QUASILINEAR PARABOLIC EQUATIONS WITH A LÉVY LAPLACIAN FOR FUNCTIONS OF INFINITE NUMBER OF VARIABLES

M. N. FELLER AND I. I. KOVTUN
To dear Myroslav Gorbachuk on his 70th birthday.

Abstract

We construct solutions to initial, boundary and initial-boundary value problems for quasilinear parabolic equations with an infinite dimensional Lévy Lapla$\operatorname{cian} \Delta_{L}$, $$
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x))
$$ in fundamental domains of a Hilbert space. The solution is defined in the functional class where a solution of the corresponding problem for the heat equation $\frac{\partial U(t, x)}{\partial t}=$ $\Delta_{L} U(t, x)$ exists.

1. Introduction

In 1919 P. Lévy considered a quasilinear elliptic equation

$$
\Delta_{L} U(x)=f(U(x))
$$

where $U(x)$ is a function defined on a Hilbert space H and $f(\xi)$ is a function of a scalar argument. P. Lévy showed in [1] that a general solution of this equation is given implicitly by the relation

$$
\varphi(U(x))-\frac{1}{2}\|x\|_{H}^{2}=\Psi(x)
$$

where $\varphi(\xi)=\int \frac{d \xi}{f(\xi)}$ and $\Psi(x)$ is an arbitrary harmonic function, and reduced solution of the Dirichlet problem for this equation in a bounded domain of the Hilbert space to the Dirichlet problem for the Lévy Laplace equation. Later these problems were described in the book by P. Lévy [2].

Solution of the Cauchy problem for a quasilinear parabolic equation with the Lévy Laplacian were constructed by M. Feller in paper [3]. One can find more references in the book by M. Feller [4].

In this article we construct a solution of a boundary value problem and an initialboundary value problem for quasilinear parabolic equations with the Lévy Laplacian

$$
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x))
$$

(here $f_{0}(\xi)$ is a function defined on \mathbb{R}^{1}) for a fundamental domain in a real infinite dimensional Hilbert space. To make the article self-consistent we give the expression of the solution of the Cauchy problem for a quasilinear parabolic equation with the Lévy Laplacian.

[^0]
2. Preliminaries

Let H be a real infinite dimensional Hilbert space.
The infinite dimensional Laplacian defined by P. Lévy can be described as follows. If a scalar function F defined on H is twice strongly differentiable at a point x_{0} then the Lévy Laplacian of F at the point x_{0} is defined (if it exists) by the formula

$$
\begin{equation*}
\Delta_{L} F\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(F^{\prime \prime}\left(x_{0}\right) f_{k}, f_{k}\right)_{H} \tag{1}
\end{equation*}
$$

where $F^{\prime \prime}(x)$ is the Hessian of $F(x)$, and $\left\{f_{k}\right\}_{1}^{\infty}$ is an orthonormal basis in H.
We shall recall an important property of the Lévy Laplacian described in [2] that we will need in the sequel. Assume that

$$
F(x)=f\left(U_{1}(x), \ldots, U_{m}(x)\right)
$$

where $f\left(u_{1}, \ldots, u_{m}\right)$ is a twice continuously differentiable function of m variables in a domain $\left\{U_{1}(x), \ldots, U_{m}(x)\right\} \subset \mathbb{R}^{m}$, where $\left(U_{1}(x), \ldots, U_{m}(x)\right)$ is a vector of values of functions $U_{1}(x), \ldots, U_{m}(x)$. We assume that $U_{j}(x)$ are uniformly continuous in a bounded domain $\Omega \subset H$ and strongly twice differentiable functions, and $\Delta_{L} U_{j}(x)$ exist $(j=1, \ldots, m)$. Then $\Delta_{L} F(x)$ exists and

$$
\begin{equation*}
\Delta_{L} F(x)=\left.\sum_{j=1}^{m} \frac{\partial f(u)}{\partial u_{j}}\right|_{u_{j}=U_{j}(x)} \Delta_{L} U_{j}(x) \tag{2}
\end{equation*}
$$

We deduce two consequences from (2).

1) If the functions $U_{k}(x)$ are harmonic in some domain $\Omega(k=1, \ldots, m)$, then the function $F(x)$ is also harmonic in Ω.
2) The Lévy Laplacian is a "derivative". Namely, for $F(x)=U_{1}(x) U_{2}(x)$ we have $\Delta_{L}\left[U_{1}(x) U_{2}(x)\right]=\Delta_{L} U_{1}(x) \cdot U_{2}(x)+U_{1}(x) \cdot \Delta_{L} U_{2}(x)$.

Let Ω be a bounded domain in the Hilbert space H (that is a bounded open set in $H)$, and $\bar{\Omega}=\Omega \cup \Gamma$ be a domain in H with boundary Γ.

Consider the domain Ω in H with boundary Γ of the form

$$
\Omega=\left\{x \in H: 0 \leq Q(x)<R^{2}\right\}, \quad \Gamma=\left\{x \in H: Q(x)=R^{2}\right\}
$$

where $Q(x)$ is a twice strongly differentiable function such that $\Delta_{L} Q(x)=\gamma$, where $\gamma>0$ is a positive constant. Such domains are called fundamental domains.

Examples of fundamental domains are

1) a ball $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$,
2) an ellipsoid $\bar{\Omega}=\left\{x \in H:(B x, x)_{H} \leq R^{2}\right\}$, where $B=\gamma E+S(x), E$ is the identity operator and $S(x)$ is a compact operator acting in H.

Consider the function

$$
T(x)=\frac{R^{2}-Q(x)}{\gamma}
$$

that will be used in the sequel. The function $T(x)$ possesses the following properties:

$$
\begin{gathered}
0<T(x) \leq \frac{R^{2}}{\gamma}, \quad \Delta_{L} T(x)=-1 \quad \text { if } \quad x \in \Omega \\
T(x)=0 \quad \text { if } \quad x \in \Gamma
\end{gathered}
$$

3. The Cauchy problem

Consider the Cauchy problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x)) \tag{3}\\
U(0, x)=U_{0}(x) \tag{4}
\end{gather*}
$$

where $U(t, x)$ is a function on $[0, \mathfrak{T}] \times H, f_{0}(\xi)$ is a given function of one variable, $U_{0}(x)$ is a given function defined on H.
Theorem 1. Let $f_{0}(\xi)$ be a differentiable function in the domain $\{U(t, x)\}(\{U(t, x)\}$ is a domain in \mathbb{R}^{1}, where the function $U(t, x)$ takes its values).

Assume that there exists a primitive $\varphi(\xi)=\int \frac{d \xi}{f_{0}(\xi)}$ and the inverse function φ^{-1}.
Assume in addition that in a certain functional class \mathcal{F} there exists a solution of the Cauchy problem for the heat equation

$$
\begin{equation*}
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x), \quad V(0, x)=U_{0}(x) . \tag{5}
\end{equation*}
$$

Then the solution $U(t, x)$ of the Cauchy problem (3), (4) in the same class \mathcal{F} is given by the equation

$$
\begin{equation*}
\varphi(U(t, x))=t+\varphi(V(t, x)), \tag{6}
\end{equation*}
$$

i.e., $U(t, x)=\varphi^{-1}(t+\varphi(V(t, x)))$.

Proof. We deduce from (6) that

$$
\varphi_{\xi}^{\prime}(U(t, x)) \frac{\partial U(t, x)}{\partial t}=1+\varphi_{\xi}^{\prime}(V(t, x)) \frac{\partial V(t, x)}{\partial t}
$$

For $m=1$, we deduce from (6) using (2) that

$$
\varphi_{\xi}^{\prime}(U(t, x)) \Delta_{L} U(t, x)=\varphi_{\xi}^{\prime}(V(t, x)) \Delta_{L} V(t, x)
$$

But $\varphi_{\xi}^{\prime}(\xi)=\frac{1}{f_{0}(\xi)}$, hence

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=f_{0}(U(t, x))+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t} \tag{7}\\
\Delta_{L} U(t, x)=\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x) \tag{8}
\end{gather*}
$$

Substituting (7) and (8) into (3), we derive

$$
f_{0}(U(t, x))+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t}=\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x)+f_{0}(U(t, x)),
$$

i.e., (6) satisfies equation (3).

Choosing $t=0$ in (6) and taking into account that $V(0, x)=U_{0}(x)$, we deduce that $U(0, x)=U_{0}(x)$.
Example 1. Let us construct a solution of the Cauchy problem

$$
\begin{gather*}
\left.\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)-U^{3}(t, x)\right), \tag{9}\\
U(0, x)=h\left(\frac{1}{2}\|x\|_{H}^{2}\right), \tag{10}
\end{gather*}
$$

where $h(\lambda)$ is a smooth function on $(-\infty<\lambda<\infty)$.
Note that in (9) $f_{0}(\xi)=-\xi^{3}$ that yields $\varphi(\xi)=-\int \frac{d \xi}{\xi^{3}}=\frac{1}{2 \xi^{2}}$, and hence $\varphi^{-1}(z)=$ $\frac{1}{\sqrt{2 z}}$.

A solution of the Cauchy problem for the heat equation

$$
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x), \quad V(0, x)=h\left(\frac{1}{2}\|x\|_{H}^{2}\right)
$$

has the form

$$
V(t, x)=h\left(t+\frac{1}{2}\|x\|_{H}^{2}\right) .
$$

Thus, by (6) we obtain a solution of the problem (9), (10) in the form

$$
U(t, x)=\frac{1}{\sqrt{2\left[t+\frac{1}{2}\left[h\left(t+\frac{1}{2}\|x\|_{H}^{2}\right)\right]^{-2}\right]}}
$$

4. Boundary value problem

Consider a boundary value problem

$$
\begin{gather*}
\left.\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)\right)+f_{0}(U(t, x)) \quad \text { in } \quad \Omega \tag{11}\\
U(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{12}
\end{gather*}
$$

where $U(t, x)$ is a function on $[0, \mathfrak{T}] \times H, f_{0}(\xi)$ is a given function of one dimensional argument and $G(t, x)$ is a given function.

Theorem 2. Let $f_{0}(\xi)$ be a differentiable function in the domain $\{U(t, x)\}$.
Let there exist both the primitive $\varphi(\xi)=\int \frac{d \xi}{f_{0}(\xi)}$ and its inverse function φ^{-1}.
Let, in addition, $\bar{\Omega}$ be a fundamental domain.
Assume that in a certain functional class \mathcal{F} there exists a solution of the boundary value problem for the heat equation,

$$
\begin{equation*}
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x) \quad \text { in } \quad \Omega,\left.\quad V(t, x)\right|_{\Gamma}=G(t, x) \tag{13}
\end{equation*}
$$

Then, in this class \mathcal{F}, a solution of the boundary value problem (11), (12) is defined by the formula

$$
\begin{equation*}
\varphi(U(t, x))=T(x)+\varphi(V(t, x)) \tag{14}
\end{equation*}
$$

i.e., $U(t, x)=\varphi^{-1}(T(x)+\varphi(V(t, x)))$. Here $T(x)=\frac{R^{2}-Q(x)}{\gamma}$ (see p. 2).

Proof. We deduce from (14) the relation

$$
\varphi_{\xi}^{\prime}(U(t, x)) \frac{\partial U(t, x)}{\partial t}=\varphi_{\xi}^{\prime}(V(t, x)) \frac{\partial V(t, x)}{\partial t} .
$$

For $m=1$, we deduce from (14) using (2) the relation

$$
\varphi_{\xi}^{\prime}(U(t, x)) \Delta_{L} U(t, x)=\Delta_{L} T(x)+\varphi_{\xi}^{\prime}(V(t, x)) \Delta_{L} V(t, x)
$$

Since $\Delta_{L} T(x)=-1$ and $\varphi_{\xi}^{\prime}(\xi)=\frac{1}{f_{0}(\xi)}$, we get

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t}, \tag{15}\\
\Delta_{L} U(t, x)=-f_{0}(U(t, x))+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x) . \tag{16}
\end{gather*}
$$

Substituting (15) and (16) into (11), we derive

$$
\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t}=-f_{0}(U(t, x))+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x)+f_{0}(U(t, x))
$$

i.e., (14) satisfies equation (11).

At the surface Γ we obtain $T(x)=0$. Substituting $T(x)=0$ into (14) and keeping in mind that $\left.V(t, x)\right|_{\Gamma}=G(t, x)$, we deduce the equality $\left.U(t, x)\right|_{\Gamma}=G(t, x)$.

Example 2. Let us construct a solution of the boundary value problem without initial data in the ball of the space $H, \bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$,

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)-U^{3}(t, x) \quad \text { in } \quad \Omega \tag{17}\\
\left.U(t, x)\right|_{\|x\|^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right) \tag{18}
\end{gather*}
$$

where $g(\lambda)$ is a smooth function on $(-\infty<\lambda<\infty)$.
For the considered domain $\Omega=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$, we have $T(x)=\frac{R^{2}-\|x\|_{H}^{2}}{2}$.
In the equation (17) we have $f_{0}(\xi)=-\xi^{3}$, which yields $\varphi(\xi)=\frac{1}{2 \xi^{2}}, \quad \varphi^{-1}(z)=\frac{1}{\sqrt{2 z}}$.
A solution of the boundary value problem without initial data for the heat equation

$$
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x),\left.\quad V(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right)
$$

has the form

$$
V(t, x)=g\left(t+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right)
$$

Hence by (14) we obtain a solution of the problem (17), (18) in the form

$$
U(t, x)=\frac{1}{\sqrt{\left[R^{2}-\|x\|_{H}^{2}+\left[g\left(t+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right)\right]^{-2}\right]}}
$$

5. Initial-Boundary value problem

Consider the initial-boundary value problem

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)+f_{0}(U(t, x)) \quad \text { in } \quad \Omega \tag{19}\\
U(0, x)=U_{0}(x) \tag{20}\\
U(t, x)=G(t, x) \quad \text { on } \quad \Gamma \tag{21}
\end{gather*}
$$

where $U(t, x)$ is a function defined on $[0, \mathcal{T}] \times H, f_{0}(\xi)$ is a given function of one variable and $U_{0}(x), G(t, x)$ are given functions.

Theorem 3. Let $f_{0}(\xi)$ be a differentiable function in the domain $\{U(t, x)\}$.
Let there exist the primitive $\varphi(\xi)=\int \frac{d \xi}{f_{0}(\xi)}$ and the inverse function φ^{-1}.
Let the domain $\bar{\Omega}$ be fundamental.
Assume that, in a certain functional class \mathcal{F}, there exist solutions of the initialboundary value problems

$$
\begin{equation*}
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x) \quad \text { in } \quad \Omega, \quad V(0, x)=U_{0}(x),\left.\quad V(t, x)\right|_{\Gamma}=G(t, x) \tag{22}
\end{equation*}
$$

Then a solution of the initial-boundary value problem (19)-(21) in this class \mathcal{F} is given by the formula

$$
\begin{equation*}
\varphi(U(t, x))=\tau(t, T(x))+\varphi(V(t, x)) \tag{23}
\end{equation*}
$$

i.e., $U(t, x)=\varphi^{-1}(\tau(t, T(x))+\varphi(V(t, x)))$, where $\tau(t, T(x))=t-q(t-T(x)), q(\lambda)=\lambda$ if $\lambda \geq 0$ and $q(\lambda)=0$ if $\lambda \leq 0, T(x)=\frac{R^{2}-Q(x)}{\gamma}$.

If the initial-boundary value problem (22) possesses a unique solution in the same functional class then the solution of the initial-boundary value problem (19)-(21) is unique in this class.

Proof. We deduce from (23) that

$$
\varphi_{\xi}^{\prime}(U(t, x)) \frac{\partial U(t, x)}{\partial t}=\frac{\partial \tau(t, x)}{\partial t}+\varphi_{\xi}^{\prime}(V(t, x)) \frac{\partial V(t, x)}{\partial t}
$$

For $m=1$, we deduce from (23) using (2) that

$$
\varphi_{\xi}^{\prime}(U(t, x)) \Delta_{L} U(t, x)=\Delta_{L} \tau(t, x)+\varphi_{\xi}^{\prime}(V(t, x)) \Delta_{L} V(t, x)
$$

Recall that $\varphi_{\xi}^{\prime}(\xi)=\frac{1}{f_{0}(\xi)}$, which yields

$$
\begin{align*}
\frac{\partial U(t, x)}{\partial t} & =f_{0}(U(t, x)) \frac{\partial \tau(t, x)}{\partial t}+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t} \tag{24}\\
\Delta_{L} U(t, x) & =f_{0}(U(t, x)) \Delta_{L} \tau(t, x)+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x) \tag{25}
\end{align*}
$$

Substituting (24) and (25) into (19), we obtain

$$
\begin{aligned}
& f_{0}(U(t, x)) \frac{\partial \tau(t, x)}{\partial t}+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \frac{\partial V(t, x)}{\partial t} \\
& \quad=f_{0}(U(t, x)) \Delta_{L} \tau(t, x)+\frac{f_{0}(U(t, x))}{f_{0}(V(t, x))} \Delta_{L} V(t, x)+f_{0}(U(t, x))
\end{aligned}
$$

i.e., (23) satisfies equation (19) (since $\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x), \frac{\partial \tau(t, T)}{\partial t}=\Delta_{L} \tau(t, T)+1$).

Setting $t=0$ in (23) and taking into account that $V(0, x)=U_{0}(x)$, and $\tau(0, T)=0$, we obtain the equality $U(0, x)=U_{0}(x)$.

Since $V(t, x)=G(t, x), \tau(t, T)=0$ on the surface Γ, we deduce from (23) that $\left.U(t, x)\right|_{\Gamma}=G(t, x)$.

The final statement of the theorem is obvious.
Example 3. Let us construct a solution of the initial-boundary value problem in the ball $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$ of the space H,

$$
\begin{gather*}
\frac{\partial U(t, x)}{\partial t}=\Delta_{L} U(t, x)-U^{3}(t, x) \quad \text { in } \quad \Omega \tag{26}\\
U(0, x)=h\left(\frac{1}{2}\|x\|_{H}^{2}\right) \tag{27}\\
\left.U(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right) \tag{28}
\end{gather*}
$$

where $h(\lambda)$ is a smooth function on the positive half axis with the support $\left[0, \frac{R^{2}}{2}\right]$, and $g(\lambda)$ is a smooth function such that $g(\lambda)=0$ for $\lambda \leq 0$ (note that comparing with Examples 1 and 2 we need some additional assumptions concerning the functions $h(\lambda)$ and $g(\lambda)$).

In the considered domain $\bar{\Omega}=\left\{x \in H:\|x\|_{H}^{2} \leq R^{2}\right\}$, we have $T(x)=\frac{R^{2}-\|x\|_{H}^{2}}{2}$.
In equation (26), $f_{0}(\xi)=-\xi^{3}$ and, hence, $\varphi(\xi)=-\int \frac{d \xi}{\xi^{3}}=\frac{1}{\xi^{2}}$ and $\varphi^{-1}(z)=\frac{1}{\sqrt{2 z}}$.
Consider the initial-boundary value problem for the heat equation in the Shilov class of functions

$$
\frac{\partial V(t, x)}{\partial t}=\Delta_{L} V(t, x) \quad \text { in } \quad \Omega, \quad V(0, x)=h\left(\frac{1}{2}\|x\|_{H}^{2}\right)
$$

$$
\begin{equation*}
\left.V(t, x)\right|_{\|x\|_{H}^{2}=R^{2}}=g\left(t-\frac{1}{2}\|x\|_{H}^{2}\right) . \tag{29}
\end{equation*}
$$

Its solution has the form

$$
V(t, x)=h\left(t+\frac{1}{2}\|x\|_{H}^{2}\right)+g\left(t+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right) .
$$

It results from (23) that the solution of the problem (26)-(28) has the form

$$
U(t, x)=\frac{1}{\sqrt{2\left\{t-q\left(t+\frac{\|x\|_{H}^{2}}{2}-\frac{R^{2}}{2}\right)+\frac{1}{2}\left[h\left(t+\frac{1}{2}\|x\|_{H}^{2}\right)+g\left(t+\frac{1}{2}\|x\|_{H}^{2}-R^{2}\right)\right]^{-2}\right\}}}
$$

References

1. P. Lévy, Sur la generalisation de léquation de Laplace dans domaine fonctionnelle, C. R. Acad. Sci. 168 (1919), 752-755.
2. P. Lévy, Problémes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951.
3. M. N. Feller, Notes on infinite-dimensional nonlinear parabolic equations, Ukrain. Mat. Zh. 52 (2000), no. 5, 690-701. (Russian)
4. M. N. Feller, The Lévy Laplacian, Cambridge University Press, Cambridge-New York-Mel-bourne-Madrid—Cape Town-Singapore-San Paulo, 2005.

Obolonsky prospect 7, ap. 108, Kyiv, 04205, Ukraine
E-mail address: feller@otblesk.com
National Agricultural University, 15 Geroiv Oborony, Kyiv, 03041, Ukraine
E-mail address: ira@otblesk.com

[^0]: 2000 Mathematics Subject Classification. Primary 35R15, 46405.
 Key words and phrases. Lévy Laplacian, quasilinear equations, parabolic equations, initial-boundary value problems.

