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INVERSE SPECTRAL PROBLEM FOR A STAR GRAPH OF
STIELTJES STRINGS

O. BOYKO AND V. PIVOVARCHIK

On the occasion of 70-th anniversary of M. L. Gorbachuk.

Abstract. We solve the inverse spectral problem for a star graph of Stieltjes strings
(these are threads bearing a finite number of point masses) with the pendant ends
fixed, i.e., we recover the masses and lengths of the intervals between them from the
spectra of small transverse vibrations of the graph together with the spectra of the
Dirichlet problems on the edges and the total lengths of the edges.

1. Introduction

It is well known that two spectra of boundary problems describing small transverse
vibrations of a string, together with its length, uniquely determine the density of the
string for a very large class of strings. This result was stated by M. G. Krein and proved
by L. de Branges (see [1] p. 252). If the string is smooth such that its density belongs to
the Sobolev space W 2

2 then the equation for the amplitude function of small vibrations
of the string can be reduced by means of the Liouville transformation [2] (p. 292) to the
Sturm-Liouville equation. The corresponding inverse problem of recovering the potential
by two spectra of boundary problems was completely solved in [3].

For the opposite case of an extremely non-smooth string, known as a Stieltjes string
which is a thread bearing point masses, with a finite number of point masses, the inverse
problem was solved in [4] and [5]. It should be mentioned that the model of a massless
string with point masses is used in many engineering studies [6], [7], [8], e.g. in electrical
engineering [9].

The first example of an inverse problem for three spectra is the following: to find the
potential for a given spectrum of the Dirichlet problem generated by a Sturm-Liouville
equation with a real potential on an interval [0, a], and spectra of the Dirichlet problems
generated by the same equation on the subintervals [0, a/2] and [a/2, a]. This problem
was solved in [10] (see also [11], [12], where uniqueness of the solution was investigated).

This problem was generalized in [13] to the case of more general boundary conditions
and potentials, in [14] to the case of coupled oscillating systems and in [15] for Jacobi
matrices.

These three spectral problem can be considered as a problem on a star graph with two
edges. Thus, it admits a generalization to three edged star graph [16] and to a q-edged
star graph [17].

Here we consider the inverse problem for a star graph consisting of q Stieltjes strings
joined at an interior vertex. The ends of the string are assumed to be fixed. At the interior
vertex we assume the continuity condition to be satisfied together with the Kirchhoff
condition. For q = 2 this problem has been solved in [18].
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Throughout the paper we assume the total lengths of the strings as well as the number
of the point masses to be finite.

In Section 2 we describe relations between the spectra: the spectrum of the whole
graph of Stieltjes strings and the spectra of its q parts obtained by clamping the graph
(imposing Dirichlet boundary conditions) at the interior vertex, namely, we show that
the spectrum of the whole graph and the union of the spectra of the parts interlace
in a certain sense. It follows from the observation that the ratio of the product of the
characteristic polynomials of the problems on the edges and the characteristic polynomial
of the problem on the whole graph appears to be an S-function (a Nevanlinna function
positive on (−∞, 0)).

In Section 3 we solve the corresponding inverse problem: to recover values of the
point masses, the lengths of the intervals between them (the subintervals) from given
q + 1 spectra mentioned above and the lengths of q strings. We use the method of
continued fractions of [4] based on the results of [19]. We show that if the q + 1 spectra
do not intersect, then they, together with the lengths of the parts of the string, uniquely
determine values of the point masses and the lengths of the subintervals. A procedure of
recovering the values of the masses and the lengths of the subintervals is proposed.

2. Direct spectral problem

We consider a plane star graph of q edges. Each edge is a Stieltjes string (a threads,
i.e., a string of zero density) bearing a finite number of point masses. Every string has one
end joined at an interior vertex of the star graph. The j-th edge consists of nj +1 (nj ≥ 1)
intervals l

(j)
k (k = 0, 1, . . . , nj) with point masses m

(j)
k (k = 1, 2, . . . , nj) separating them

(l(j)k−1 lies to the exterior vertex from m
(j)
k and l

(j)
k lies to the interior one). The lengths

of the strings we denote by lj , lj =
∑nj

k=0 l
(j)
k . The strings are stretched and the pendant

ends fixed.
Denote by v

(j)
k (t) (k = 1, 2, . . . , nj ; j = 1, 2, . . . , q) the transverse displacement of the

point mass m
(j)
k , which lies on the j-th string and is the k-th one counting from the

pendant end, at the time t. We assume the threads to be stretched by the forces each
equal to 1.

Then small transverse vibrations of the net are subject to the equation

v
(j)
k (t)− v

(j)
k+1(t)

l
(j)
k

+
v
(j)
k (t)− v

(j)
k−1(t)

l
(j)
k−1

+ m
(j)
k v

(j)′′
k (t) = 0

(k = 1, 2, . . . , nj , j = 1, 2, . . . , q).

Continuity of the string at the point joining the edges yields

v
(1)
n1+1(t) = v

(2)
n2+1(t) = · · · = v

(q)
nq+1(t).

Absence of a point mass or external force at the point of joining implies that

(2.1)
q∑

j=1

v
(j)
nj+1(t)− v

(j)
nj (t)

l
(j)
nj

= 0.

We impose Dirichlet boundary conditions at the pendant vertices,

v
(j)
0 (t) = 0, j = 1, 2, . . . , q,

which mean that the ends are fixed. Substituting v
(j)
k (t) = u

(j)
k eiλt we obtain the follow-

ing recurrences for the amplitudes u
(j)
k :

(2.2)
u

(j)
k − u

(j)
k+1

lk
+

u
(j)
k − u

(j)
k−1

lk−1
−m

(j)
k λ2u

(j)
k = 0 (k = 1, 2, . . . , nj , j = 1, 2, . . . , q),
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(2.3) u
(1)
n1+1 = u

(2)
n2+1 = · · · = u

(q)
nq+1,

(2.4)
q∑

j=1

u
(j)
nj+1 − u

(j)
nj

l
(j)
nj

= 0,

(2.5) u
(j)
0 = 0, j = 1, 2, . . . , q.

According to [4],

u
(j)
k = R

(j)
2k−2(λ

2)u(j)
1 (k = 1, 2, . . . , nj),

where R
(j)
2k−2(λ

2) are polynomials of degree 2k−2 which can be obtained by solving (2.2).
We set, by definition,

R
(j)
2k−1(λ

2) =
R

(j)
2k (λ2)−R

(j)
2k−2(λ

2)

l
(j)
k

.

Due to (2.2), the polynomials R
(j)
k satisfy the recurrence relations

R
(j)
2k−1(λ

2) = −λ2m
(j)
k R

(j)
2k−2(λ

2) + R
(j)
2k−3(λ

2),

R
(j)
2k (λ2) = l

(j)
k R

(j)
2k−1(λ

2) + R
(j)
2k−2(λ

2)

(k = 1, 2, . . . , nj ; R
(j)
−1(λ

2) =
1

l
(j)
0

, R
(j)
0 (λ2) = 1).

Due to (2.3) and (2.4), at the point of joining we have

R
(1)
2n1

(λ2)u(1)
1 = R

(2)
2n2

(λ2)u(2)
1 = · · · = R

(q)
2nq

(λ2)u(q)
1 ,

q∑
j=1

R
(j)
2nj−1(λ

2)u(j)
1 = 0.

Therefore, the spectrum of problem (2.2)–(2.4) coincides with the set of zeros of the
polynomial

(2.6) φ(λ2) =
q∑

j=1

R
(j)
2nj−1(λ

2)
q∏

k=1, k 6=j

R
(k)
2nk

(λ2).

It should be mentioned that according to [4] the fractions
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

and can be expanded

into continued fractions,

(2.7)
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

= l(j)nj
+

1

−m
(j)
nj z + 1

l
(j)
nj−1+

1

−m
(j)
nj−1z+···+ 1

l
(j)
1 + 1

−m
(j)
1 z+ 1

l
(j)
0

.

Definition 2.1. The function ω(λ) is said to be a Nevanlinna function (or an R-function
in terms of [20]) if the following conditions are satisfied:
1) it is analytic in the half-planes Imλ > 0 and Imλ < 0;
2) ω(λ) = ω(λ) (Imλ 6= 0);
3) Imλ Im ω(λ) ≥ 0 for Imλ 6= 0.

Definition 2.2. (see [20]). The Nevanlinna function ω(λ) is said to be an S-function if
ω(λ) > 0 for λ < 0.
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Definition 2.3. An S-function ω(λ) is said to be an S0-function if 0 is not a pole of
ω(λ).

Theorem 2.1. After cancellation of common factors (if any) in the numerator and the
denominator, the function ∏q

j=1 R
(j)
2nj

(z)

φ(z)
becomes an S0-function.

Proof. Let us represent the ratio as follows:∏q
j=1 R

(j)
2nj

(z)

φ(z)
=

(
q∑

j=1

R
(j)
2nj−1(z)

R
(j)
2nj

(z)

)−1

.

Since
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

are Nevanlinna functions (see [4]), the functions −
R

(j)
2nj−1(z)

R
(j)
2nj

(z)
are also

Nevanlinna as well as the functions −
∑q

j=1

(
R

(j)
2nj−1(z)

R
(j)
2nj

(z)

)
and

(∑q
j=1

R
(j)
2nj−1(z)

R
(j)
2nj

(z)

)−1

. Since

S0-functions
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

are positive for z ∈ (−∞, 0], we have that
(∑q

j=1

R2nj−1(z)

R2nj
(z)

)−1

is

also positive for z ∈ (−∞, 0]. The theorem is proved. �

Let us denote by n =
∑q

j=1 nj and by {λk} (k = ±1,±2, . . . ,±n, λ−k = −λk and
λk ≥ λk′ for k > k′ ) the eigenvalues of problem (2.2)–(2.5). If we clamp our string at
the point of joining of its parts then we obtain q problems on the edges with Dirichlet
boundary conditions at both ends,

(2.8)
u

(j)
k − u

(j)
k+1

l
(j)
k

+
u

(j)
k − u

(j)
k−1

l
(j)
k−1

−m
(j)
k λ2u

(j)
k = 0 (k = 1, 2, . . . , nj),

(2.9) u
(j)
nj+1 = 0,

(2.10) u
(j)
0 = 0.

Let us denote by {ν(j)
k } (k = ±1,±2, . . . ,±nj), where ν

(j)
−k = −ν

(j)
k and ν

(j)
k > ν

(j)
k′ for

k > k′, j = 1, 2, . . . , q, the spectra of problems (2.8)–(2.10) , respectively. By {ζk}n
−n we

denote the union {ζk}n
−n,k 6=0 = ∪q

j=1{ν
(j)
k }nj

j=−nj ,k 6=0.

Theorem 2.2. The sequences {λk}n
−n,k 6=0 and {ζk}n

−n,k 6=0 interlace as follows:
1) ζ−n ≤ λ−n ≤ ζ−n+1 ≤ · · · ≤ ζ−1 < λ−1 < 0 < λ1 < ζ1 ≤ λ2 ≤ · · · ≤ ζn;
2) ζk−1 = λk if and only if λk = ζk;
3) the multiplicity of ζk does not exceed q.

Proof. By Lemma 5.1 in [20], Theorem 2.1 implies that

λ
∏q

j=1 R
(j)
2nj

(λ2)

φ(λ2)

becomes a Nevanlinna function possibly after cancellation of equal factors in the numer-
ator and the denominator. Suppose λk = ν

(j)
p for some k, p and j, then (2.6) implies

(2.11) R
(j)
2nj−1(ν

(j)2
p )

q∏
k=1,k 6=j

R
(k)
2nk

(ν(j)2
p ) = 0.
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It is known (see [4]) that R
(j)
2nj

(ν(j)2
p ) = 0 implies R

(j)
2nj−1(ν

(j)2
p ) 6= 0 which, together with

(2.11), yields

R
(r)
2nr

(ν(j)2
p ) = 0

for some r 6= j.
This means ν

(j)
p ∈ {ν(r)

k }nr

k=−nr,k 6=0. Assertions 1 and 2 are proved. The multiplicity

of a zero of
∏q

j=1 R
(j)
2nj

(λ2) cannot exceed q because each factor in the product has only
simple zeros. Theorem 2.2 is proved. �

3. Inverse three spectral problem

Here we will consider the problem of recovering the sets {m(j)
k }nj

k=1, {l
(j)
k }nj

k=0 (j =
1, 2, . . . , q) using the spectra {λk}n

k=−n,k 6=0, {ν
(j)
k }nj

k=−nj ,k 6=0 (j = 1, 2, . . . , q) and the
lengths lj of the strings. Here n =

∑q
k=1 nj .

Theorem 3.1. Let lj > 0 (j = 1, 2, . . . , q) be given. Let the sequences of real numbers
{λk}n

k=−n, k 6=0, {ν
(j)
k }nj

k=−nj , k 6=0 (j = 1, 2, . . . , q, n =
∑q

j=1 nj) satisfy the conditions

1. λ−k = −λk for each k; λk < λk′ if k < k′, ν
(j)
−k = −ν

(j)
k for each k and each j; and,

for each j = 1, 2, . . . , nj, ν
(j)
k < ν

(j)
k′ if k < k′.

2. {λk}n
k=−n, k 6=0 ∩ {ν

(j)
k }nj

k=−nj , k 6=0 = ∅ for j = 1, 2, . . . , q, and {ν(j)
k }nj

k=−nj , k 6=0 ∩
{ν(s)

k }ns

k=−ns, k 6=0 = ∅ for j, s ∈ {1, 2, . . . , q} and j 6= s.

3. Elements of the set {ζk}n
k=−n =def{0}∪q

j=1{ν
(j)
k }nj

k=−nj , k 6=0 are indexed in such
a way that ζ−k = −ζk for each k; ζk < ζk′ if k < k′ interlace with elements of
{λk}n

k=−n), k 6=0,

(3.1) ζ−n < λ−n < ζ−n+1 < · · · < λ−1 < 0 < λ1 < ζ1 < · · · < ζn.

Then there exist a unique collection of sets {m(j)
k }nj

k=1, (j = 1, 2, . . . , q), {l(j)k }nj

k=0

(j = 0, 1, 2, . . . , q) such that
∑nj

k=0 l
(j)
k = lj, which generate problems (2.2)–(2.5) and

(2.8)–(2.10) with the spectra {λk}n
k=−n, k 6=0, {ν

(j)
k }nj

k=−nj , k 6=0, respectively.

Proof. Let us construct the polynomials

(3.2) Q0(λ2) =
q∑

j=1

l−1
j

q∏
j=1

lj

n∏
k=1

(
1− λ2

λ2
k

)
,

(3.3) Qj(λ2) = lj

nj∏
k=1

(
1− λ2

ν
(j)2
k

)
,

and the Lagrange interpolating polynomial

(3.4) Pj(λ2) =
nj∑

k=1

λ2Q0(ν
(j)2
k )

ν
(j)2
k

∏q
s=1, s 6=j Qs(ν

(j)2
k )

nj∏
p=1, p 6=k

(λ2 − ν
(j)2
p )

(ν(j)2
k − ν

(j)2
p )

+
nj∏

k=1

ν
(j)2
k − λ2

ν
(j)2
k

.

It is clear that
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(3.5)

Pj(0) = 1,

Pj(ν
(j)2
k ) =

Q0(ν
(j)2
k )∏q

s=1, s 6=j Qs(ν
(j)2
k )

= Q0(ν
(j)2
k )

dQj(z)
dz

∣∣∣∣
z=(ν

(j)
k )2

 d
∏q

p=1 Qj(z)
dz

∣∣∣∣∣
z=ν

(j)2
k

−1

,

k = 1, 2, . . . , nj .

From (3.5) and (3.1) we conclude that

Pj(0) > 0, Pj(ν
(j)2
k )(−1)k > 0, k = 1, 2, . . . , nj .

Consequently, the zeros µ
(j)2
k of Pj(z) are all positive and interlace with the zeros ν

(j)2
k

of Qj(z)

0 < µ
(j)2
1 < ν

(j)2
1 < · · · < µ(j)2

n1
< ν(j)2

n1
.

Thus, due to the evident inequality Qj(0)
Pj(0)

= lj > 0, we conclude that Qj(z)
Pj(z) is an S-

function.
It is shown in [4] that the an S0-function can be expanded into a continued fraction,

(3.6)
Qj(z)
Pj(z)

= l(j)nj
+

1

−m
(j)
nj z + 1

l
(j)
nj−1+

1

−m
(j)
nj−1z+...+ 1

l
(j)
1 + 1

−m
(j)
1 z+ 1

l
(j)
0

,

where {l(j)k }nj

0 and {m(j)
k }nj

1 are sequences of positive numbers which we identify with
the subintervals and masses we are looking for. From (3.3), (3.5) and (3.7) we obtain

lj =
Qj(0)
Pj(0)

= l(j)nj
+ l

(j)
nj−1 + · · ·+ l

(j)
1 + l

(j)
0 .

Comparing (3.6) with (2.7) we conclude that

(3.7) R
(j)
2nj

(z) = TjQj(z), R
(j)
2nj−1(z) = TjPj(z),

where Tj are nonzero constants and R
(j)
2nj

(z), R
(j)
2nj−1(z) are the polynomials described

in the previous section.
From (3.7) we conclude that the spectra of problems (2.8)–(2.9) generated by the

obtained sets {l(j)k }nj

k=0, {m
(j)
k }nj

k=1 coincide with {ν(j)
k }nj

k=1. Let us show that the spec-
trum of problem (2.2)–(2.5) generated by the sets {l(j)k }nj

k=0, {m
(j)
k }nj

k=1 coincides with
{λk}n

−n,k 6=0. As it was shown in Section 2, the spectrum is nothing but the set of zeros
of the polynomial

q∑
j=1

R
(j)
2nj−1(λ

2)
q∏

s=1, s 6=j

R
(s)
2ns

(λ2).

Using (3.7) we obtain
q∑

j=1

R
(j)
2nj−1(z)

q∏
s=1, s 6=j

R
(s)
2ns

(z). =
q∏

j=1

TjQ̂0(z),
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where we use the notation

Q̂0(z) =
q∑

j=1

Pj(z)
q∏

s=1, s 6=j

Qs(z).

Let us compare the polynomial Q0(z) with the polynomial Q̂0(z). It follows from (3.2)–
(3.5) that

Q0(0) =
q∑

j=1

l−1
j

q∏
j=1

lj = Q̂0(0),

Q0(ν
(j)2
k ) =

q∏
s=1, s 6=j

Qs(ν
(j)2
k )Pj(ν

(j)2
k ) = Q̂0(ν

(j)2
k ), k = 1, 2, . . . , nj , j = 1, 2, . . . , q,

and, consequently, Q̂0(z) ≡ Q0(z). Hence, φ(z) =
∏q

j=1 TjQ0(z) and the set of zeros of
φ(λ2) is nothing but {λk}n

k=−n,k 6=0.
Let us prove now uniqueness of the solution of the inverse problem. Suppose there exist

two collections of sets {{m(j)
k }nj

k=1, {l
(j)
k }nj

k=0, j = 1, 2, . . . , q} and {{m̃(j)
k }nj

k=1, {l̃
(j)
k }nj

k=0, j =
1, 2, . . . , q} which satisfy

∑nj

k=0 l
(j)
k =

∑nj

k=0 l̃
(j)
k = lj for j = 1, 2, . . . , q and which generate

problems (2.8)–(2.10) with the same spectra, {ν(j)
k }nj

k=−nj ,k 6=0 = {ν̃(j)
k }nj

k=−nj ,k 6=0 (j =

1, 2, . . . , q) and problems (2.2)–(2.5) with the same spectra {λk}n
k=−n,k 6=0 = {λ̃k}n

k=−n,k 6=0

(n =
∑q

1 nj). Then solving the corresponding direct problems (2.8)–(2.10) we find poly-
nomials R

(j)
2nj

(z) and R̃
(j)
2nj

(z) the sets of zeros of which coincide. This means that

(3.8) R̃
(j)
2nj

(z) = TjR
(j)
2nj

(z), j = 1, 2, . . . , q,

where Tj are nonzero constants. Solving problem (2.2)–(2.5) for both collections
{{m(j)

k }nj

k=1, {l
(j)
k }nj

k=0, j = 1, 2, . . . , q} and {{m̃(j)
k }nj

k=1, {l̃
(j)
k }nj

k=0, j = 1, 2, . . . , q} we ob-
tain the corresponding characteristic polynomials φ(z) and φ̃(z) which have the same set
of zeros {λk}. Therefore,

(3.9) φ̃(z) = Cφ(z),

where C is a nonzero constant. Using (2.6) we obtain

(3.10) φ(ν(j)2
k ) = R

(j)
2nj−1(ν

(j)2
k )

q∏
s=1, s 6=j

R
(s)
2ns

(ν(j)
k )

and

(3.11) φ̃(ν(j)2
k ) = R̃

(j)
2nj−1(ν

(j)2
k )

q∏
s=1, s 6=j

R̃
(s)
2ns

(ν(j)
k ).

Using (3.7), (3.10), (3.11) we obtain

(3.12) C =
R̃

(j)
2nj−1(ν

(j)2
k )

R
(j)
2nj−1(ν

(j)2
k )

q∏
s=1, s 6=j

Ts.

Using (2.7) taking into account the equation l̃j = lj we obtain

(3.13)
R̃

(j)
2nj

(0)

R̃
(j)
2nj−1(0)

= l̃j = lj =
R

(j)
2nj

(0)

R
(j)
2nj−1(0)

.
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Now (3.8) and (3.13) imply

(3.14)
R̃

(j)
2nj−1(0)

R
(j)
2nj−1(0)

=
R̃

(j)
2nj

(0)

R
(j)
2nj

(0)
= Tj .

Using (3.9)–(3.12) and (3.14) we obtain

(3.15) C = T1T2 . . . Tq.

Substituting (3.15) into (3.12) we obtain

(3.16) R̃
(j)
2nj−1(ν

(j)2
k )− TjR

(j)
2nj−1(ν

(j)2
k ) = 0, k = 1, 2, . . . , nj , j = 1, 2, . . . , q.

According to (3.13) and (3.16) the polynomial R̃
(j)
2nj−1(z) − TjR

(j)
2nj−1(z) of degree not

greater than nj vanishes at nj + 1 points and is identically 0. This means that

R̃
(j)
2nj−1(z) = TjR

(j)
2nj−1(z).

Together with (3.8), this implies

R̃
(j)
2nj

(z)

R̃
(j)
2nj−1(z)

=
R

(j)
2nj

(z)

R
(j)
2nj−1(z)

.

The left-hand side and the right-hand side possess the same decomposition into continued
fractions (2.7). Theorem 3.1 is proved. �

Remark 3.1. If Condition 2 of Theorem 3.1 is violated but Condition 2 of Theorem 2.2 is
satisfied instead, then the sets of positive numbers {m(j)

k }nj

k=1, {l
(j)
k }nj

k=0 exist such that∑nj

k=0 l
(j)
k = lj and the sets generate problems (2.2)–(2.5), (2.8)–(2.10) with the spec-

tra {λk}n
k=−n, k 6=0, {ν

(j)
k }nj

k=−nj , k 6=0 respectively, but the collection of sets { {m(j)
k }nj

k=1,

{l(j)k }nj

k=0 } is not unique.

Remark 3.2. Similar to Theorem 3.1, the result is true if we impose Neumann or Robin
conditions at pendant ends instead of the Dirichlet conditions.
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