold of dimension n. We suppose that a
certain C∞-density dx is defined on Γ. We denote by D′(Γ) the linear topological space
of all distributions on Γ, i.e., D′(Γ) is the space antidual to the space C∞(Γ) with respect
to the extension of the inner product in L2(Γ, dx) =: L2(Γ) by continuity. This extension
is denoted by (f, w)Γ for f ∈ D′(Γ), w ∈ C∞(Γ).

The refined scale over the manifold Γ is constructed from scale (3.3) in the following
way. We choose a finite atlas from the C∞-structure on Γ consisting of the local charts
αj : Rn ↔ Uj , j = 1, . . . , r. Here, the open sets Uj form the finite covering of the
manifold Γ. Let functions χj ∈ C∞(Γ), j = 1, . . . , r, form a partition of unity on Γ
satisfying the condition suppχj ⊂ Uj . As before, s ∈ R, ϕ ∈M.

Definition 3.5. We denote by Hs,ϕ(Γ) the space of all distributions f ∈ D′(Γ) such
that (χjf) ◦ αj ∈ Hs,ϕ(Rn) for each j = 1, . . . , r. Here (χjf) ◦ αj is the representation
of the distribution χjf in the local charts αj . The inner product in the space Hs,ϕ(Γ) is
defined by the formula

(f, g)Hs,ϕ(Γ) :=
r∑
j=1

((χjf) ◦ αj , (χj g) ◦ αj)Hs,ϕ(Rn)

and induces the norm in the usual way.

Definition 3.6. The collection of function spaces {Hs,ϕ(Γ) : s ∈ R, ϕ ∈ M} is called a
refined scale over the closed manifold Γ.

In the particular case where ϕ ≡ 1 the space Hs,ϕ(Γ) coincides with the Sobolev
space Hs(Γ). Sobolev spaces are known [31, Sec. 2.6], [35, Sec. 7.5] to be complete and
independent (up to equivalence of norms) of the choice of the atlas and the partition of
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unity. We will show that every space Hs,ϕ(Γ) can be obtained by the interpolation of
the proper couple of Sobolev’s spaces. It implies that the space Hs,ϕ(Γ) is Hilbert and
independent of this choice.

Theorem 3.5. Let a function ϕ ∈M and positive numbers ε, δ be given. Then, for each
s ∈ R, the equality of spaces

(3.4)
[
Hs−ε(Γ), Hs+δ(Γ)

]
ψ

= Hs,ϕ(Γ) with equivalence of norms

hold. Here, ψ is the interpolation parameter from Theorem 3.4.

Proof. The couple of the Sobolev spaces on the left-hand side of equality (3.4) is ad-
missible [35, Sec. 7.5, 7.6]. We deduce this equality from Theorem 3.4 with the help of
the well known method of ”rectification” and ”sewing” of the manifold Γ. According to
Definition 3.5, the linear mapping of ”rectification”

T : f 7→ ( (χ1f) ◦ α1, . . . , (χrf) ◦ αr ), f ∈ D′(Γ),

defines the isometric operators

(3.5) T : Hσ(Γ) → (Hσ(Rn))r, σ ∈ R,

(3.6) T : Hs,ϕ(Γ) → (Hs,ϕ(Rn))r.

Since ψ is the interpolation parameter and operators (3.5) are bounded for σ ∈ {s −
ε, s+ δ}, the bounded operator

(3.7) T :
[
Hs−ε(Γ),Hs+δ(Γ)

]
ψ
→

[
(Hs−ε(Rn))r, (Hs+δ(Rn))r

]
ψ

exists. By virtue of Theorems 2.5, 3.4, the following equalities of spaces and norms in
them are true:

(3.8)
[
(Hs−ε(Rn))r, (Hs+δ(Rn))r

]
ψ

=
( [
Hs−ε(Rn),Hs+δ(Rn)

]
ψ

)r
= (Hs,ϕ(Rn))r.

Thus, since operator (3.7) is bounded, so is the operator

(3.9) T :
[
Hs−ε(Γ),Hs+δ(Γ)

]
ψ
→ (Hs,ϕ(Rn))r.

Now we construct for T the left inverse operator K of ”sewing” of the manifold Γ.
For each j = 1, . . . , r we choose a function ηj ∈ C∞0 (Rn) such that ηj = 1 on the set
α−1
j (suppχj). Let us consider the linear mapping

K : (h1, . . . , hr) 7→
r∑
j=1

Θj

(
(ηjhj) ◦ α−1

j

)
, h1, . . . , hr ∈ S ′(Rn).

Here (ηjhj) ◦α−1
j is a distribution in the open set Uj ⊆ Γ such that its representative in

the local chart αj has the form ηjhj . In addition, Θj denotes the operator of extension by
zero from Uj to Γ. This operator is well defined on distributions with support belonging
to Uj . By the choice of the functions χj , ηj , we have

KTf =
r∑
j=1

Θj

(
(ηj ((χjf) ◦ αj)) ◦ α−1

j

)
=

r∑
j=1

Θj

(
(χjf) ◦ αj ◦ α−1

j

)
=

r∑
j=1

χjf = f,

i.e.,

(3.10) KTf = f for each f ∈ D′(Γ).

Let us show that the linear mapping K defines the bounded operator

(3.11) K : (Hs,ϕ(Rn))r → Hs,ϕ(Γ).
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For an arbitrary vector h = (h1, . . . , hr) from the space (Hs,ϕ(Rn))r, we write

(3.12)

∥∥Kh∥∥2

Hs,ϕ(Γ)
=

r∑
l=1

∥∥(χlKh) ◦ α l
∥∥2

Hs,ϕ(Rn)

=
r∑
l=1

∥∥∥(
χ l

r∑
j=1

Θj

(
(ηjhj) ◦ α−1

j

))
◦ α l

∥∥∥2

H s,ϕ(Rn)

=
r∑
l=1

∥∥∥ r∑
j=1

(ηj,l hj) ◦ β j,l
∥∥∥2

Hs,ϕ(Rn)
≤

r∑
l=1

( r∑
j=1

∥∥(ηj,l hj) ◦ βj,l
∥∥
H s,ϕ(Rn)

)2

.

Here, ηj,l := (χ l ◦ αj) ηj ∈ C∞0 (Rn) and βj,l : Rn ↔ Rn is a C∞-diffeomorphism such
that βj,l = α−1

j ◦ αl in a neighborhood of supp ηj,l and βj,l(x) = x for all x ∈ Rn
sufficiently large in modulus. The operator of multiplication by a function of the class
C∞0 (Rn) and the operator of change of variables u 7→ u ◦ βj,l are known [36, Theorems
B.1.7, B.1.8] to be bounded on every space Hσ(Rn) with σ ∈ R. Therefore the linear
operator v 7→ (ηj,l v) ◦ βj,l is bounded on the space Hσ(Rn). Then, boundedness of this
operator on the space Hs,ϕ(Rn) follows from Theorem 3.3. Hence relations (3.12) imply
the estimate ∥∥Kh∥∥2

Hs,ϕ(Γ)
≤ c

r∑
j=1

∥∥hj∥∥2

Hs,ϕ(Rn)
,

where the constant c > 0 is independent of h = (h1, . . . , hr). Thus, operator (3.11) is
bounded for each s ∈ R, ϕ ∈M.

In particular, the operators K : (Hσ(Rn))r → Hσ(Γ) with σ ∈ R are bounded. Let
us choose σ ∈ {s − ε, s + δ} and use the interpolation with the parameter ψ. Due to
equality (3.8), we obtain the bounded operator

(3.13) K : (Hs,ϕ(Rn))r →
[
Hs−ε(Γ), Hs+δ(Γ)

]
ψ
.

Now formulae (3.6), (3.13) and (3.10),imply that the identity mapping KT establishes
the continuous embedding of the space Hs,ϕ(Γ) into the interpolation space [Hs−ε(Γ),
Hs+δ(Γ)]ψ. Moreover, formulae (3.10) and (3.13) imply that the same mapping KT
establishes also the inverse continuous embedding. Theorem 3.5 is proved. �

The following properties of the refined scale over the manifold Γ can be deduced from
Theorem 3.5 and the interpolation properties established in Section 2.

Theorem 3.6. Let s ∈ R and ϕ,ϕ1 ∈M. The following assertions are true.
(i) The space Hs,ϕ(Γ) is Hilbert separable and does not depend (up to equivalence

of norms) on the choice of an atlas for Γ and partition of unity used in Defini-
tion 3.5.

(ii) The set C∞(Γ) is dense in the space Hs,ϕ(Γ).
(iii) For each ε > 0, the compact and dense embedding Hs+ε,ϕ1(Γ) ↪→ Hs,ϕ(Γ) holds.
(iv) Suppose that the function ϕ/ϕ1 is bounded in a neighborhood of +∞. Then

continuous dense embedding Hs+ε,ϕ1(Γ) ↪→ Hs,ϕ(Γ) is valid. It is compact if
ϕ(t)/ϕ1(t) → 0 as t→ +∞.

(v) The spaces Hs,ϕ(Γ) and H−s,1/ϕ(Γ) are mutually dual (up to equivalence of
norms) with respect to the extension of the inner product in L2(Γ) by continuity.

Proof. Assertion (i). The space Hs,ϕ(Γ) is Hilbert and separable because, according
to Theorem 3.5, this space is obtained by the interpolation of a certain couple of the
Sobolev spaces. Let us consider two couples A1 and A2 each of which consists of an atlas
and a partition of unity on Γ. We denote by Hs,ϕ(Γ,Aj) and Hσ(Γ,Aj) respectively the
spaces from the refined scale and the Sobolev spaces which correspond to the couple Aj ,
where j = 1, 2. For the Sobolev spaces, the identity mapping establishes the topological
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isomorphism I : Hσ(Γ,A1) ↔ Hσ(Γ,A2) for each σ ∈ R. Let us set σ = s ∓ 1 and use
the interpolation with the parameter ψ from Theorem 3.4. By virtue of Theorem 3.5 we
arrive at the topological isomorphism I : Hs,ϕ(Γ,A1) ↔ Hs,ϕ(Γ,A2). It means that the
space Hs,ϕ(Γ) is independent of the choice of the atlas and the unity partition mentioned
above. Assertion (i) is proved.

Assertion (ii). By virtue of Theorems 2.1 and 3.5, we have the continuous dense
embedding Hs+δ(Γ) ↪→ Hs,ϕ(Γ). Besides, the set C∞(Γ) is dense in the Sobolev space
Hs+δ(Γ) [35, Proposition 7.4]. These two facts imply assertion (ii).

Assertion (iii). Assume that ε > 0. By Theorem 3.5, there exist interpolation para-
meters χ, η ∈ B such that the following equalities of spaces with equivalence of norms in
them is true:[

Hs+ε/2(Γ),Hs+2ε(Γ)
]
χ

= Hs+ε,ϕ1(Γ) and
[
Hs−ε(Γ),Hs+ε/3(Γ)

]
η

= Hs,ϕ(Γ).

It implies by Theorem 2.1 the next chain of continuous embeddings

Hs+ε,ϕ1(Γ) ↪→ Hs+ε/2(Γ) ↪→ Hs+ε/3(Γ) ↪→ Hs,ϕ(Γ).

Here, the central embedding of Sobolev spaces is compact [35, Theorem 7.4]. Therefore
the embedding Hs+ε,ϕ1(Γ) ↪→ Hs,ϕ(Γ) is compact as well. This embedding is dense
because of assertion (ii). Assertion (iii) is proved.

Assertion (iv). Let us assume that the function ϕ/ϕ1 is bounded in a neighborhood
of +∞. By Theorem 3.5, we have the following equalities of spaces with equivalence of
norms in them:[

Hs−1(Γ),Hs+1(Γ)
]
ψ

= Hs,ϕ(Γ) and
[
Hs−1(Γ),Hs+1(Γ)

]
ψ1

= Hs,ϕ1(Γ).

Here, the interpolation parameters ψ,ψ1 ∈ B satisfy the condition ψ(t)/ψ1(t) =
ϕ(t1/2)/ϕ1(t1/2) for t ≥ 1. Hence, the function ψ/ψ1 is bounded in a neighborhood of
+∞ that, by Theorem 2.2, implies the continuous dense embeddingHs,ϕ1(Γ) ↪→ Hs,ϕ(Γ).
Now suppose that ϕ(t)/ϕ1(t) → 0 as t → +∞. It implies the limit ψ(t)/ψ1(t) → 0 as
t → +∞. In addition, we recall that the embedding of the Sobolev spaces Hs+1(Γ) ↪→
Hs−1(Γ) is compact. It follows from Theorem 2.2 that the embedding Hs,ϕ1(Γ) ↪→
Hs,ϕ(Γ) is compact as well. Assertion (iv) is proved.

Assertion (v) is known (see e.g. [35, Theorem 7.7]) in the case ϕ ≡ 1. From this the
case of an arbitrary ϕ ∈ M can be obtained as follows. First let us note that 1/ϕ ∈ M
and therefore the space H−s,1/ϕ(Γ) is well defined. The Sobolev spaces Hs±1(Γ) and
H−s∓1(Γ) are mutually dual with respect to the extension of the inner product in L2(Γ)
by continuity. This means that the linear mapping Q : w 7→ ( · , w)Γ, w ∈ C∞(Γ), is
extended by continuity to the topological isomorphisms Q : Hs∓1(Γ) ↔ (H−s±1(Γ))′.
Let us apply to them the interpolation with the parameter ψ from Theorem 3.5 in the
case where ε = δ = 1. We obtain one more topological isomorphism

(3.14) Q :
[
Hs−1(Γ),Hs+1(Γ)

]
ψ
↔

[
(H−s+1(Γ))′, (H−s−1(Γ))′

]
ψ
.

Here the left-hand interpolation space equals to Hs,ϕ(Γ) and, by Theorem 2.4, the right-
hand one can be written as[

(H−s+1(Γ))′, (H−s−1(Γ))′
]
ψ

=
[
H−s−1(Γ),H−s+1(Γ)

]′
χ

= (H−s,1/ϕ(Γ))′.

Let us note that the last equality is valid because χ(t) := t/ψ(t) = t1/2/ϕ(t1/2) for t ≥ 1.
Thus, (3.14) implies the topological isomorphism Q : Hs,ϕ(Γ) ↔ (H−s,1/ϕ(Γ))′, which
means the mutual duality of the spaces Hs,ϕ(Γ) and H−s,1/ϕ(Γ) in the sense mentioned
above. Assertion (v) is proved. �

The refined scale is closed with respect to the interpolation with a function parameter
regular varying at +∞.
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Theorem 3.7. Let s0, s1 ∈ R, s0 ≤ s1 and ϕ0, ϕ1 ∈ M. In the case where s0 = s1 we
suppose that the function ϕ0/ϕ1 is bounded in a neighborhood of +∞. Let ψ ∈ B be a
function regularly varying at +∞ with the index θ, where 0 < θ < 1. By Theorem 3.2,
ψ is an interpolation parameter. We represent it as ψ(t) = tθχ(t) with χ ∈ QSV. Let us
set s := (1− θ)s0 + θs1 and

ϕ(t) := ϕ1−θ
0 (t)ϕθ1(t)χ

(
ts1−s0ϕ1(t)/ϕ0(t)

)
for t ≥ 1.

Then ϕ ∈M and

[Hs0,ϕ0(Γ),Hs1,ϕ1(Γ) ]ψ = Hs,ϕ(Γ) with equivalence of norms.

Proof. This theorem is a direct consequence of Theorems 3.5 and 2.3. �

Remark 3.1. Theorem 3.7 is true in the limiting case where θ = 0 or θ = 1 under
additional supposition that the function ψ is pseudoconcave in a neighborhood of +∞.
Then, by Theorem 2.7, ψ is an interpolation parameter. For example, Theorem 3.7 is
true for each of the functions ψ(t) := lnr t and ψ(t) := t/ lnr t, where t� 1 and r > 0.

3.4. An alternative definition of the refined scale. Let A be an elliptic pseudodiffe-
rential operator on Γ with the index m > 0. We suppose that the operator A : C∞(Γ) →
C∞(Γ) is positive on the space L2(Γ), i.e., there is a number r > 0 such that

(3.15) (Lu, u)Γ ≥ r (u, u)Γ for each u ∈ C∞(Γ).

In the present subsection, ( · , · )Γ is the inner product in L2(Γ).
Let us denote by A0 the closure of the operator A : C∞(Γ) → C∞(Γ) on the space

L2(Γ). This closure exists and has the domainHm(Γ) because the operator A is elliptic on
Γ [35, Corollary 8.3], [37, Theorem 2.3.5]. The pseudodifferential operator A is formally
self-adjoint due to condition (3.15). Hence [35, Theorem 8.3], [37, Theorem 2.3.7], A0

is an unbounded self-adjoint operator on the space L2(Γ) with SpecA0 ⊆ [r,+∞). In
particular, we have 0 /∈ SpecA0, that implies the topological isomorphism

(3.16) A : Hs+m,ϕ(Γ) ↔ Hs,ϕ(Γ) for each s ∈ R, ϕ ∈M.

In the Sobolev case where ϕ ≡ 1 this result is well known (see e.g. [35, Theorem 8.1,
Proposition 8.5], [36, Theorem 19.2.1], [37, Sec. 2.3]). The general case of an arbitrary
ϕ ∈M follows immediately from the case ϕ ≡ 1 by virtue of Theorem 3.5.

Let s ∈ R and ϕ ∈ M. We set ϕs(t) := ts/mϕ(t1/m) for t ≥ 1 and, moreover,
ϕs(t) := ϕ(1) for 0 < t < 1. Since the function ϕ is positive and Borel measurable on
the semiaxis (0,+∞), a self-adjoint operator ϕs(A0) is well-defined on the space L2(Γ)
as the function ϕ of A0.

Lemma 3.1. The following assertions are true:
(i) The domain of the operator ϕs(A0) contains the set C∞(Γ).
(ii) The mapping

(3.17) f 7→ ‖ϕs(A0)f‖L2(Γ), f ∈ C∞(Γ),

is a norm in the space C∞(Γ).

Proof. Assertion (i). Let us choose an integer k such that k > s/m. Since ϕ ∈ M, the
function ϕs is bounded on every compact subset of the semiaxis (0,+∞) and, moreover,
t−kϕs(t) → 0 as t→ +∞ because of assertions (ii), (iv) of Theorem 3.3. Hence, there is
a number c > 0 such that ϕs(t) ≤ c tk for t ≥ r. Let us consider the unbounded operator
Ak0 on the space L2(Γ). Since A : C∞(Γ) → C∞(Γ), we can write C∞(Γ) ⊂ DomAk0 ⊂
Domϕs(A0). Assertion (i) is proved.

Assertion (ii). According to assertion (i), mapping (3.17) is well-defined. For this
mapping, all norm properties are evident except for the positive definiteness property.
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Let us prove it. Applying the spectral theorem, we can write for an arbitrary function
f ∈ C∞(Γ)

(3.18)
∥∥ϕs(A0)f

∥∥2

L2(Γ)
=

∫ +∞

r

ϕ2
s(t) d(Etf, f)Γ and

∥∥f∥∥2

L2(Γ)
=

∫ +∞

r

d(Etf, f)Γ.

Here Et, t ≥ r, is the resolution of identity in the space L2(Γ) which corresponds to the
self-adjoint operator A0. If ‖ϕs(A0)f‖2L2(Γ) = 0, then from the first equality in (3.18)
and from the inequality ϕs > 0 it follows that the measure (E(·)f, f)Γ of the set [r,+∞)
is equal to 0. Now the second equality in (3.18) implies that f = 0 on Γ. Assertion (ii)
is proved. �

Definition 3.7. The space Hs,ϕ
A (Γ) is a completion of the space C∞(Γ) with respect to

norm (3.17).

The spaceHs,ϕ
A (Γ) is Hilbert one because norm (3.17) is generated by the inner product

(ϕs(A0)f, ϕs(A0)g)Γ of functions f, g ∈ C∞(Γ).

Theorem 3.8. For arbitrary s ∈ R, ϕ ∈ M, the norms in the spaces Hs,ϕ
A (Γ) and

Hs,ϕ(Γ) are equivalent on the dense linear manifold C∞(Γ). Thus, Hs,ϕ
A (Γ) = Hs,ϕ(Γ)

up to equivalence of norms.

Proof. At first suppose that s > 0. Let us choose k ∈ N such that that km > s. Since
the operator Ak0 is closed and positive on L2(Γ), its domain DomAk0 is Hilbert space with
respect to the inner product (Ak0f,A

k
0g)Γ of functions f, g. Let us note that the couple

of spaces [L2(Γ),DomAk0 ] is admissible, and the operator Ak0 is a generating one for it.
Moreover, since Ak0 is a closure of the elliptic pseudodifferential operator Ak on L2(Γ),
the spaces DomAk0 and Hkm(Γ) are equal up to equivalent norms. Let a function ψ be
the interpolation parameter from Theorems 3.3, 3.4 with ε = s and δ = km − s. Then
ψ(tk) = ϕs(t) for t > 0, so by Theorem 3.4 we can write∥∥f∥∥

Hs,ϕ(Γ)
�

∥∥f∥∥
[H0(Γ), Hkm(Γ)]ψ

�
∥∥f∥∥

[L2(Γ),DomAk0 ]ψ

=
∥∥ψ(Ak0)f

∥∥
L2(Γ)

=
∥∥ϕs(A0)f

∥∥
L2(Γ)

,

for each f ∈ C∞(Γ).
Now let the number s ∈ R be arbitrary. Choose k ∈ N such that s+ km > 0. As has

been proved,

(3.19)
∥∥g∥∥

Hs+km,ϕ(Γ)
�

∥∥ϕs+km(A0) g
∥∥
L2(Γ)

, g ∈ C∞(Γ).

The following topological isomorphism holds due to (3.16) :

(3.20) Ak : Hσ+km,ϕ(Γ) ↔ Hσ,ϕ(Γ) for each σ ∈ R.
Let us denote by A−k the inverse operator to Ak. For every function f ∈ C∞(Γ), we
have A−kf ∈ C∞(Γ) and Ak0A

−kf = f . Hence, by virtue of (3.20), (3.19), we can write∥∥f∥∥
Hs,ϕ(Γ)

�
∥∥A−kf∥∥

Hs+km,ϕ(Γ)
�

∥∥ϕs+km(A0)A−kf
∥∥
L2(Γ)

=
∥∥ϕs(A0)Ak0A

−kf
∥∥
L2(Γ)

=
∥∥ϕs(A0)f

∥∥
L2(Γ)

, f ∈ C∞(Γ).

Theorem 3.8 is proved. �

Theorem 3.9. Let s ≥ 0 and ϕ ∈ M. In the case where s = 0 we suppose that the
function 1/ϕ is bounded in a neighborhood of +∞. Then the space Hs,ϕ(Γ) coincides
with the domain of the operator ϕs(A0) and the norm in the space Hs,ϕ(Γ) is equivalent
to the graph norm of the operator ϕs(A0).

Proof. The domain Domϕs(A0) of the closed operator ϕs(A0) is Hilbert space with
respect to the inner product of the graph of this operator. Let us prove that the norms in
the spaces Domϕs(A0) and Hs,ϕ

A (Γ) are equivalent on the dense linear manifold C∞(Γ).
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By Theorem 3.8, it will imply the present theorem. According to the condition of the
present theorem and by virtue of assertion (ii) of Theorem 3.3, there is a number c > 0
such that ϕs(t) ≥ c for t > 0. Therefore∥∥ϕs(A0)f

∥∥
L2(Γ)

≥ c
∥∥f∥∥

L2(Γ)
for each f ∈ C∞(Γ).

It yields the equivalence of norms mentioned above. It remains to prove the density of
the set C∞(Γ) in the space Domϕs(A0).

Let f ∈ Domϕs(A0). Since ϕs(A0)f ∈ L2(Γ), there is a sequence of functions hj ∈
C∞(Γ) such that hj → ϕs(A0)f L2(Γ) as j → ∞. Let us note that the operator
ϕ−1
s (A0) is bounded on the space L2(Γ) because 1/ϕs(t) ≤ 1/c for t > 0. Hence,

fj := ϕ−1
s (A0)hj → f and ϕs(A0)fj = hj → ϕs(A0)f in L2(Γ) as j → ∞. In other

words, fj → f with respect to the graph norm of the operator ϕs(A0). Moreover, since
hj ∈ C∞(Γ), then fj = A−k0 ϕ−1

s (A0)Ak0 hj ∈ Hkm(Γ) for every k ∈ N. Consequently,
fj ∈ C∞(Γ) and the density of the set C∞(Γ) in the space Domϕs(A0) is established.
Theorem 3.9 is proved. �

A significant example of the operator A investigated above is the operator 1 − 4Γ,
where 4Γ is the Beltrami-Laplace operator on the Riemannian manifold Γ (then m = 2).
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