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ON SOLUTIONS OF PARABOLIC AND ELLIPTIC TYPE
DIFFERENTIAL EQUATIONS ON (−∞,∞) IN A BANACH SPACE

VOLODYMYR M. GORBACHUK

To my father.

Abstract. We show that every classical solution of a parabolic or elliptic type ho-
mogeneous differential equation on (−∞,∞) in a Banach space may be extended to
an entire vector-valued function. The description of all the solutions is given, and
necessary and sufficient conditions for a solution to be continued to a finite order and
finite type entire vector-valued function are presented.

1. Let B be a complex Banach space with norm ‖ · ‖. Denote by E(B) (L(B)) the
set of all densely defined closed linear operators (bounded linear operators) in B. We
also denote by I,D(A), ρ(A) and RA(·) the identity operator, the domain, the resolvent
set, and the resolvent of the operator A. In what follows, by {etA}t≥0 we mean a C0-
semigroup of bounded linear operators in B with generator A (for a C0-semigroup theory
we refer to [1, 2]). Recall that a C0-semigroup {etA}t≥0 is called bounded analytic of
angle θ ∈

(
0, π

2

]
if etA admits an extension to an L(B)-valued function ezA, analytic

inside the sector Σθ = {z ∈ C : | arg z| < θ}, strongly continuous at 0 on each ray
of this sector, and for any θ′ < θ there exists a constant cθ′ such that ‖ezA‖ ≤ cθ′ as
z ∈ Σθ′ = {z ∈ C : | arg z| ≤ θ′}.

For an operator A ∈ E(B) and a number β ≥ 0, we put

G{β}(A) =
⋃
α>0

Gα
β(A), G(β)(A) =

⋂
α>0

Gα
β(A),

where

Gα
β(A) = {x ∈ C∞(A)

∣∣∃c = c(x) > 0,∀k ∈ N0 = {0} ∪ N : ‖Akx‖ ≤ cαkkkβ}

is a Banach space with norm

‖x‖Gα
β (A) = sup

k∈N0

‖Akx‖
αkkkβ

,

C∞(A) =
⋂

n∈N0
D(An). In G{β}(A) (G(β)(A)), the topology of inductive (projective)

limit of the spaces Gα
β(A) is introduced

G{β}(A) = ind lim
α→∞

Gα
β(A), G(β)(A) = proj lim

α→0
Gα

β(A).
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The spaces G{1}(A) and G(1)(A) are the spaces of analytic and entire vectors, respec-
tively, for the operator A. It is not hard to see that if β1 < β2, then the dense and
continuous embeddings

G(β1)(A) ⊆ G{β1}(A) ⊆ G(β2)(A) ⊆ G{β2}(A)

hold.
If the operator A is bounded, then for any β > 0

G{0}(A) = G(β)(A) = G{β}(A) = B.

It is also easily shown that for an arbitrary β, one can choose an unbounded operator A
so that the space G{β}(A) (and all the more G(β)(A)) consists only of zero vector. But if
an operator A is the generator of a bounded analytic C0-semigroup {etA}t≥0 with angle
θ, then, as was proved in [3], G(β)(A) = B if β > 1− 2θ

π . For β = 1− 2θ
π , the cases are

possible when G{β}(A) = {0}.

Theorem 1. Let A ∈ E(B). Then for an arbitrary x ∈ G{β}(A) (x ∈ G(β)(A)), the
vector-valued function

exp(zA) =
∞∑

k=0

zkAkx

k!

is entire in the space G{β}(A) as β < 1 (in the space G(β)(A) as β ≤ 1). The collection
{exp(zA)}z∈C forms a C0-group of linear continuous operators in these spaces.

If A is the generator of a C0-semigroup {etA}t≥0 in B, then

∀x ∈ G(1)(A), ∀t ≥ 0 : exp(tA)x = etAx.

In the case where the semigroup {etA}t≥0 is bounded analytic one, the latter relation is
true for all t ∈ R1 (if t < 0, etA := (e−tA)−1 ).

Proof. It is evident that if x ∈ G(1)(A), then the series
∑∞

k=0
zkAkx

k! converges in B for
any z ∈ C, and it defines an entire B-valued function.

Now, let x ∈ G(β)(A) with β ≤ 1, that is,

∀α > 0, ∃c = c(x, α) > 0, ∀n ∈ N0 : ‖Anx‖ ≤ cαnnnβ (β ≤ 1).

Then, for an arbitrary m ∈ N0,∥∥∥∥An

(
exp(zA)x−

m∑
k=0

zkAkx

k!

)∥∥∥∥ =
∥∥∥∥An

∞∑
k=m+1

zkAkx

k!

∥∥∥∥ ≤ ∞∑
k=m+1

|z|k‖An+kx‖
k!

≤ c

∞∑
k=m+1

|z|k

k!
αn+k(n + k)(n+k)β = cαnnnβ

∞∑
k=m+1

|z|k

k!
kkβ

(
1 +

k

n

)nβ (
1 +

n

k

)kβ

.

The inequalities (
1 +

k

n

)nβ

≤
(

1 +
k

n

)n

≤ ek

and (
1 +

n

k

)kβ

≤
(
1 +

n

k

)k

≤ en

imply that ∥∥∥∥An

(
exp(zA)x−

m∑
k=0

zkAkx

k!

)∥∥∥∥ ≤ cm(αe)nnnβ ,

where

cm =
∞∑

k=m+1

|zαe|k

k!
kkβ .
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Set m = 0. Then, for any fixed z ∈ C, we have the inclusion exp(zA)x ∈ G(β)(A).
Moreover, whatever large δ > 0 is taken, the series

∑∞
k=0

zk

k! A
kx converges in the space

Gα
β(A) in the disk |z| < δ for any α < 1

e2δ . So, this series defines an entire vector-valued
function in Gα

β(A), α ∈
(
0, 1

e2δ

)
, and, therefore, in G(β)(A).

In the same way, it is established that exp(zA)x, x ∈ G{β}(A) (β < 1), is an entire
vector-valued function in G{β}(A).

The group property of {exp(zA)}z∈C is checked as in the same was in the scalar
case. �

Obviously, the vector-valued function exp(zA)x, x ∈ G(β)(A), is a solution of the
Cauchy problem {

y′(t) = Ay(t), t ∈ (−∞,∞),
y(0) = x.

2. Consider the equations

(1) y′(t)−Ay(t) = 0, t ∈ (−∞,∞),

and

(2) y′(t) + Ay(t) = 0, t ∈ (−∞,∞),

where A is the generator of a bounded analytic C0-semigroup {etA}t≥0 in B. The
equation (1) is an abstract parabolic equation while equation (2) is an inverse abstract
parabolic one.

Examples. Let B is one of the spaces Lp(Rn)(1 ≤ p < ∞), C0(Rn) or BUC(Rn),
where C0(Rn) (BUC(Rn)) is the space of continuous functions on Rn vanishing at infinity
(bounded uniformly continuous functions on Rn) with the supremum norm. Define in
these spaces the operator A in the following way:

Au(x) = ∆u(x), x ∈ Rn; D(A) = {u ∈ B : ∆u ∈ B}

(∆ is taken in the distribution sense).
The operator A generates a bounded analytic C0-semigroup of angle π

2 in B, namely,

(etAf)(x) = (4πt)−n/2

∫
Rn

f(x− s)e−|s|
2/4t ds, t > 0, f ∈ B, x ∈ Rn,

(see [4]). In this case, equation (1) is the classical heat one.
If A ≤ 0 is a selfadjoint operator in a Hilbert space, then A generates a bounded

analytic C0-semigroup of angle π
2 , too.

By a solution (classical) of equation (1) or equation (2) on (−∞,∞) we mean a strongly
continuously differentiable vector-valued function y(t) : (−∞,∞) 7→ D(A) satisfying (1)
or (2), respectively.

Theorem 2. Let A be the generator of a bounded analytic C0-semigroup {etA}t≥0 in
B. A vector-valued function y(t) : (−∞,∞) 7→ D(A) is a solution of equation (1) on
(−∞,∞) if and only if it may be represented in the form

(3) y(t) = exp(tA)g, g ∈ G(1)(A), t ∈ (−∞,∞).

So, every solution y(t) of equation (1) on (−∞,∞) admits an extension to an entire
vector-valued function in the space G(1)(A).

Proof. Suppose y(t) to be a solution of equation (1) on (−∞,∞). Since y(t) is a solution
of this equation on [0,∞), we have (see [1])

y(t) = etAf = exp(tA)f, f ∈ D(A), t ∈ [0,∞).
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Put z(t) = y(−t), t ≥ 0. The vector-valued function z(t) is a solution of equation (2)
on [0,∞). As was shown in [5],

y(−t) = z(t) = exp(−tA)g, g ∈ G(1)(A), t ∈ [0,∞).

Taking into account the continuity of y(t) at 0, we obtain f = g. Thus, y(t) is
represented in the form (3) on the whole real axis. As was remarked in Theorem 1, such
a vector-valued function is entire in the space G(1)(A). �

Note that the fact that the values of a solution y(t) of equation (1) belong to the space
G(1)(A), for the heat equation means that its solutions are entire functions not only in
t, but in x as well.

In a way analogous to that used for equation (1), one can prove that a vector-valued
function y(t) : (−∞,∞) 7→ D(A) is a solution of equation (2) on (−∞,∞) if and only if

(4) y(t) = exp(−tA)g, g ∈ G(1)(A), t ∈ (−∞,∞).

By Theorem 1, a vector-valued function of the form (4) is also entire in the space G(1)(A).

3. Now we pass to the second-order equation

(5) y′′(t)−By(t) = 0, t ∈ (−∞,∞),

where B is a weakly positive operator in B, that is, B ∈ E(B), ρ(B) ⊃ (−∞, 0), and
there exists a constant M > 0 such that

∀λ > 0 : ‖RB(−λ)‖ ≤ M

λ
.

If, in addition, 0 ∈ ρ(B), then the operator B is called positive.
As was shown in [1], for a weakly positive operator B, the powers Bα, 0 < α < 1, are

defined, and A = −B1/2 is a generating operator of a bounded analytic C0-semigroup
in B.

Under a solution (classical) of equation (5) on (−∞,∞) we mean a twice continuously
differentiable function y(t) : (−∞,∞) 7→ D(B) satisfying (5) on (−∞,∞).

Theorem 3. Let B be a weakly positive operator in B. A function y(t) : (−∞,∞) 7→
D(B) is a solution of equation (5) on (−∞,∞) if and only if it admits a representation
in the form

(6) y(t) = exp(tA)f +
sinh(tA)

A
g, f, g ∈ G(1)(A),

where A = −B1/2,

sinh(zA)
A

=
∫ z

0

coth(zA) dz =
∞∑

k=0

z2k+1

(2k + 1)!
A2k,

coth(zA) =
1
2
[exp(zA) + exp(−zA)] =

∞∑
k=0

z2k

(2k)!
A2k.

So, every solution of equation (5) on (−∞,∞) is an entire vector-valued function in the
space G(1)(A).

Proof. Suppose that y(t) is a solution of equation (5) on (−∞,∞). The equation (5)
may be written as (

d

dt
+ A

)(
d

dt
−A

)
y(t) = 0.
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Put z(t) =
(

d
dt −A

)
y(t). Obviously, z(t) is a solution of equation (2) on (−∞,∞) with

A = −B1/2 which is the generator of a bounded analytic C0-semigroup in B. As we have
proved above,

z(t) = exp(−tA)g, g ∈ G(1)(A), t ∈ (−∞,∞).
Hence, y(t) is a solution on (−∞,∞) of the equation(

d

dt
−A

)
y(t) = exp(−tA)g.

Set

z0(t) = y(t)− sinh(tA)
A

g.

Then (
d

dt
−A

)
z0(t) = exp(−tA)g −

(
d

dt
−A

)
sinh(tA)

A
g = 0,

i.e. z0(t) is a solution of equation (1) on (−∞,∞). Therefore,

z0(t) = exp(tA)f, f ∈ G(1)(A), t ∈ (−∞,∞),

whence

y(t) = exp(tA)f +
sinh(tA)

A
g, f, g ∈ G(1)(A),

which, in view of Theorem 1 and the fact that the vector-valued function coth(zA) is
entire in G(1)(A), enables to conclude that y(t) can be extended to an entire vector-valued
function y(z) in G(1)(A).

It is not hard to check that a vector-valued function of the form (6) is a solution of
equation (5). �

4. Denote by A(B) the set of all entire B-valued functions. We say that a vector-
valued function y(z) ∈ A(B) is of finite growth order (finite order) if there exists a
number γ ≥ 0 such that

‖y(z)‖ ≤ e|z|
γ

for sufficiently large |z|. The infimum ρ(y) of such γ is called the order of y(z).
Now let δ > 0 be an arbitrary fixed number. By the degree of the function y(z) ∈ A(B)

with respect to the number δ we mean the value

σ(y, δ) = lim
r→∞

lnmax|z|=r ‖y(z)‖
rδ

.

It is clear that if y(z) has a finite order ρ = ρ(y) and δ < ρ, then σ(y, δ) = ∞, but
σ(y, δ) = 0 for δ > ρ. The number σ(y) = σ(y, ρ) (the degree of y(z) with respect to its
order) is called the type of y(z). It is usual to call a finite order vector-valued function
y ∈ A(B) an exponential type vector-valued function if ρ(y) ≤ 1 and σ(y, 1) < ∞.

For an arbitrary number ρ > 0, we denote by Aρ(B) the set of all functions y ∈ A(B),
whose orders do not exceed ρ, and of finite degrees with respect to this ρ. We also put

Aρ
α(B) = {y ∈ Aρ(B)

∣∣∃c > 0,∀z ∈ C : ‖y(z)‖ ≤ ceα|z|ρ},
where 0 < c = c(y) = const. The set Aρ

α(B) is a Banach space with norm

‖y‖Aρ
α(B) = sup

r≥0
e−αrρ

max
|z|=r

‖y(z)‖.

Evidently,
Aρ(B) =

⋃
α>0

Aρ
α(B).

In the space Aρ(B) we introduce the topology of inductive limit of the Banach spaces
Aρ

α(B):
Aρ(B) = ind lim

α→∞
Aρ

α(B).
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The convergence yn → y (n →∞) in Aρ(B) means the following: the sequence σ(yn, ρ)
is bounded, and ‖yn(z)− y(z)‖ → 0 (n →∞) uniformly on each compact set K ⊂ C. It
is easily seen that A1(B) coincides with the space of exponential type entire B-valued
functions.

It is reasonable to ask whether there exist solutions of equations (1), (2) or (5) on
(−∞,∞), admitting extensions to vector-valued functions from the class Aρ(B), and if
this is the case, then under what conditions, the set of such solutions of a corresponding
equation is dense in the set of all its solutions, that is, for any solution y(z) of equation
(1), (2) or (5) there exists a sequence yn ∈ Aρ(B) converging uniformly to y on every
compact set K ⊂ C.

Theorem 4. For a solution y(z) of equations (1),(2) (or (5)) on (−∞,∞) to belong to
Aρ(B), it is necessary and sufficient that y(0) ∈ G{β}(A) (y(0), y′(0) ∈ G{β}(A)), where
β = ρ−1

ρ . If this is the case, then y(z) ∈ G{β}(A) for any z ∈ C. Under the condition
that ρ > π

2θ (θ is the analyticity angle of the semigroup {etA}t≥0), the set of solutions
y ∈ Aρ(B) of the corresponding equation is dense in the set of all its solutions.

Proof. Let y ∈ Aρ(B) be a solution of equation (1) on (−∞,∞). Then y(z) is represented
in the form (3):

y(z) = exp(zA)g, g ∈ G(1)(A).

In view of Theorem 2 from [6], y(0) = g ∈ G{β}(A), where β = ρ−1
ρ . By Theorem 1,

y(z) ∈ G{β}(A) for an arbitrary z ∈ C. The inverse assertion follows from the same
theorem. The similar arguments are suitable for equation (2).

Now suppose y ∈ Aρ(B) to be a solution of equation (5) on (−∞,∞). By Theorem
2 from [6], y(0), y′(0) ∈ G{γ}(B) with γ = 2ρ−1

ρ . Since G{γ}(B) = G{ γ
2 }(A), we have

y(0), y′(0) ∈ G{β}(A). This and representation (6) imply the inclusions

y(0) = f ∈ G{β}(A), y′(0) = Af + g ∈ G{β}(A)

Taking into account the embedding AG{β}(A) ⊆ G{β}(A), we conclude that g ∈ G{β}(A).
The Theorem 1 and the formula (6) guarantee the inclusion y(z), y′(z) ∈ G{β}(A) for
any z ∈ C.

In [3], it was shown that if β > 1 − 2θ
π (i.e. ρ = 1

1−β > 1

1−(1− 2θ
π ) = π

2θ , then

G(β)(A) = B. Since the solutions of equation (1) on (−∞,∞) have the form y(z) =
exp(zA)g, g ∈ G(1)(A), and G{β}(A) = G(1)(A), the vector g can be approximated
in G(1)(A)-topology by vectors gn ∈ G{β}(A) (n ∈ N). By Theorem 1, the sequence
yn(z) = exp(zA)gn converges to y(z) uniformly on each compact set K ⊂ C. The similar
arguments can be applicable for equations (2) and (5). �

As for ρ = π
2θ , the considered equations may, generally, have no solutions on (−∞,∞)

in the class Aρ(B) except for the trivial one. But (see [7]) under the conditions that
θ = π

2 and the inequality∫ 1

0

ln lnM(s) ds < ∞, where M(s) = sup
|=λ|≥s

‖RA(λ)‖

is fulfilled, the set of exponential type entire solutions is dense in the set of all solutions.
This happens to be the case when, for example, A is a normal operator in a Hilbert
space H, generating a bounded analytic C0-semigroup, or B is a weakly positive normal
operator in H.
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