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RECURSION RELATION FOR ORTHOGONAL POLYNOMIALS ON
THE COMPLEX PLANE

YU. M. BEREZANSKY, I. YA. IVASIUK, AND O. A. MOKHONKO

Dedicated to dear M. L. Gorbachuk on the occasion of his 70th birthday.

Abstract. The article deals with orthogonal polynomials on compact infinite sub-
sets of the complex plane. Orthogonal polynomials are treated as coordinates of
generalized eigenvector of a normal operator A. It is shown that there exists a recur-
sion that gives the possibility to reconstruct these polynomials. This recursion arises
from generalized eigenvalue problem and, actually, this means that every generalized
eigenvector of A is also a generalized eigenvector of A∗ with the complex conjugated
eigenvalue.

If the subset is actually the unit circle, it is shown that the presented algorithm
is a generalization of the well-known Szegő recursion from OPUC theory.

1. Orthogonal polynomials on R. Classical Jacobi matrices

We start with a brief overview of the corresponding results from OPRL (Orthogonal
Polynomials on the Real Line) and classical theory of Jacobi matrices.

Let us have a probability Borel measure ρ : B(R) → [0; 1] with infinite compact
support. Consider the following sequence of functions

(1) 1, λ, λ2, . . . ,

belonging to L2(R, dρ(λ)). Construct an orthonormal basis P (λ) = (Pn(λ))∞n=0 from
this sequence using the standard Gramm-Schmidt orthogonalization procedure. Now
construct the matrix of the operator of multiplication by the independent variable in
this basis,

(2)
an =

∫
R
λPn(λ)Pn+1(λ) dρ(λ), bn =

∫
R
λ(Pn(λ))2dρ(λ),

n ∈ N0 = {0, 1, . . .} = {0} ∪ N.
It is easy to see that an > 0, n ∈ N0. Thus we have a self-adjoint three-diagonal Ja-
cobi matrix with uniformly bounded elements and non-zero coefficients on the adjoint
diagonals,

(3) J =


b0 a0 0 0 . . .
a0 b1 a1 0 . . .
0 a1 b2 a2 . . .
...

...
...

...
. . .

 .

This matrix generates a Hermitian operator A in `2. Its domain is the set of finite se-
quences f ∈ `fin ⊂ `2; denote the selfadjoint closure of this operator by the same letter A.
The sequence of polynomials P (λ) =

(
Pn(λ)

)∞
n=0

is a generalized eigenvector of A and
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corresponds to the eigenvalue λ ∈ R and ρ is a spectral measure of A. The following
Fourier transform (after extending by continuity) gives a unitary mapping between `2
(where the initial operator A acts) and L2(R, dρ(λ)) (where its image, the operator of
multiplication by λ acts),

(4) l2 ⊃ lfin 3 f = (fn)∞n=0 7→ f̂(λ) :=
∞∑

n=0

fnPn(λ) ∈ L2(R, dρ(λ)).

The polynomials Pn(λ) can be recovered as solutions of the equation JP (λ) = λP (λ).
That is, ∀n ∈ N0

(5) an−1Pn−1(λ) + bnPn(λ) + anPn+1(λ) = λPn(λ), P0(λ) = 1, P−1(λ) = 0.

Here an > 0, n ∈ N0, so it is easy to construct a two-terms recursion that recovers all
Pn(λ) step by step.

A similar situation takes place for normal operators A (see [2]). Instead of `2 =
C⊕C⊕· · · , it is necessary to use l2 = C1⊕C2⊕C3⊕C4⊕· · · . the matrix J has, in this
case, a block three-diagonal structure and is normal. The corresponding polynomials
Pn(z) of the variable z ∈ C (actually of z and z̄) constitute an orthonormal basis of
L2(C, dρ(z)). They cannot be reconstructed from (5), because the matrix coefficients are
non-invertible in this case. Now it is necessary to use two corresponding equations, from
which we can find Pn(z) step by step. Let us explain the situation in more details. In
the normal case, the sequence P (z) =

(
Pn(z)

)∞
n=0

, similar to P (λ), is also a generalized
eigenvector of the operator A and corresponds to the eigenvalue z. But the operator A is
normal, therefore P (z) is also a generalized eigenvector for its adjoint operator A∗, with
the eigenvalue z̄. As a result, in this case we have two analogical equations for A and
A∗, instead of one equation (5). The details can be found in [2], but the proof in this
article of the corresponding result (Lemma 7) is only an outline. In Section 2 we give a
complete proof of this Lemma (see Theorem 1 below).

If the spectral measure ρ is concentrated on the unit circle, then the corresponding
operator A will be unitary. In this case, the polynomials Pn(z) become orthonormal on
the unit circle (see [1]), which plays an important role in the OPUC theory. In Section
3, we show that the well-known Szegő recursion [4, 5, 6] (which recovers orthogonal
polynomials on the unit circle in OPUC) is actually the two relations of type (5) that is
written for a unitary operator.

2. Orthogonal polynomials on the complex plane. Three diagonal block
Jacobi-type normal matrices

Let ρ be a probability Borel measure on C with compact support and L2(C, dρ(z)) be
the space of square integrable complex-valued functions defined on C. We suppose that
the support of this measure is an infinite set such that the functions C 3 z 7→ zmz̄n,
m, n ∈ N0 are linearly independent in L2(C, dρ(z)). Let

(6) P0(z, z̄); P1;0(z, z̄), P1;1(z, z̄); P2;0(z, z̄), P2;1(z, z̄), P2;2(z, z̄); . . .

be polynomials obtained by using the standard Gramm-Schmidt orthogonalization pro-
cedure in L2(C, dρ(z)) applied to the system of functions

(7) 1; z1z̄0, z0z̄1; z2z̄0, z1z̄1, z0z̄2; . . .

These polynomials have the form Pn;α(z) := Pn;α(z, z̄) = kn;αz
n−αz̄α + . . . , n ∈ N0,

α = 0, . . . , n; kn;α > 0. The support supp ρ is a compact set. This implies that the family
(7) is total in L2(C, dρ(z)). Thus polynomials (6) make an orthonormal basis in the space
L2(C, dρ(z)).

According to [2], Theorem 5, the bounded normal operator of multiplication by the
variable z in the space L2(C, dρ(z)), with respect to basis (6), has a three diagonal block
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Jacobi-type normal matrix J = (aj,k)∞j,k=0. This matrix generates a normal operator A in
l2 = H0⊕H1⊕H2⊕ . . . , Hn = Cn+1, n ∈ N0. The norms of all operators aj,k : Hk → Hj

are uniformly bounded with respect to j, k ∈ N0, where aj,k is a (j + 1)× (k+ 1)-matrix
and

aj,k;α,β =
∫

C
zPk;β(z)Pj;α(z) dρ(z), α = 0, . . . , j, β = 0, . . . , k.

Let an := an+1,n : Hn → Hn+1, bn := an,n : Hn → Hn and cn := an,n+1 : Hn+1 → Hn

then J has the form

(8) J =


b0 c0 0 0 . . .
a0 b1 c1 0 . . .
0 a1 b2 c2 . . .
...

...
...

...
. . .


and matrices an, cn have the form
(9)

an =


an; 0,0 ∗ . . . an;0,n

0 an; 1,1 . . . an;1,n

...
...

. . .
...

0 0 . . . an; n,n

0 0 . . . 0

 , cn =


cn; 0,0 cn; 0,1 0 . . . 0
cn; 1,0 cn; 1,1 cn; 1,2 . . . 0

...
...

...
. . .

...
cn; n,0 cn; n,1 cn; n,2 . . . cn; n,n+1

 ,

where an; α,α > 0, cn; α,α+1 > 0, α = 0, . . . , n. The adjoint operator A∗ is also constructed
by a similar three-diagonal block Jacobi type matrix J+ in the basis (6). The matrices
J, J+ act as follows: ∀f = (fn)∞n=0 ∈ l2,

(10)
(Jf)n = an−1fn−1 + bnfn + cnfn+1,

(J+f)n = c∗n−1fn−1 + b∗nfn + a∗nfn+1, n ∈ N0, f−1 = 0, a∗j,k;α,β = ak,j;β,α.

The following result is contained in [1], Lemma 7; we give here a complete full proof.

Theorem 1. Let ϕ(z) = (ϕn(z))∞n=0, ϕn(z) ∈ Hn, z ∈ C, be a generalized eigenvector of
the operator Â. Then ϕ(z) is a solution, which lies in (lfin)

′
, of the two equations

(11)
(Jϕ(z))n = an−1ϕn−1(z) + bnϕn(z) + cnϕn+1(z) = zϕn(z),

(J+ϕ(z))n = c∗n−1ϕn−1(z) + b∗nϕn(z) + a∗nϕn+1(z) = zϕn(z), ϕ−1(z) = 0

with the initial condition ϕ0 ∈ C. The vector ϕn(z) has the form

(12)
ϕn(z) = Qn(z)ϕ0 = (Qn;0(z), Qn;1(z), . . . , Qn;n(z))ϕ0,

Qn;α(z) = ln;αz
n−αzα + qn;α(z, z), α = 1, . . . , n,

where ln;α > 0 and qn;α(z) is a linear combination of zjzk, 0 ≤ j + k ≤ n − 1, and
zn−(α−1)zα−1.

Moreover, the following equality holds true:

(13) Qn;α(z) = Pn;α(z), ∀z ∈ C, α = 1, . . . , n, n ∈ N0.

Proof. For n = 0, system (11) has the form
b0ϕ0 + c0ϕ1 = zϕ0,

b∗0ϕ0 + a∗0ϕ1 = zϕ0,

where ∀n ∈ N, ϕn(z) = (ϕn;0(z), . . . , ϕn;n(z)) ∈ Hn; ϕ0 = ϕ0;0. From (9) we obtain

ϕ1;0(z) =
1

a0; 0,0
(z − b0; 0,0)ϕ0 = Q1;0(z)ϕ0,

ϕ1;1(z) =
(
r1(z − b0; 0,0) + r2(z − b0; 0,0) + r3

)
ϕ0 = Q1;1(z)ϕ0,

where r1 > 0, r2 and r3 are some constants. Therefore, solutions have the form (12).
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Suppose, by induction, that for n ∈ N the coordinates ϕn−1(z) and ϕn(z) of our
generalized eigenvector ϕ(z) = (ϕn(z))∞n=0 have the form (12), and prove that ϕn+1(z)
has the same form (12).

The eigenvector ϕ(z) satisfies system (11). This system is overdetermined. According
to (9), a∗n and cn act on ψn+1 ∈ Hn as follows:

a∗nψn+1(z) =


ān; 0,0 0 . . . 0 0
an; 1,0 ān; 1,1 . . . 0 0

...
...

. . .
...

...
an; n,0 ān; n,1 . . . ān; n,n 0

ψn+1(z),

cnψn+1(z) =


cn; 0,0 cn; 0,1 0 . . . 0
cn; 1,0 cn; 1,1 cn; 1,2 . . . 0

...
...

...
. . . 0

cn; n,0 cn; n,1 cn; n,2 . . . cn; n,n+1

ψn+1(z).

Construct a (n+ 2)× (n+ 2)-matrix 4n of the form

(14) 4n =


an; 0,0 0 . . . 0
cn; 0,0 cn; 0,1 . . . 0

...
...

. . .
...

cn; n,0 cn; n,1 . . . cn; n,n+1

 .

The matrix in (14) is invertible, thus it is possible to find ϕn+1(z). Rewrite identities
(11) as

a∗nϕn+1(z) = zϕn(z)− c∗n−1(z)− b∗nϕn(z),

cnϕn+1(z) = zϕn(z)− an−1(z)− bnϕn(z), n ∈ N.
(15)

From (14), (15) we reconstruct ϕn+1(z) using the formula

4nϕn+1(z) =
(
zQn;0(z)− (c∗n−1Qn−1(z))n;0 − (b∗nQn(z))n;0,

zQn;0(z)− (an−1Qn−1(z))n;0 − (bnQn(z))n;0, . . . ,

zQn;n(z)− (an−1Qn−1(z))n;n − (bnQn(z))n;n

)
ϕ0.

(16)

From (14) and (16) we obtain
(17)

ϕn+1;0(z) = Qn+1;0(z)ϕ0 =
1

an; 0,0

(
z̄Qn;0(z)− (c∗n−1Qn−1(z))n;0 − (b∗nQn(z))n;0

)
ϕ0

=
1

an; 0,0

(
z̄(ln;0z̄

n + qn;0(z))− (c∗n−1Qn−1(z))n;0 − (b∗nQn(z))n;0

)
ϕ0,

so the main summand in (17) is equal to ln;0
an; 0,0

zn+1z0, therefore it has the form (12).
Suppose, by induction, that ϕn+1;j has the form (12) for any fixed j = 0, . . . , n.

Let us show that ϕn+1;j+1(z) has the same form. According to (14)–(16) we have that
∀j = 0, . . . , n,

(18)

ϕn+1;j+1(z) =
1

cj; j,j+1

(
z(ln;j z̄

n−jzj + qn;j(z, z̄))− (an−1Qn−1(z))n;j

− (bnQn(z))n;j −
j∑

l=0

cn; j, lQn+1; l

)
ϕ0 = Qn+1;j+1(z)ϕ0.
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So the main summand in (18) is equal to ln;j
cn; j,j+1

z̄n+1−(j+1)zj+1 and ϕn+1;j+1 has the

form as in (12), because the main summand inQn+1;j is z̄n+1−jzj = z̄n+1−((j+1)−1)z(j+1)−1,
and the rest of the terms are z̄mzk, 0 ≤ m+k ≤ n. So we prove by induction that ϕn+1(z)
is of the form (12). The equality (13) was proved in [2], p. 25–26. �

From Theorem 1 we obtain the following corollary. For the basis (6) the following
identities take place: ∀z ∈ C,

an−1Pn−1(z) + bnPn(z) + cnPn+1(z) = zPn(z),

c∗n−1Pn−1(z) + b∗nPn(z) + a∗nPn+1(z) = z̄Pn(z).
(19)

From the second identity we obtain

cn−1;0,0Pn−1;0(z) + cn−1;1,0Pn−1;1(z) + · · ·+ cn−1;n−1,0Pn−1;n−1(z)

+ bn;0,0Pn;0(z) + · · ·+ bn;n,0Pn;n(z) + an;0,0Pn+1;0(z) = zPn;0(z).

Consider this equation and the first equation in (19). Let

An−1 :=



cn−1; 0,0 cn−1; 1,0 . . . cn−1; n−1,0

an−1; 0,0 an−1; 0,1 . . . an−1; 0,n−1

0 an−1; 1,1 . . . an−1; 1,n−1

...
...

. . .
an−1; n−1,n−1

0 . . . 0


,

Bn :=


bn; 0,0 bn; 1,0 . . . bn; n,0

bn; 0,0 bn; 0,1 . . . bn; 0,n

...
...

. . .
bn; n,0 bn; n,1 . . . bn; n,n

 , Cn :=


an; 0,0 0 . . . 0
cn; 0,0 cn; 0,1 . . . 0

. . .

. . . cn; n,n+1

 ,

ω(z) :=


z 0 . . . 0
z 0 . . . 0
0 z . . . 0

. . .
0 . . . z

 ,

where An−1 is an (n+2)×n-matrix, Bn is an (n+2)× (n+1)-matrix, Cn is an (n+2)×
(n+2)-matrix and ω(z) is an (n+2)× (n+1)-matrix. Then the identity An−1Pn−1(z)+
BnPn(z) + CnPn+1(z) = ω(z)Pn(z) takes place. Since det Cn = an;0,0

∏n
i=0 cn;i,i+1 > 0,

C−1
n exists for all n ∈ N0.
Therefore (11), i.e. (19), can be rewritten in the form of one matrix equality (as the

Szegő recursion),

(20)
Pn+1(z) = C−1

n (ω(z)−Bn)Pn(z)− C−1
n An−1Pn−1(z),

P−1(z) = 0, P0(z) = 1, n ∈ N0

(here the conjugation over a matrix means conjugation of each element of this matrix).

3. Orthogonal polynomials on the unit circle and Szegő recursion.
Three diagonal block Jacobi type unitary matrices

Consider a special case of the situation described in Section 2. Let T = {z ∈ C :
|z| = 1} be the unit circle, ρ a probability Borel measure on T such that its support is
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an infinite set. Thus, for z ∈ T, we have z̄ = 1
z and z = eiθ, θ ∈ [0, 2π). Consider the

following family of functions:

(21) 1; z, z−1; z2, z−2; . . .

The power functions (21) belong to L2(T, dρ(z)). Apply the standard Gramm-Schmidt
orthogonalization procedure to this family. Since the system (21) is total in L2(T, dρ(z)),
we obtain an orthonormal basis in L2(T, dρ(z)) of polynomials which we denote as follows:

(22)
P0(z) = 1;P1;0(z) = k1;0z + · · · , P1;1(z) = k1;1z

−1 + · · · ; · · · ;

Pn;0(z) = kn;0z
n + · · · , Pn;1(z) = kn;1z

−n + · · · ; · · · ,

where kn;0 > 0, kn;1 > 0.
As is the normal case, the unitary operator A of multiplication by independent variable

in space L2(T, dρ(z)), in the basis (22), has the form of a three diagonal block Jacobi
type unitary matrix J = (aj,k)∞j,k=0, which acts in the space l2 of the previous type (see
[1],Theorem 1), H0 = C,Hn = C2, n ∈ N. The norms of all the operators aj,k : Hk → Hj

are uniformly bounded with respect to j, k ∈ N0. If an, bn and cn are defined as in Section
2, then J has the form (8), where b0 is a scalar (a 1× 1-matrix), a0 = (a0;α)1α=0 (a 2× 1-
matrix), c0 = (c0;α)1α=0 (a 1× 2-matrix) and for n ∈ N, the elements an = (an;α,β)1α,β=0,

bn = (bn;α,β)1α,β=0, cn = (cn;α,β)1α,β=0 are 2 × 2-matrices. Some elements of this matrix
are positive or equal to zero, a0;0 > 0, a0;1 = 0, c0;1 > 0, an;1,0 = an;1,1 = 0, an;0,0 > 0,
cn;0,0 = cn;0,1 = 0, cn;1,1 > 0, n ∈ N. A∗ has the form of a three-diagonal block Jacobi
type unitary matrix J+ in the basis (22) where J, J+ act on ∀f = (fn)∞n=0 ∈ l2 according
to (10).

For the matrices J, J+, an analog of Theorem 1 ([1], Lemma 5) takes place. Namely,
the system of equations

an−1Pn−1(z) + bnPn(z) + cnPn+1(z) = zPn(z),

c∗n−1Pn−1(z) + b∗nPn(z) + a∗nPn+1(z) = z̄Pn(z)
(23)

recovers the orthonormal polynomials Pn;α(z), n ∈ N0, α = 0, . . . , n, where P−1(z) = 0.
We will use this Jacobi block representation instead of the 5-diagonals representation

of a unitary operator discovered in [3].
Let us define monic orthogonal polynomials Φn(z) : Φ−1 = 0,∀n ∈ N0

Φn(z) = zn + ωn−1z
n−1 + · · · ,

∫
T
z−jΦn(z) dρ(z) = 0, j = 0, 1, . . . , n− 1,

and the anti-unitary map ∗,n : f∗,n(z) = znf(z), f ∈ L2(T, dρ(z)). For Φn, the Szegő
recursion ([6], p. 5) takes place,

(24) Φn+1(z) = zΦn(z)− αn Φ∗
n(z),

where αn, n ∈ N, are the Verblunsky coefficients

(25) αn = −Φn+1(0) and ‖Φn‖ =
n−1∏
j=0

(1− |αj |2)
1
2 , Φ0(z) = 1.

To simplify the notation, we use ∗ instead of ∗,n (this notation is standard; note that ∗
depends on n). Let φn(z) = Φn(z)

‖Φn‖ . Then (φn)∞n=0 is an orthogonal system in L2(T, dρ(z))
but it is not a basis (see [6], §2). The Szegő recursion (24) can be rewritten in the following
form [6], formula (2.28):(

φn+1(z)
φ∗n+1(z)

)
= A(z, αn)

(
φn(z)
φ∗n(z)

)
,

A(z, αn) = ρ−1
n

(
z −αn

−zαn 1

)
, ρn = (1− |αn|2)1/2, n ∈ N0.

(26)
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According to [6], Proposition 5.1,

(27) φ∗2n(z) = znPn;1(z), φ2n−1(z) = z(n−1)Pn;0(z), n ∈ N.
If we apply the transformation ∗,2n to the first equation and the transformation ∗,2n−1

to the second equation, then (26) can be rewritten as(
P ∗,ll;1 (z)
zlPl;1(z)

)
= A(z, α2l−1)

(
zl−1Pl;0(z)
P ∗,ll;0 (z)

)
, l ∈ N0;(

zmPm+1;0(z)
P ∗,m+1

m+1;0 (z)

)
= A(z, α2m)

(
P ∗,mm;1 (z)
zmPm;1(z)

)
, m ∈ N0.

From these recurrence relations we obtain the following inverse recursion formulae:

(28) Pm+1;0(z) =
1
ρ2m

(
zPm;1(z)− α2mPm;1(z)

)
,

(29) Pm+1;1(z) =
1

ρ2m+1

(
Pm+1;0(z)− α2m+1Pm+1;0(z)

)
, m ∈ N0.

Theorem 2. Systems of equations (23) and (28), (29) are equivalent.

Proof. According to [6], Theorem 5.2, the operator A in L2(T, dρ(z)), in the basis (22),
has the form (8) in terms of the Verblunsky coefficients. Here an, bn, cn are found as

b0 = α0, c0 = (α1ρ0, ρ1ρ0), a0 =
(
ρ0

0

)
;

an =
(
ρ2nρ2n−1 −ρ2nα2n−1

0 0

)
, bn =

(
−α2n−1α2n−2 −ρ2n−1α2n−2

α2nρ2n−1 −α2nα2n−1

)
,

cn =
(

0 0
α2n+1ρ2n ρ2n+1ρ2n

)
.

(30)

Let us show that (28), (29) imply (23). From (29) we have Pm;1(z) = 1
ρ2m−1

(
Pm;0(z)−

α2m−1Pm;0(z)
)
. Substitute this expression into (28) to obtain

(31) Pm+1;0(z) =
1
ρ2m

(
z

ρ2m−1

{
Pm;0(z)− α2m−1Pm;0(z)

}
− α2mPm;1(z)

)
.

From (28) we get Pm;0(z) = 1
ρ2m−2

(
z̄Pm−1;1(z)−α2m−2Pm−1;1(z)

)
; substituting this into

(31) we obtain

Pm+1;0(z) =
1
ρ2m

(
z

ρ2m−1

{
Pm;0(z)− α2m−1

[
1

ρ2m−2

(
z̄Pm−1;1(z)

− α2m−2Pm−1;1(z)
)]}

− α2mPm;1(z)
)
.

Take ρ2m−1 out of brackets,

Pm+1;0(z) =
1

ρ2mρ2m−1

({
zPm;0(z)− zα2m−1

[
1

ρ2m−2

(
z̄Pm−1;1(z)

− α2m−2Pm−1;1(z)
)]}

− ρ2m−1α2mPm;1(z)
)
.

Now we use the fact that zz̄ = 1,

Pm+1;0(z) =
1

ρ2mρ2m−1

({
zPm;0(z)− α2m−1

[
1

ρ2m−2

(
Pm−1;1(z)

− α2m−2zPm−1;1(z)
)]}

− ρ2m−1α2mPm;1(z)
)
.
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Use (28) again, zPm−1;1(z) = ρ2m−2Pm;0(z) + α2m−2Pm−1;1(z), and therefore

Pm+1;0(z) =
1

ρ2mρ2m−1

({
zPm;0(z)− α2m−1

[
1

ρ2m−2

(
Pm−1;1(z)

− α2m−2

(
ρ2m−2Pm;0(z) + α2m−2Pm−1;1(z)

))]}
− ρ2m−1α2mPm;1(z)

)
.

The last step is to use the identity α2m−2α2m−2 = |α2m−2|2 = 1− ρ2
2m−2. We get

Pm+1;0(z) =
1

ρ2mρ2m−1

({
zPm;0(z)− α2m−1

[
− α2m−2Pm;0(z)

+ ρ2m−2Pm−1;1(z)
]}
− ρ2m−1α2mPm;1(z)

)
.

This is just the one of the four equations in (23),

(32)
(
J+P

)
n;0

= z Pn;0.

Other three equations can be obtained in the same way. It is necessary to note that (23)
is overdetermined.

Let us show that equations (28), (29) follow from (23). Consider the polynomial
Pm+1;0(z). It is obtained by orthogonalization of (21), so, by the definition, Pm+1;0(z) ⊥
zα, α = −m, . . . ,m. Similarly Pm;1(z) ⊥ zα, α = (−m+ 1), . . . ,m. Multiplication by z is
a unitary operator in L2(T, dρ(z)). Thus

0 = (Pm;1(z), zα)L2(T,dρ(z)) = (z̄α, Pm;1(z))L2(T,dρ(z)) = (z · z̄α, zPm;1(z))L2(T,dρ(z)),

α = (−m+ 1), . . . ,m.

Finally we have zPm;1(z) ⊥ z1−α, α = (−m+1), . . . ,m. But this is the same as zPm;1(z) ⊥
zα, α = (−m+1), . . . ,m. These observations are necessary in order to obtain the following
conclusion: (

1
km+1;0

Pm+1;0(z)− z
Pm;1(z)
km;1

)
⊥

{
zm, z̄m−1, zm−1, . . .

}
.

It is easy to see that 1
km+1;0

Pm+1;0(z)−z 1
km;1

Pm;1(z) = γm;1Pm;1(z) (note that the poly-

nomial 1
km+1;0

Pm+1;0(z)− z 1
km;1

Pm;1(z) is a linear combination of zα, α = −m, . . . ,m).
The last identity can be rewritten as

(33) Pm+1;0(z) =
km+1;0

km;1

(
zPm;1(z) + γm;1km;1Pm;1(z)

)
,

where γm;1 is a complex constant. From (23) we obtain km+1;0 = 1
am;0,0

· 1
am−1;0,0

· . . . · 1
a0;0

,

km;1 = 1
cm−1;1,1

· . . . · 1
c0;1

and using (30) we get

(34)
km+1;0

km;1
=
cm−1;1,1 · . . . · c0;1
am;0,0 · . . . · a0;0

=
ρ2m−1ρ2m−2 · . . . · ρ1ρ0

ρ2mρ2m−1ρ2m−2ρ2m−3 · . . . · ρ0
=

1
ρ2m

.

So if we show that γm;1km;1 = −α2m we will finish the proof. From (25) and (27) we
obtain α2m = −(zmPm+1;0(z))

∣∣
z=0

∏2m
j=0 ρj . Using (33) we have (zmPm+1;0(z))

∣∣
z=0

=
km+1;0
km;1

γm;1k2
m;1 = γ̄m;1km+1;0km;1. Note that km+1;0 = 1Q2m

j=0 ρj
(this follows from (25)).

Now it becomes obvious that the identity holds true.
So we have shown that (28) can be obtained from (23). Let us show that from (23)

one can find (29) too. In the same way as we did it before for Pm+1;0(z), here we have

(35) Pm+1;1(z) =
km+1;1

km+1;0

(
Pm+1;0(z) + γm+1;0km+1;0Pm+1;0(z)

)
,



116 YU. M. BEREZANSKY, I. YA. IVASIUK, AND O. A. MOKHONKO

where γm+1;0 is a complex constant. Since α2m+1 = −(zm+1Pm+1;1(z))
∣∣
z=0

∏2m+1
j=0 ρj ,

we see that −α2m+1 = γm+1;0km+1;0 and also km+1;1
km+1;0

= 1
ρ2m+1

. So (35) yields (29). �

Note that using (30) we can express the Verblunsky coefficients in terms of elements
of the matrices an, bn, cn,

α2m

ρ2m
=
bm;1,0

am;0,0
= −bm+1;0,1

cm;1,1
, m ∈ N0.

Therefore we can obtain several representations for α2m. For example, α2m = bm;1,0
am;0,0

(
1−

bm;1,0bm+1;0,1
am;0,0cm;1,1

)− 1
2 or α2m = bm;1,0√

a2
m;0,0+|bm;1,0|2

. Similarly,

α2m+1

ρ2m+1
=
cm;1,0

cm;1,1
= −am+1;0,1

am+1;0,0
, m ∈ N0.

Thus α2m+1 = cm;1,0√
c2

m;1,1+|cm;1,0|2
. The coefficient ρn can also be expressed using formulae

of type (34). It is necessary to note that these representations are not unique.
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