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QUASILINEAR PARABOLIC EQUATIONS WITH A LÉVY
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To dear Myroslav Gorbachuk on his 70th birthday.

Abstract. We construct solutions to initial, boundary and initial-boundary value
problems for quasilinear parabolic equations with an infinite dimensional Lévy Lapla-
cian ∆L,

∂U(t, x)

∂t
= ∆LU(t, x) + f0(U(t, x)),

in fundamental domains of a Hilbert space. The solution is defined in the functional

class where a solution of the corresponding problem for the heat equation
∂U(t,x)

∂t
=

∆LU(t, x) exists.

1. Introduction

In 1919 P. Lévy considered a quasilinear elliptic equation

∆LU(x) = f(U(x)),

where U(x) is a function defined on a Hilbert space H and f(ξ) is a function of a scalar
argument. P. Lévy showed in [1] that a general solution of this equation is given implicitly
by the relation

ϕ(U(x))− 1
2
‖x‖2H = Ψ(x),

where ϕ(ξ) =
∫

dξ
f(ξ) and Ψ(x) is an arbitrary harmonic function, and reduced solution of

the Dirichlet problem for this equation in a bounded domain of the Hilbert space to the
Dirichlet problem for the Lévy Laplace equation. Later these problems were described
in the book by P. Lévy [2].

Solution of the Cauchy problem for a quasilinear parabolic equation with the Lévy
Laplacian were constructed by M. Feller in paper [3]. One can find more references in
the book by M. Feller [4].

In this article we construct a solution of a boundary value problem and an initial-
boundary value problem for quasilinear parabolic equations with the Lévy Laplacian

∂U(t, x)
∂t

= ∆LU(t, x) + f0(U(t, x)),

(here f0(ξ) is a function defined on R1) for a fundamental domain in a real infinite
dimensional Hilbert space. To make the article self-consistent we give the expression of
the solution of the Cauchy problem for a quasilinear parabolic equation with the Lévy
Laplacian.
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2. Preliminaries

Let H be a real infinite dimensional Hilbert space.
The infinite dimensional Laplacian defined by P. Lévy can be described as follows. If

a scalar function F defined on H is twice strongly differentiable at a point x0 then the
Lévy Laplacian of F at the point x0 is defined (if it exists) by the formula

(1) ∆LF (x0) = lim
n→∞

1
n

n∑
k=1

(F ′′(x0)fk, fk)H ,

where F ′′(x) is the Hessian of F (x), and {fk}∞1 is an orthonormal basis in H.
We shall recall an important property of the Lévy Laplacian described in [2] that we

will need in the sequel. Assume that

F (x) = f(U1(x), . . . , Um(x)),

where f(u1, . . . , um) is a twice continuously differentiable function of m variables in
a domain {U1(x), . . . , Um(x)} ⊂ Rm, where (U1(x), . . . , Um(x)) is a vector of values
of functions U1(x), . . . , Um(x). We assume that Uj(x) are uniformly continuous in a
bounded domain Ω ⊂ H and strongly twice differentiable functions, and ∆LUj(x) exist
(j = 1, . . . ,m). Then ∆LF (x) exists and

(2) ∆LF (x) =
m∑

j=1

∂f(u)
∂uj

∣∣∣
uj=Uj(x)

∆LUj(x).

We deduce two consequences from (2).
1) If the functions Uk(x) are harmonic in some domain Ω (k = 1, . . . ,m), then the

function F (x) is also harmonic in Ω.
2) The Lévy Laplacian is a ”derivative”. Namely, for F (x) = U1(x)U2(x) we have

∆L[U1(x)U2(x)] = ∆LU1(x) · U2(x) + U1(x) ·∆LU2(x).

Let Ω be a bounded domain in the Hilbert space H (that is a bounded open set in
H), and Ω = Ω ∪ Γ be a domain in H with boundary Γ.

Consider the domain Ω in H with boundary Γ of the form

Ω = {x ∈ H : 0 ≤ Q(x) < R2}, Γ = {x ∈ H : Q(x) = R2},

where Q(x) is a twice strongly differentiable function such that ∆LQ(x) = γ, where γ > 0
is a positive constant. Such domains are called fundamental domains.

Examples of fundamental domains are
1) a ball Ω = {x ∈ H : ‖x‖2H ≤ R2},
2) an ellipsoid Ω = {x ∈ H : (Bx, x)H ≤ R2}, where B = γE +S(x), E is the identity

operator and S(x) is a compact operator acting in H.

Consider the function

T (x) =
R2 −Q(x)

γ
,

that will be used in the sequel. The function T (x) possesses the following properties:

0 < T (x) ≤ R2

γ
, ∆LT (x) = −1 if x ∈ Ω,

T (x) = 0 if x ∈ Γ.
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3. The Cauchy problem

Consider the Cauchy problem

(3)
∂U(t, x)

∂t
= ∆LU(t, x) + f0(U(t, x)),

(4) U(0, x) = U0(x),

where U(t, x) is a function on [0,T]×H, f0(ξ) is a given function of one variable, U0(x)
is a given function defined on H.

Theorem 1. Let f0(ξ) be a differentiable function in the domain {U(t, x)} ({U(t, x)} is
a domain in R1, where the function U(t, x) takes its values).

Assume that there exists a primitive ϕ(ξ) =
∫

dξ
f0(ξ)

and the inverse function ϕ−1.

Assume in addition that in a certain functional class F there exists a solution of the
Cauchy problem for the heat equation

(5)
∂V (t, x)

∂t
= ∆LV (t, x), V (0, x) = U0(x).

Then the solution U(t, x) of the Cauchy problem (3), (4) in the same class F is given
by the equation

(6) ϕ(U(t, x)) = t + ϕ(V (t, x)),

i.e., U(t, x) = ϕ−1(t + ϕ(V (t, x))).

Proof. We deduce from (6) that

ϕ′ξ(U(t, x))
∂U(t, x)

∂t
= 1 + ϕ′ξ(V (t, x))

∂V (t, x)
∂t

.

For m = 1, we deduce from (6) using (2) that

ϕ′ξ(U(t, x))∆LU(t, x) = ϕ′ξ(V (t, x))∆LV (t, x).

But ϕ′ξ(ξ) = 1
f0(ξ)

, hence

(7)
∂U(t, x)

∂t
= f0(U(t, x)) +

f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

,

(8) ∆LU(t, x) =
f0(U(t, x))
f0(V (t, x))

∆LV (t, x).

Substituting (7) and (8) into (3), we derive

f0(U(t, x)) +
f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

=
f0(U(t, x))
f0(V (t, x))

∆LV (t, x) + f0(U(t, x)),

i.e., (6) satisfies equation (3).
Choosing t = 0 in (6) and taking into account that V (0, x) = U0(x), we deduce that

U(0, x) = U0(x). �

Example 1. Let us construct a solution of the Cauchy problem

(9)
∂U(t, x)

∂t
= ∆LU(t, x)− U3(t, x)),

(10) U(0, x) = h
(1

2
‖x‖2H

)
,

where h(λ) is a smooth function on (−∞ < λ < ∞).
Note that in (9) f0(ξ) = −ξ3 that yields ϕ(ξ) = −

∫
dξ
ξ3 = 1

2ξ2 , and hence ϕ−1(z) =
1√
2z

.
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A solution of the Cauchy problem for the heat equation
∂V (t, x)

∂t
= ∆LV (t, x), V (0, x) = h

(1
2
‖x‖2H

)
has the form

V (t, x) = h
(
t +

1
2
‖x‖2H

)
.

Thus, by (6) we obtain a solution of the problem (9), (10) in the form

U(t, x) =
1√

2
[
t + 1

2 [h(t + 1
2‖x‖

2
H)]−2

] .

4. Boundary value problem

Consider a boundary value problem

(11)
∂U(t, x)

∂t
= ∆LU(t, x)) + f0(U(t, x)) in Ω,

(12) U(t, x) = G(t, x) on Γ,

where U(t, x) is a function on [0,T] × H, f0(ξ) is a given function of one dimensional
argument and G(t, x) is a given function.

Theorem 2. Let f0(ξ) be a differentiable function in the domain {U(t, x)}.
Let there exist both the primitive ϕ(ξ) =

∫
dξ

f0(ξ)
and its inverse function ϕ−1.

Let, in addition, Ω be a fundamental domain.
Assume that in a certain functional class F there exists a solution of the boundary

value problem for the heat equation,

(13)
∂V (t, x)

∂t
= ∆LV (t, x) in Ω, V (t, x)

∣∣∣
Γ
= G(t, x).

Then, in this class F , a solution of the boundary value problem (11), (12) is defined
by the formula

(14) ϕ(U(t, x)) = T (x) + ϕ(V (t, x)),

i.e., U(t, x) = ϕ−1(T (x) + ϕ(V (t, x))). Here T (x) = R2−Q(x)
γ (see p. 2).

Proof. We deduce from (14) the relation

ϕ′ξ(U(t, x))
∂U(t, x)

∂t
= ϕ′ξ(V (t, x))

∂V (t, x)
∂t

.

For m = 1, we deduce from (14) using (2) the relation

ϕ′ξ(U(t, x))∆LU(t, x) = ∆LT (x) + ϕ′ξ(V (t, x))∆LV (t, x).

Since ∆LT (x) = −1 and ϕ′ξ(ξ) = 1
f0(ξ)

, we get

(15)
∂U(t, x)

∂t
=

f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

,

(16) ∆LU(t, x) = −f0(U(t, x)) +
f0(U(t, x))
f0(V (t, x))

∆LV (t, x).

Substituting (15) and (16) into (11), we derive
f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

= −f0(U(t, x)) +
f0(U(t, x))
f0(V (t, x))

∆LV (t, x) + f0(U(t, x)),

i.e., (14) satisfies equation (11).
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At the surface Γ we obtain T (x) = 0. Substituting T (x) = 0 into (14) and keeping in
mind that V (t, x)

∣∣∣
Γ
= G(t, x), we deduce the equality U(t, x)

∣∣∣
Γ
= G(t, x). �

Example 2. Let us construct a solution of the boundary value problem without initial
data in the ball of the space H, Ω = {x ∈ H : ‖x‖2H ≤ R2},

(17)
∂U(t, x)

∂t
= ∆LU(t, x)− U3(t, x) in Ω,

(18) U(t, x)
∣∣∣
‖x‖2=R2

= g
(
t− 1

2
‖x‖2H

)
,

where g(λ) is a smooth function on (−∞ < λ < ∞).
For the considered domain Ω = {x ∈ H : ‖x‖2H ≤ R2}, we have T (x) = R2−‖x‖2H

2 .

In the equation (17) we have f0(ξ) = −ξ3, which yields ϕ(ξ) = 1
2ξ2 , ϕ−1(z) = 1√

2z
.

A solution of the boundary value problem without initial data for the heat equation

∂V (t, x)
∂t

= ∆LV (t, x), V (t, x)
∣∣∣
‖x‖2H=R2

= g
(
t− 1

2
‖x‖2H

)
,

has the form

V (t, x) = g
(
t +

1
2
‖x‖2H −R2

)
.

Hence by (14) we obtain a solution of the problem (17), (18) in the form

U(t, x) =
1√[

R2 − ‖x‖2H + [g(t + 1
2‖x‖

2
H −R2)]−2

] .

5. Initial-boundary value problem

Consider the initial-boundary value problem

(19)
∂U(t, x)

∂t
= ∆LU(t, x) + f0(U(t, x)) in Ω,

(20) U(0, x) = U0(x),

(21) U(t, x) = G(t, x) on Γ,

where U(t, x) is a function defined on [0, T ]×H, f0(ξ) is a given function of one variable
and U0(x), G(t, x) are given functions.

Theorem 3. Let f0(ξ) be a differentiable function in the domain {U(t, x)}.
Let there exist the primitive ϕ(ξ) =

∫
dξ

f0(ξ)
and the inverse function ϕ−1.

Let the domain Ω be fundamental.
Assume that, in a certain functional class F , there exist solutions of the initial-

boundary value problems

(22)
∂V (t, x)

∂t
= ∆LV (t, x) in Ω, V (0, x) = U0(x), V (t, x)

∣∣∣
Γ
= G(t, x).

Then a solution of the initial-boundary value problem (19)–(21) in this class F is given
by the formula

(23) ϕ(U(t, x)) = τ(t, T (x)) + ϕ(V (t, x)),

i.e., U(t, x) = ϕ−1(τ(t, T (x)) + ϕ(V (t, x))), where τ(t, T (x)) = t− q(t− T (x)), q(λ) = λ

if λ ≥ 0 and q(λ) = 0 if λ ≤ 0, T (x) = R2−Q(x)
γ .
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If the initial-boundary value problem (22) possesses a unique solution in the same func-
tional class then the solution of the initial-boundary value problem (19)–(21) is unique
in this class.

Proof. We deduce from (23) that

ϕ′ξ(U(t, x))
∂U(t, x)

∂t
=

∂τ(t, x)
∂t

+ ϕ′ξ(V (t, x))
∂V (t, x)

∂t
.

For m = 1, we deduce from (23) using (2) that

ϕ′ξ(U(t, x))∆LU(t, x) = ∆Lτ(t, x) + ϕ′ξ(V (t, x))∆LV (t, x).

Recall that ϕ′ξ(ξ) = 1
f0(ξ)

, which yields

(24)
∂U(t, x)

∂t
= f0(U(t, x))

∂τ(t, x)
∂t

+
f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

,

(25) ∆LU(t, x) = f0(U(t, x))∆Lτ(t, x) +
f0(U(t, x))
f0(V (t, x))

∆LV (t, x).

Substituting (24) and (25) into (19), we obtain

f0(U(t, x))
∂τ(t, x)

∂t
+

f0(U(t, x))
f0(V (t, x))

∂V (t, x)
∂t

= f0(U(t, x))∆Lτ(t, x) +
f0(U(t, x))
f0(V (t, x))

∆LV (t, x) + f0(U(t, x)),

i.e., (23) satisfies equation (19) (since ∂V (t,x)
∂t = ∆LV (t, x), ∂τ(t,T )

∂t = ∆Lτ(t, T ) + 1).
Setting t = 0 in (23) and taking into account that V (0, x) = U0(x), and τ(0, T ) = 0,

we obtain the equality U(0, x) = U0(x).
Since V (t, x) = G(t, x), τ(t, T ) = 0 on the surface Γ, we deduce from (23) that

U(t, x)
∣∣∣
Γ
= G(t, x).

The final statement of the theorem is obvious. �

Example 3. Let us construct a solution of the initial-boundary value problem in the ball
Ω = {x ∈ H : ‖x‖2H ≤ R2} of the space H,

(26)
∂U(t, x)

∂t
= ∆LU(t, x)− U3(t, x) in Ω,

(27) U(0, x) = h
(1

2
‖x‖2H

)
,

(28) U(t, x)
∣∣∣
‖x‖2H=R2

= g
(
t− 1

2
‖x‖2H

)
,

where h(λ) is a smooth function on the positive half axis with the support [0, R2

2 ], and
g(λ) is a smooth function such that g(λ) = 0 for λ ≤ 0 (note that comparing with
Examples 1 and 2 we need some additional assumptions concerning the functions h(λ)
and g(λ)).

In the considered domain Ω = {x ∈ H : ‖x‖2H ≤ R2}, we have T (x) = R2−‖x‖2H
2 .

In equation (26), f0(ξ) = −ξ3 and, hence, ϕ(ξ) = −
∫

dξ
ξ3 = 1

ξ2 and ϕ−1(z) = 1√
2z

.

Consider the initial-boundary value problem for the heat equation in the Shilov class
of functions

∂V (t, x)
∂t

= ∆LV (t, x) in Ω, V (0, x) = h
(1

2
‖x‖2H

)
,
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(29) V (t, x)
∣∣∣
‖x‖2H=R2

= g
(
t− 1

2
‖x‖2H

)
.

Its solution has the form

V (t, x) = h
(
t +

1
2
‖x‖2H

)
+g

(
t +

1
2
‖x‖2H −R2

)
.

It results from (23) that the solution of the problem (26)–(28) has the form

U(t, x) =
1√

2
{

t−q(t + ‖x‖2H
2 −R2

2 ) + 1
2

[
h(t + 1

2‖x‖
2
H)+g(t + 1

2‖x‖
2
H−R2)

]−2} .
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