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SCALE OF SPACES ON A CLOSED MANIFOLD
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Dedicated to Professor Gorbachuk on the occasion of his 70th birthday.

Abstract. Douglis-Nirenberg elliptic systems of linear pseudodifferential equations
are studied on a smooth closed manifold. We prove that the operator generated
by the system is a Fredholm one on the refined two-sided scale of the functional
Hilbert spaces. Elements of this scale are the special isotropic spaces of Hörmander–
Volevich–Paneah. The refined smoothness of a solution of the system is studied. The
elliptic systems with a parameter are investigated as well.

0. Introduction

In this paper we consider Douglis-Nirenberg elliptic systems [1] of linear pseudodif-
ferential equations on a smooth closed manifold. L. Hörmander [2, Sec. 1.0] proved
a priori estimates for solutions of these systems in appropriate pairs of Sobolev spaces.
These estimates are equivalent to the fact that the linear operator A corresponding to the
elliptic system is bounded, Fredholm, and establishes a complete collection of topological
isomorphisms in the two-sided scale of Sobolev spaces [3, 4]. This fact has important
applications in the theory of elliptic boundary-value problems [5, 3], in the index theory
for elliptic operators [6], in the spectral theory [7, 8, 9] and others (see survey [4]).

In contrast to the papers cited above, we investigate the operator A on a Hilbert scale
of special isotropic Hörmander–Volevich–Paneah spaces [10–13],

(0.1) Hs,ϕ := H
〈·〉s ϕ(〈·〉)
2 , 〈ξ〉 :=

(
1 + |ξ|2

)1/2
.

Here s ∈ R and ϕ is a functional parameter slowly varying at +∞ in Karamata’s sense.
In particular, every standard function

ϕ(t) = (log t)r1(log log t)r2 . . . (log . . . log t)rn , {r1, r2, . . . , rn} ⊂ R, n ∈ N,

is admissible. This scale was introduced and investigated by the authors in [14, 15].
It contains the Sobolev scale {Hs} ≡ {Hs,1} and is attached to it with the number
parameter s, and is considerably finer.

The spaces of form (0.1) naturally arise in different spectral problems including con-
vergence of spectral expansions of self-adjoint elliptic operators almost everywhere in the
norm of the spaces Lp with p > 2 or C (see survey [16]); spectral asymptotics of general
self-adjoint elliptic operators in a bounded domain, the Weyl formula, a sharp estimate
of the remainder in it (see [17, 18]) and others. We also think that they can be useful
in other ”fine” questions. Due to their interpolation properties, the spaces Hs,ϕ occupy
a special place among spaces that define generalized smoothness and which are actively
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investigated and used today (see survey [19], recent articles [20, 21] and the bibliography
given there).

The main result of this paper is a theorem on a collection of topological isomorphisms
established by the operator A on refined scale (0.1). The refined local smoothness of
a solution of the elliptic system is obtained as a significant application. The elliptic
systems with a parameter are investigated in the refined scale as well. We also give some
auxiliary results which may be of interest by themselves.

The case of scalar differential operators was investigated earlier in [15, 22–26].

1. The statement of the problem and the main result

Let Γ be a closed (compact and without boundary) infinitely smooth manifold of
dimension n ≥ 1. We suppose that a certain C∞-density dx is defined on Γ. By D′(Γ)
we denote the linear topological space of all distributions on Γ, i.e., D′(Γ) is the space
antidual to the space C∞(Γ) with respect to the sesquilinear form

(h, ω)Γ :=
∫

Γ

h(x)ω(x) dx.

This form can be extended by continuity to the form (h, ω)Γ of h ∈ D′(Γ) and ω ∈ C∞(Γ)
which is equal to the value of the distribution h at the test function ω.

According to [4, Sec. 2.1] we denote by Ψm
ph(Γ) the class of polyhomogeneous (in other

words, classical) pseudodifferential operators (PsDOs) of the order m, defined on the
manifold Γ. Note that for a PsDO from the class Ψm

ph(Γ), the principal symbol is defined
on the cotangent bundle T ∗Γ \ 0 (here 0 is the zero-section). This principal symbol is
an infinitely smooth and complex-valued function which is positively homogeneous of
the degree m with respect to ξ in every section T ∗xΓ \ {0}, x ∈ Γ. We assume that the
principal symbol can be equal to zero identically. Then Ψm

ph(Γ) ⊂ Ψr
ph(Γ) for m < r. A

linear differential operator of the order ≤ m on the manifold Γ with infinitely smooth
coefficients is a particular and important case of a PsDO from the class Ψm

ph(Γ) with
m ≥ 1. Note that the PsDOs under consideration are linear and continuous in both
topological spaces, C∞(Γ) and D′(Γ).

We consider the system of linear equations

(1.1)
p∑
k=1

Aj,k uk = fj on Γ, j = 1, . . . , p.

Here p ∈ N and Aj,k, where j, k = 1, . . . , p, is a scalar classical PsDO defined on the
manifold Γ. Equations (1.1) are understood in the sense of the distribution theory.

Further we suppose system (1.1) to be elliptic in Douglis-Nirenberg’s sense [4, Sec. 3.2],
i.e., the following two conditions are fulfilled:

a) there are sets of real numbers {l1, . . . , lp} and {m1, . . . ,mp} such that Aj,k ∈
Ψlj+mk

ph (Γ) for all indices j, k = 1, . . . , p;

b) for each point x ∈ Γ and covector ξ ∈ T ∗xΓ\{0}, the inequality det
(
a
(0)
j,k(x, ξ)

)p
j,k=1

6= 0 holds; here a(0)
j,k(x, ξ) is the principal symbol of the PsDO Aj,k.

Let us write down the system of equations (1.1) in a matrix form, Au = f on Γ.
Here A :=

(
Aj,k

)
is a square matrix of the order p, and u = col (u1, . . . , up), f =

col (f1, . . . , fp) are function columns. We study the mapping u 7→ Au on the refined scale
of spaces over the manifold Γ. This scale consists of the Hilbert spaces Hs,ϕ(Γ), where
the number parameter s is arbitrary real and the function parameter ϕ runs over a certain
class M of functions slowly varying in the Karamata sense at +∞. The definition of the
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refined scale is given in Sec. 2. Now we only note that this scale contains the Hilbert
scale of the Sobolev spaces Hs(Γ) = Hs,1(Γ) and is much finer than the Sobolev scale.

Let us formulate the main result of the paper. Denote by A+ the matrix PsDO
formally adjoint to the operator A with respect to the density dx. The ellipticity of
the system Au = f is equivalent to the ellipticity of the adjoint system A+v = g (in
Douglis-Nirenberg’s sense). We set

(1.2)
N := {u ∈ (C∞(Γ))p : Au = 0 on Γ },

N+ := { v ∈ (C∞(Γ))p : A+v = 0 on Γ }.

Since the systems Au = f and A+v = g are elliptic, the spaces N and N+ are finite-
dimensional [4, Theorem 3.2.1].

Theorem 1.1. Let us assume that the spaces N and N+ are trivial. Then, for arbitrary
parameters s ∈ R and ϕ ∈M, the following topological isomorphism holds true:

(1.3) A :
p∏
k=1

Hs+mk,ϕ(Γ) ↔
p∏
j=1

Hs−lj ,ϕ(Γ).

A more general statement is given in Sec. 4. We can see that the matrix PsDO A
leaves the parameter ϕ invariant. Theorem 1.1 refines the known result [4, Theorem 3.2.1]
concerning properties of elliptic system (1.1) in a Sobolev scale (the case where ϕ ≡ 1).
This theorem permits us to investigate the local smoothness of a solution of the system
in the refined scale.

2. The refined scale of spaces

The refined scale was introduced and studied in [15, 26]. We formulate (for reader’s
convenience) the definition and some properties of this scale.

We denote by M the set of all Borel measurable functions ϕ : [1,+∞) → (0,+∞)
such that:

a) the functions ϕ and 1/ϕ are bounded on every closed interval [1, b], where 1 <
b < +∞;

b) ϕ is a slowly varying function at +∞ in the Karamata sense, i.e. [27, Sec. 1.1]

lim
t→+∞

ϕ(λ t)/ϕ(t) = 1 for each λ > 0.

Let s ∈ R and ϕ ∈M. We denote by Hs,ϕ(Rn) the space of all tempered distributions
w in the Euclidean space Rn such that the Fourier transform ŵ of the distribution w is
a function locally Lebesgue integrable in Rn and satisfies the condition∫

Rn
〈ξ〉2s ϕ2(〈ξ〉) |ŵ(ξ)|2 dξ <∞.

Here 〈ξ〉 = (1+ξ21+· · ·+ξ2n)1/2 is the smoothed modulus of a vector ξ = (ξ1, . . . , ξn) ∈ Rn.
We define the inner product in the space Hs,ϕ(Rn) by the formula(

w1, w2

)
Hs,ϕ(Rn)

:=
∫

Rn
〈ξ〉2sϕ2(〈ξ〉) ŵ1(ξ) ŵ2(ξ) dξ.

This inner product induces a norm in Hs,ϕ(Rn) in the usual way.
The space Hs,ϕ(Rn) is a special isotropic Hilbert case of the spaces introduced by

L. Hörmander [10, Sec. 2.2], [11, Sec. 10.1] and L. R. Volevich, B. P. Paneah [12, Sec. 2],
[13, Sec. 1.4.2]. In the simplest case where ϕ(·) ≡ 1, the space Hs,ϕ(Rn) coincides with
the Sobolev space Hs(Rn). Inclusions⋃

ε>0

Hs+ε(Rn) =: Hs+(Rn) ⊂ Hs,ϕ(Rn) ⊂ Hs−(Rn) :=
⋂
ε>0

Hs−ε(Rn)
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imply that, in the collection of spaces

(2.1) {Hs,ϕ(Rn) : s ∈ R, ϕ ∈M},

the functional parameter ϕ defines an additional (subpower) smoothness with respect
to the basic (power) s-smoothness. In other words, ϕ refines the power smoothness s.
Therefore the collection of spaces (2.1) is naturally called a refined scale over Rn (with
respect to the Sobolev scale).

The refined scale over the manifold Γ is constructed from scale (2.1) in the usual
way. Let us choose a finite atlas from the C∞-structure on Γ, consisting of local charts
αj : Rn ↔ Uj , j = 1, . . . , r. Here the open sets Uj form a finite covering of the manifold
Γ. Let functions χj ∈ C∞(Γ), j = 1, . . . , r, form a partition of unity on Γ satisfying the
condition suppχj ⊂ Uj .

We set

Hs,ϕ(Γ) := {h ∈ D′(Γ) : (χjh) ◦ αj ∈ Hs,ϕ(Rn) ∀ j = 1, . . . , r} .

Here (χjh) ◦ αj is a representation of the distribution χjh in the local chart αj . The
inner product in the space Hs,ϕ(Γ) is defined by the formula

(h1, h2)s,ϕ :=
r∑
j=1

((χjh1) ◦ αj , (χjh2) ◦ αj)Hs,ϕ(Rn)

and induces the norm ‖h‖s,ϕ :=
(
h, h

)1/2

s,ϕ
. In the Sobolev case where ϕ ≡ 1 we omit the

index ϕ in the notations.
The Hilbert space Hs,ϕ(Γ) is separable, continuously embedded into the space D′(Γ),

and independent (up to equivalent norms) of the choice of the atlas and the partition of
unity. The collection of function spaces

{Hs,ϕ(Γ) : s ∈ R, ϕ ∈M}

is called the refined scale over the manifold Γ. We note the following properties of this
scale [15, Theorem 3.6].

Proposition 2.1. Let s ∈ R and ϕ,ϕ1 ∈M. The following assertions are true.
(i) The set C∞(Γ) is dense in the space Hs,ϕ(Γ).
(ii) For each ε > 0 the following embeddings are compact and dense:

Hs+ε(Γ) ↪→ Hs,ϕ(Γ) ↪→ Hs−ε(Γ) and Hs+ε,ϕ1(Γ) ↪→ Hs,ϕ(Γ).

(iii) Suppose that the function ϕ/ϕ1 is bounded in a neighborhood of +∞. Then
the embedding Hs,ϕ1(Γ) ↪→ Hs,ϕ(Γ) is continuous and dense. It is compact if
ϕ(t)/ϕ1(t) → 0 as t→ +∞.

(iv) For every fixed integer ρ ≥ 0 the inequality

(2.2)
∫ +∞

1

d t

t ϕ 2(t)
<∞

is equivalent to existence of the embedding Hρ+n/2, ϕ(Γ) ↪→ C ρ(Γ). This embed-
ding is compact.

(v) The spaces Hs,ϕ(Γ) and H−s,1/ϕ(Γ) are mutually dual (up to equivalent norms)
with respect to the sesquilinear form ( · , · )Γ.

In connection with assertion (v) we note that ϕ ∈ M ⇔ 1/ϕ ∈ M. Hence the space
H−s, 1/ϕ(Γ) is well defined.

At the end of this section, let us give the following alternative (and equivalent) de-
scription of the refined scale over a closed manifold Γ [26, Theorem 3.8].
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Let a Riemannian structure on the manifold Γ, which defines the density dx, be given
(this is always possible), and let 4Γ be the Beltrami-Laplace operator on Γ. We define
the function

ϕs(t) := ts/2ϕ(t1/2) for t ≥ 1 and ϕs(t) := ϕ(1) for 0 < t < 1.

We consider the operator ϕs(1−4Γ) on the space L2(Γ) = L2(Γ, dx) as a Borel function
of the self-adjoint positive operator 1−4Γ.

Proposition 2.2. For arbitrary s ∈ R and ϕ ∈M, the space Hs,ϕ(Γ) coincides with the
completion of the set of functions u ∈ C∞(Γ) with respect to the norm ‖ϕs(1−4Γ)u‖L2(Γ)

which is equivalent to the norm ‖u‖s,ϕ.

3. The interpolation with a function parameter

An interpolation, with a function parameter, of couples of Hilbert spaces is a natural
generalization of the classical Lions-Krein interpolation method to the case where a more
general function then the power function is used as an interpolation parameter [28–31,
14, 26]. Now we give a definition of this interpolation. For our purpose, it is sufficient
to restrict ourselves to the case of separable Hilbert spaces.

An ordered couple [X0, X1] of complex Hilbert spaces X0 and X1 is called admissible if
the spacesX0 andX1 are separable and there is a continuous dense embeddingX1 ↪→ X0.
If, in addition, ‖u ‖X0 ≤ ‖u ‖X1 for each u ∈ X1, then the admissible couple [X0, X1]
is called normal. Note that we can transform every admissible couple [X0, X1] into the
normal one by replacing the norm ‖u ‖X1 with the equivalent norm c ‖u ‖X1 where c is
a sufficiently large positive number.

Let an admissible couple X = [X 0, X1] of Hilbert spaces be given. It is known [32,
Ch. 1, Sec. 2.1] that for this couple X there exists an isometric isomorphism J : X1 ↔ X 0

such that J is a self-adjoint positive operator on the space X 0 with the domain X1.
The operator J is called a generating one for the couple X. This operator is uniquely
determined by the couple X.

We denote by B the set of all positive functions defined and Borel measurable in the
open positive semiaxis (0,+∞). Let ψ ∈ B. Since Spec J ⊂ (0,+∞), generally the
unbounded operator ψ(J) is defined on the space X0 as a function of J . The domain of
the operator ψ(J) is a linear manifold which is dense in X0. We denote by [X0, X1]ψ or
simply by Xψ the domain of the operator ψ(J) endowed with the graph inner product
and the corresponding norm,

(u, v)Xψ := (u, v)X0 + (ψ(J)u, ψ(J)v)X0 , ‖u ‖Xψ = (u, u)1/2Xψ
.

This makes Xψ a separable Hilbert space.
A function ψ is called an interpolation parameter if the following condition is satisfied

for all admissible couples X = [X0, X1], Y = [Y0, Y1] of Hilbert spaces and an arbitrary
linear mapping T given on X0: if the restriction of the mapping T to the space Xj is a
bounded operator T : Xj → Yj for each j = 0, 1, then the restriction of the mapping T
to the space Xψ is also a bounded operator T : Xψ → Yψ.

In other words, ψ is an interpolation parameter if and only if the mapping X 7→ Xψ

is an interpolation functor given on the category of all admissible couples X of Hilbert
spaces. In the case where ψ is an interpolation parameter, we say that the space Xψ is
obtained by the interpolation with the function parameter ψ of the admissible couple X.

The classical result of J.-L. Lions and S. G. Krein in the interpolation theory consists
in the fact that the power function ψ(t) = t θ with the index θ ∈ (0, 1) is an interpolation
parameter (see e.g. [32, Ch. 1, Sec. 5.1]). In this case the index θ plays the role of
numerical interpolation parameter. However the class of interpolation parameters is not
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exhausted by power functions. We use the following functions as interpolation parameters
(see [14, Theorem 2.1], [24, Lemma 7.1]).

Proposition 3.1. Let a function ψ ∈ B be such that:
a) ψ is bounded on every closed interval [a; b] where 0 < a < b < +∞;
b) ψ is a function regularly varying in Karamata’s sense at +∞ with the index θ

where 0 < θ < 1, i.e. [27, Sec. 1.1]

lim
t→+∞

ψ(λ t)/ψ(t) = λθ for each λ > 0.

Then ψ is an interpolation parameter. Moreover, there is a number cψ > 0 such that

‖T ‖Xψ→Yψ ≤ cψ max
{
‖T ‖Xj→Yj : j = 0, 1

}
.

Here X = [X 0, X1] and Y = [Y 0, Y1] are arbitrary admissible couples of Hilbert spaces
and T is an arbitrary linear mapping on X 0 such that the operators T : Xj → Yj are
bounded for j = 0, 1. The number cψ > 0 does not depend on T and on the couples X,
Y if these couples are normal.

The interpolation with a function parameter establishes a closed connection between
the classical Sobolev scale and the refined scale. Namely, we have the following proposi-
tion [15, Theorem 3.5].

Proposition 3.2. Let a function ϕ ∈ M and positive numbers ε, δ be given. We set
ψ(t) := t ε/(ε+δ) ϕ(t1/(ε+δ)) for t ≥ 1 and ψ(t) := ϕ(1) for 0 < t < 1. Then

(i) The function ψ ∈ B satisfies the all conditions of Proposition 3.1 with θ =
ε/(ε+ δ) and, therefore, ψ is an interpolation parameter.

(ii) For an arbitrary s ∈ R, we have[
Hs−ε(Γ), Hs+δ(Γ)

]
ψ

= Hs,ϕ(Γ) with the equivalence of norms.

This implies the following fact used below repeatedly.

Lemma 3.1. Let T be a PsDO from the class Ψr
ph(Γ) where r ∈ R. Then the restriction

of the mapping u 7→ Tu, u ∈ D′(Γ), to the space Hs,ϕ(Γ) is a bounded operator

(3.1) T : Hs,ϕ(Γ) → Hs−r,ϕ(Γ) for every s ∈ R, ϕ ∈M.

Proof. In the case where ϕ ≡ 1 this result is known [4, Theorem 2.1.2]. Let us choose
arbitrary parameters s ∈ R and ϕ ∈M. We consider the linear bounded operators

T : Hs∓1(Γ) → Hs∓1−r(Γ).

Let us use the interpolation with the function parameter ψ from Proposition 3.2 where
ε = δ = 1. We obtain the bounded operator

T :
[
Hs−1(Γ), Hs+1(Γ)

]
ψ
→

[
Hs−1−r(Γ), Hs+1−r(Γ)

]
ψ
.

Proposition 3.2 (ii) implies boundedness of the operator (3.1). �

We also need the following two propositions on interpolation of Fredholm operators
and direct products of spaces [33, Sec. 5]. We recall that a linear bounded operator
T : X → Y is called Fredholm if its kernel is finite-dimensional and its range T (X) is
closed in the space Y and has finite codimension. Here X,Y are Banach spaces. A
Fredholm operator T has finite index defined by indT := dim kerT − dim(Y/T (X)).

Proposition 3.3. Let two admissible couples of Hilbert spaces X = [X 0, X1] and Y =
[Y 0, Y1] be given. Moreover, let a linear mapping T on X 0 be such that there exist
bounded Fredholm operators T : Xj → Yj for j = 0, 1 which have a common kernel N
and the same index κ. Then, for an arbitrary interpolation parameter ψ ∈ B, the bounded
operator T : Xψ → Yψ is Fredholm and has the kernel N , the range Yψ ∩T (X 0), and the
same index κ.
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Proposition 3.4. Let [X(k)
0 , X

(k)
1 ], k = 1, . . . , p, be a finite collection of admissible

couples of Hilbert spaces. Then, for every function, ψ ∈ B we have[ p∏
k=1

X
(k)
0 ,

p∏
k=1

X
(k)
1

]
ψ

=
p∏
k=1

[
X

(k)
0 , X

(k)
1

]
ψ

with equality of norms.

4. The elliptic system in the refined scale

Let us return to the elliptic system (1.1) which is written in the matrix form Au = f .
We study properties of the matrix PsDO A in the refined scale of spaces. First note that
by Lemma 3.1 the condition Aj,k ∈ Ψlj+mk

ph (Γ) implies boundedness of the operator

(4.1) A :
p∏
k=1

Hs+mk,ϕ(Γ) →
p∏
j=1

Hs−lj ,ϕ(Γ) for each s ∈ R, ϕ ∈M.

We assume that the finite-dimensional spaces N and N+ given by formula (1.2) are, gene-
rally, not trivial. We have the following assertion containing Theorem 1.1 as a particular
case.

Theorem 4.1. For arbitrary parameters s ∈ R and ϕ ∈ M, the bounded operator (4.1)
is Fredholm. Its kernel coincides with the space N , whereas the range consists of all
vector-valued functions

(4.2) f = col (f1, . . . , fp) ∈
p∏
j=1

Hs−lj ,ϕ(Γ)

such that

(4.3)
p∑
j=1

(fj , wj)Γ = 0 for each w = (w1, . . . , wp) ∈ N+.

The index of operator (4.1) is equal to dimN − dimN+ and independent of s, ϕ.

Proof. In the case where ϕ ≡ 1 (the Sobolev scale) this theorem is known [4, Theo-
rem 3.2.1]. From this, the general case ϕ ∈ M is deduced by using interpolation with a
function parameter in the following way. Let s ∈ R and consider the bounded Fredholm
operators

(4.4) A :
p∏
k=1

Hs∓1+mk(Γ) →
p∏
j=1

Hs∓1−lj (Γ)

which have the common kernel N , the common index κ := dimN − dimN+ and the
closed ranges

(4.5) A
( p∏
k=1

Hs∓1+mk(Γ)
)

=
{
f = col (f1, . . . , fp) ∈

p∏
j=1

Hs∓1−lj (Γ) : (4.3) is true
}
.

Let ψ be an interpolation parameter from Proposition 3.2 in which ε = δ = 1. We apply
the interpolation with the parameter ψ to operators (4.4). We get the bounded operator

A :
[ p∏
k=1

Hs−1+mk(Γ),
p∏
k=1

Hs+1+mk(Γ)
]
ψ
→

[ p∏
j=1

Hs−1−lj (Γ),
p∏
j=1

Hs+1−lj (Γ)
]
ψ

that coincides with operator (4.1) by virtue of Propositions 3.2 and 3.4. Hence according
to Proposition 3.3, operator (4.1) is Fredholm and has the kernel N and index κ =
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dimN − dimN+. Moreover, the range of this operator is equal to( p∏
j=1

Hs−lj ,ϕ(Γ)
)
∩ A

( p∏
k=1

Hs−1+mk(Γ)
)
.

From this it follows with a use of (4.5) that the range is as needed. �

According to this theorem, N+ is a deficiency subspace for operator (4.1). Note that
the operator

(4.6) A+ :
p∏
j=1

H−s+lj ,1/ϕ(Γ) →
p∏
k=1

H−s−mk,1/ϕ(Γ)

is adjoint to operator (4.1) in view of Proposition 2.1 (v). Since the adjoint system
A+v = g is elliptic, bounded operator (4.6) is Fredholm and has the kernel N+ and the
deficiency subspace N , in virtue of Theorem 4.1. We also note that, in the scalar case
p = 1, the indices of operators (4.1) and (4.6) are equal to 0 provided that dim Γ ≥ 2
(see [6], [4, Sec. 2.3 f]).

If the spaces N and N+ are trivial, then operator (4.1) coincides with topological
isomorphism (1.3). This follows from Theorem 4.1 and the Banach theorem on inverse
operator. In general, it is convenient to define the appropriate isomorphism with the
help of the following projections.

Let us represent the spaces in formula (4.1) as the following direct sums of closed
spaces:

p∏
k=1

Hs+mk, ϕ(Γ) = N u
{
u ∈

p∏
k=1

Hs+mk, ϕ(Γ) :
p∑
k=1

(uk, vk)Γ = 0 ∀ v ∈ N
}
,

p∏
j=1

Hs−lj ,ϕ(Γ) = N+ u
{
f ∈

p∏
j=1

Hs−lj ,ϕ(Γ) :
p∑
j=1

(fj , wj)Γ = 0 ∀ w ∈ N+
}
.

As above, we write u = col (u1, . . . , up), f = col (f1, . . . , fp), and also let v = (v1, . . . , vp),
w = (w1, . . . , wp). These decompositions into direct sums exist because the spaces N and
N+ are finite-dimensional. We denote by P and P+, respectively, the oblique projections
of the spaces

p∏
k=1

Hs+mk,ϕ(Γ) and
p∏
j=1

Hs−lj ,ϕ(Γ)

onto the second terms in the sums. These projections do not depend on s and ϕ.

Theorem 4.2. For arbitrary parameters s ∈ R and ϕ ∈ M, the restriction of operator
(4.1) to the subspace P

( ∏p
k=1 H

s+mk,ϕ(Γ)
)

is the topological isomorphism

(4.7) A : P
( p∏
k=1

Hs+mk,ϕ(Γ)
)
↔ P+

( p∏
j=1

Hs−lj ,ϕ(Γ)
)
.

Proof. According to Theorem 4.1, N is the kernel and P+
( ∏p

j=1 H
s−lj ,ϕ(Γ)

)
is the

range of operator (4.1). Therefore operator (4.7) is a bijection. Moreover, this operator
is bounded. Thus it is a topological isomorphism by virtue of the Banach theorem on
inverse operator. �

Theorem 4.2 implies the following a priory estimate of a solution of elliptic system
(1.1).



150 ALEKSANDR A. MURACH

Theorem 4.3. Let s ∈ R, ϕ ∈M. Assume that the vector-valued function

(4.8) u = col (u1, . . . , up) ∈
p∏
k=1

Hs+mk,ϕ(Γ)

is a solution of the equation Au = f on Γ, where f in the right-hand side satisfies
condition (4.2). Then for the chosen parameters s, ϕ and an arbitrary number σ > 0,
there exists a number c > 0 independent of u, f such that

(4.9)
p∑
k=1

∥∥uk ∥∥
s+mk,ϕ

≤ c
( p∑
j=1

∥∥ fj ∥∥
s−lj ,ϕ

+
p∑
k=1

∥∥uk ∥∥
s−σ+mk

)
.

Proof. We denote for brevity by ‖·‖′s,ϕ , ‖·‖′′s,ϕ and ‖·‖′s−σ, respectively, the (non-Hilbert)
norms in the spaces

p∏
k=1

Hs+mk,ϕ(Γ),
p∏
j=1

Hs−lj ,ϕ(Γ), and
p∏
k=1

Hs−σ+mk(Γ)

used in (4.9). Since N is a finite-dimensional subspace of these spaces, the norms men-
tioned above are equivalent on N . In particular, we have for a vector-valued function
u− Pu ∈ N the inequality ∥∥u− Pu

∥∥′
s,ϕ

≤ c1
∥∥u− Pu

∥∥′
s−σ

with a constant c1 > 0 independent of u. Therefore we can write the following:∥∥u ∥∥′
s,ϕ

≤
∥∥u− Pu

∥∥′
s,ϕ

+
∥∥Pu ∥∥′

s,ϕ

≤ c1
∥∥u− Pu

∥∥′
s−σ +

∥∥Pu ∥∥′
s,ϕ

≤ c1 c2
∥∥u ∥∥′

s−σ +
∥∥Pu ∥∥′

s,ϕ
.

Here c2 is the norm of the projection 1− P in the space
∏p
k=1 H

s−σ+mk(Γ). Thus

(4.10)
∥∥u ∥∥′

s,ϕ
≤

∥∥Pu ∥∥′
s,ϕ

+ c1 c2
∥∥u ∥∥′

s−σ.

Now let us use the condition Au = f . Since N is the kernel of operator (4.1) and
u − Pu ∈ N , we have APu = f . Therefore, Pu is the preimage of the vector-valued
function f under topological isomorphism (4.7). Hence,∥∥Pu ∥∥′

s,ϕ
≤ c3

∥∥ f ∥∥′′
s,ϕ
,

where c3 is the norm of the inverse operator to (4.7). The last inequality and (4.10) yield
estimate (4.9). �

Now note the following: if N = {0}, i.e., the equation Au = f has at the most one
solution, then the term

∑p
k=1 ‖uk ‖s−σ+mk in the right-hand side of estimate (4.9) is

absent. Generally (if N 6= {0}), this term can be made arbitrarily small for every fixed
vector-valued function u by choosing the parameter σ large enough.

5. Local refined smoothness of the elliptic system solution

Let us pose the following question. Assume that the right-hand side of the elliptic
equation has a certain local smoothness in the refined scale in a given open subset Γ0

of the manifold Γ. What can we say about the local smoothness of a solution u of the
equation? The answer to this question will be given below. First, let us consider the
case where Γ0 = Γ.
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Theorem 5.1. Suppose that the vector-valued function u ∈
(
D′(Γ)

)p is a solution of the
equation Au = f on the manifold Γ where

(5.1) fj ∈ Hs−lj ,ϕ(Γ) for all j = 1, . . . , p

and some parameters s ∈ R, ϕ ∈M. Then

(5.2) uk ∈ Hs+mk,ϕ(Γ) for all k = 1, . . . , p.

Proof. Since the manifold Γ is compact, the space D′(Γ) is the union of the Sobolev
spaces Hσ(Γ), σ ∈ R. Hence for the vector-valued function u ∈

(
D′(Γ)

)p, there exists a
number σ < s such that u ∈

∏p
k=1 H

σ+mk(Γ). By virtue of Theorem 4.1 we have the
equality ( p∏

j=1

Hs−lj ,ϕ(Γ)
)
∩ A

( p∏
k=1

Hσ+mk(Γ)
)

= A
( p∏
k=1

Hs+mk,ϕ(Γ)
)
.

Therefore it follows from condition (5.1) that

f = Au ∈ A
( p∏
k=1

Hs+mk,ϕ(Γ)
)
.

Thus the equality Av = f holds true on Γ for some vector-valued function

v ∈
p∏
k=1

Hs+mk,ϕ(Γ)

as well as Au = f . Hence, A(u−v) = 0 on Γ and by Theorem 4.1 we have w := u−v ∈ N .
However,

N ⊂ (C∞(Γ))p ⊂
p∏
k=1

Hs+mk,ϕ(Γ).

Therefore,

u = v + w ∈
p∏
k=1

Hs+mk,ϕ(Γ),

i.e. property (5.2) is verified. �

Now we consider the general case where Γ0 is an arbitrary nonempty subset of the
manifold Γ. For σ ∈ R, ϕ ∈M, we denote

Hσ,ϕ
loc (Γ0) := {h ∈ D′(Γ) : χh ∈ Hσ,ϕ(Γ) ∀ χ ∈ C∞(Γ), suppχ ⊂ Γ0} .

Theorem 5.2. Suppose that a vector-valued function u ∈
(
D′(Γ)

)p is a solution of the
equation Au = f on the set Γ0, where

(5.3) fj ∈ H
s−lj ,ϕ
loc (Γ0) for all j = 1, . . . , p

and some parameters s ∈ R, ϕ ∈M. Then

(5.4) uk ∈ Hs+mk,ϕ
loc (Γ0) for all k = 1, . . . , p.

Proof. We will show that condition (5.3) implies that smoothness of a solution u increases,
that is, for every number r ≥ 1

(5.5) u ∈
p∏
k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ u ∈

p∏
k=1

Hs−r+1+mk,ϕ
loc (Γ0).
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Let us chose arbitrary functions χ, η ∈ C∞(Γ) such that suppχ, supp η ⊂ Γ0 and η = 1
in a neighborhood of suppχ. Rearranging the matrix PsDO A and the operator of
multiplication by the function χ we can write the following:

(5.6)
Aχu = Aχηu = χAηu+A′ηu = χAu+ χA(η − 1)u+A′ηu

= χf + χA(η − 1)u+A′ηu on Γ.

Here the matrix PsDO A′ = (A′
j,k )pj,k=1 is the commutator of these operators. Since

A′
j,k ∈ Ψlj+mk−1

ph (Γ), there exists (by Lemma 3.1) the bounded operator

A′ :
p∏
k=1

Hs−r+mk,ϕ(Γ) →
p∏
j=1

Hs−r+1−lj ,ϕ(Γ).

Therefore,

(5.7) u ∈
p∏
k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ A′ηu ∈

p∏
j=1

Hs−r+1−lj ,ϕ(Γ).

Further, according to condition (5.3) and in view of Proposition 2.1 (ii) we have

(5.8) χf ∈
p∏
j=1

Hs−lj ,ϕ(Γ) ↪→
p∏
j=1

Hs−r+1−lj ,ϕ(Γ).

In addition, since the supports of the functions χ and η − 1 are disjoint, we get

(5.9) χA(η − 1)u ∈
(
C∞(Γ)

)p
.

It follows from (5.6)–(5.9) that

u ∈
p∏
k=1

Hs−r+mk,ϕ
loc (Γ0) ⇒ Aχu ∈

p∏
j=1

Hs−r+1−lj ,ϕ(Γ).

Moreover, according to Theorem 5.1 we have

Aχu ∈
p∏
j=1

Hs−r+1−lj ,ϕ(Γ) ⇒ χu ∈
p∏
k=1

Hs−r+1+mk,ϕ(Γ).

Therefore implication (5.5) holds true because the function χ ∈ C∞(Γ) satisfying the
condition suppχ ⊂ Γ0 is chosen arbitrarily.

Now it is easy to deduce property (5.4) with the help of implication (5.5). As has
been noted in the proof of Theorem 5.1, there is a sufficiently large integer r0 such that

u ∈
p∏
k=1

Hs−r0+1+mk(Γ) ⊂
p∏
k=1

Hs−r0+mk,ϕ
loc (Γ0).

From this by applying implication (5.5) for r = r0, r0 − 1, . . . , 1 successively, we deduce
property (5.4),

u ∈
p∏
k=1

Hs−r0+mk,ϕ
loc (Γ0)

⇒ u ∈
p∏
k=1

Hs−r0+1+mk,ϕ
loc (Γ0) ⇒ . . . ⇒ u ∈

p∏
k=1

Hs+mk,ϕ
loc (Γ0).

Theorem is proved. �
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This theorem specifies, with regard to the refined scale of the spaces Hs,ϕ(Γ), the
known propositions on the local increase of interior smoothness of a solution to an elliptic
system in the Sobolev scale (see e.g. [1, 10, 34]). Note that the refined local smoothness
ϕ of the right-hand side of the elliptic system is inherited by its solution.

Theorem 5.2 and Proposition 2.1 (iv) imply immediately the following sufficient con-
dition for a chosen component uk of the solution of system (1.1) to have continuous
derivatives of a prescribed order.

Corollary 5.1. Suppose that vector-valued functions u, f ∈
(
D′(Γ)

)p satisfy the equation
Au = f on Γ0. Let integers ρ ≥ 0 and k ∈ {1, . . . , p} be given and a function ϕ ∈ M be
such that inequality (2.2) holds true. Then(

fj ∈ H
ρ−mk−lj+n/2,ϕ
loc (Γ0) ∀ j = 1, . . . , p

)
⇒ uk ∈ Cρ(Γ0).

6. Elliptic system with a parameter

Elliptic operators with a parameter were studied by S. Agmon, L. Nirenberg [35],
M. S. Agranovich, M. I. Vishik [36], A. N. Kozhevnikov [8] and their successors (see
survey [4] and the literature cited therein). They found that a parameter-elliptic operator
establishes a topological isomorphism in appropriate pairs of the Sobolev spaces for
all values of the complex parameter large enough in modulus. Moreover, the norm of
this operator admits a certain two-sided estimate with constants independent of the
parameter. We specify this result for an elliptic system with a parameter with regard
to the refined scale of spaces over a closed manifold. Note that scalar parameter-elliptic
PsDOs were studied on the refined scale in [25], whereas elliptic boundary-value problems
with a parameter (for a differential equation) were studied in [24].

We recall the definition of an elliptic system with a parameter given in survey [4,
Sec. 4.3 e]. Let us fix arbitrarily numbers p, q ∈ N, m > 0, and m1, . . . ,mp ∈ R. We
consider the matrix PsDO A(λ) which depends on a complex parameter λ in the following
way:

(6.1) A(λ) :=
q∑

r= 0

λq−r A(r).

Here A(r) :=
(
A

(r)
j,k

)p
j,k=1

is a square matrix formed by scalar PsDOs A(r)
j,k from the class

Ψmr+mk−mj
ph (Γ). Moreover, we set A(0) = −I where I is the identity matrix.
We consider the parameter-depending system of linear equations

(6.2) A(λ)u = f on Γ.

Here, as above, u = col (u1, . . . , up), f = col (f1, . . . , fp) are function columns components
of which are distributions on the manifold Γ.

Let K be a fixed closed angle in the complex plain with the vertex at the origin (we do
not exclude the case where K degenerates into a ray). Further we suppose that system
(6.2) is elliptic with a parameter in the angle K, i.e., the following condition is fulfilled:

(6.3)
det

q∑
r= 0

λq−r ar,0(x, ξ) 6= 0

for all x ∈ Γ, ξ ∈ T ∗xΓ, λ ∈ K such that (ξ, λ) 6= 0.

Here ar,0(x, ξ) :=
(
ar,0j,k(x, ξ)

)p
j,k=1

is a square matrix formed by the principal symbols

ar,0j,k(x, ξ) of PsDOs A(r)
j,k. Furthermore, in the case where r ≥ 1 we agree that the function

ar,0j,k(x, ξ) is equal to 0 at ξ = 0 (such an agreement is connected with the fact that the
principal symbols are not initially defined at ξ = 0).
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The ellipticity of system (6.2), with a parameter in the angle K, implies its Douglis-
Nirenberg ellipticity for every fixed λ ∈ C. Indeed, due to (6.1), the matrix A(λ) is
formed by the elements

(6.4)
q∑

r= 0

λq−r A
(r)
j,k, j, k = 1, . . . , p,

which are scalar PsDOs from Ψlj+m
′
k

ph (Γ), where lj := −mj , m′
k := mq + mk. The

principal symbol of PsDO (6.4) is equal to aq,0j,k(x, ξ) for every fixed λ. According to
condition (6.3) with λ = 0 we have the following:

det
(
aq,0j,k(x, ξ)

)p
j,k=1

6= 0 for all x ∈ Γ, ξ ∈ T ∗xΓ \ {0}.

This means that system (6.2) is Douglis-Nirenberg elliptic for every λ ∈ C.
Therefore Theorem 4.1 holds true for elliptic system (6.2) and, according to this

theorem, the bounded operator

(6.5) A(λ) :
p∏
k=1

Hs+mq+mk,ϕ(Γ) →
p∏
j=1

Hs+mj ,ϕ(Γ)

is Fredholm for arbitrary λ ∈ C, s ∈ R, ϕ ∈ M. Moreover, since system (6.2) is elliptic
with the parameter in the angle K, this operator possesses the following additional
properties.

Theorem 6.1.
(i) There is a number λ0 > 0 such that for every λ ∈ K satisfying the condition

|λ| ≥ λ0 we have the topological isomorphism

(6.6) A(λ) :
p∏
k=1

Hs+mq+mk,ϕ(Γ) ↔
p∏
j=1

Hs+mj ,ϕ(Γ) for all s ∈ R, ϕ ∈M.

(ii) For each fixed parameters s ∈ R, ϕ ∈ M there is a number c ≥ 1 such that for
every λ ∈ K, |λ| ≥ λ0, and arbitrary vector-valued functions

(6.7)

u = col (u1, . . . , up) ∈
p∏
k=1

Hs+mq+mk,ϕ(Γ),

f = col (f1, . . . , fp) ∈
p∏
j=1

Hs+mj ,ϕ(Γ)

satisfying equation (6.2), we have the two-sided estimate

(6.8)

c−1

p∑
j=1

∥∥ fj ∥∥
s+mj ,ϕ

≤
p∑
k=1

∥∥uk ∥∥
s+mq+mk,ϕ

+ |λ|q
p∑
k=1

∥∥uk ∥∥
s+mk,ϕ

≤ c

p∑
j=1

∥∥ fj ∥∥
s+mj ,ϕ

.

Here the number c does not depend on the parameter λ and the vector-valued
functions u, f .

In the case where ϕ ≡ 1 (the Sobolev scale) this theorem is known [4, Sec. 4.3 e].
Note that the left-hand side inequality in the two-sided estimate (6.8) holds true without
the assumption about ellipticity, with a parameter, of equation (6.2) (compare with [36,
Proposition 2.1]).

We will prove separately assertions (i) and (ii) of Theorem 6.1. We deduce the general
case of ϕ ∈M from the Sobolev case of ϕ ≡ 1.
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Proof of assertion (i). Let s ∈ R and ϕ ∈ M. Since system (6.2) is Douglis-Nirenberg
elliptic for every λ ∈ C, the bounded operator (6.5) has both a finite-dimensional kernel
N(λ) and a deficiency subspace N+(λ) which are independent of s and ϕ. This follows
from Theorem 4.1. Next we use the mentioned above fact that Theorem 6.1 is true in
the case where ϕ ≡ 1. So there is a number λ0 > 0 such that for every λ ∈ K satisfying
the condition |λ| ≥ λ0, we have the topological isomorphism

A(λ) :
p∏
k=1

Hs+mq+mk,1(Γ) ↔
p∏
j=1

Hs+mj ,1(Γ).

Therefore for this λ, the spaces N(λ) and N+(λ) are trivial, i.e., the linear bounded
operator (6.5) is a bijection. This yields topological isomorphism (6.6) by the Banach
theorem on inverse operator. Assertion (i) is proved. �

We will prove assertion (ii) with the help of the interpolation with a function para-
meter. For this purpose we need the following space.

Let a function ϕ ∈ M and numbers σ ∈ R, ρ > 0, θ > 0 be given. We denote by
Hσ,ϕ(Γ, ρ, θ) the space Hσ,ϕ(Γ) endowed with the norm which depends on the number
parameters ρ and θ in the following way:∥∥h ∥∥

Hσ,ϕ(Γ,ρ,θ)
:=

( ∥∥h ∥∥2

σ,ϕ
+ ρ2

∥∥h ∥∥2

σ−θ,ϕ

)1/2

.

This definition is correct because of the continuous embedding Hσ,ϕ(Γ) ↪→ Hσ−θ,ϕ(Γ). It
also follows from this embedding that the norms in the spaces Hσ,ϕ(Γ, ρ, θ) and Hσ,ϕ(Γ)
are equivalent. The norm in the space Hσ,ϕ(Γ, ρ, θ) is induced by the inner product(

h1, h2

)
Hσ,ϕ(Γ,ρ,θ)

:=
(
h1, h2

)
σ,ϕ

+ ρ2
(
h1, h2

)
σ−θ,ϕ.

Therefore this is a Hilbert space. As above in the case where ϕ ≡ 1, we omit the index
ϕ in the notations. Returning to assertion (ii) of Theorem 6.1, we note that∥∥uk∥∥Hs+mq+mk,ϕ(Γ,|λ|q,mq) ≤

∥∥uk∥∥s+mq+mk,ϕ + |λ|q
∥∥uk∥∥s+mk,ϕ

≤
√

2
∥∥uk∥∥Hs+mq+mk,ϕ(Γ,|λ|q,mq).

According to Proposition 3.2, the spaces[
Hσ−ε(Γ, ρ, θ), Hσ+δ(Γ, ρ, θ)

]
ψ

and Hσ,ϕ(Γ, ρ, θ)

are equal with equivalence of the norms in them. Here the numbers ε and δ are positive,
whereas the function parameter ψ is the same as in Proposition 3.2. We can chose the
constants in the estimates of these equivalent norms such that the constants do not
depend on the parameter ρ. Namely the following holds true [25, Lemma 6.1].

Proposition 6.1. Let σ ∈ R, ϕ ∈M and positive numbers θ, ε, δ be given. Then there
is a number c0 ≥ 1 such that for arbitrary ρ > 0 and h ∈ Hσ,ϕ(Γ) we have the following
two-sided estimate of the norms:

c−1
0

∥∥h ∥∥
Hσ,ϕ(Γ,ρ,θ)

≤
∥∥h ∥∥

[Hσ−ε(Γ,ρ,θ), Hσ+δ(Γ,ρ,θ) ]ψ
≤ c0

∥∥h ∥∥
Hσ,ϕ(Γ,ρ,θ)

.

Here ψ is the interpolation parameter from Proposition 3.2, whereas the number c0 does
not depend on ρ and h.

This proposition will play a decisive role in the proof of assertion (ii) of Theorem 6.1.
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Proof of assertion (ii). Let s ∈ R and ϕ ∈M. We recall that Theorem 6.1 holds true in
the Sobolev case where ϕ ≡ 1. Therefore there is a number λ0 > 0 such that for every
λ ∈ K satisfying the condition |λ| ≥ λ0 we have the topological isomorphisms

(6.9) A(λ) :
p∏
k=1

Hs∓1+mq+mk(Γ, |λ|q,mq) ↔
p∏
j=1

Hs∓1+mj (Γ).

Moreover, the norm of operator (6.9) and the norm of the inverse operator are uniformly
bounded with respect to the parameter λ. Let ψ be the interpolation parameter from
Proposition 3.2 where we set ε = δ = 1. Applying the interpolation with this parameter
to (6.9) we get the topological isomorphism

(6.10)

A(λ) :
[ p∏
k=1

Hs−1+mq+mk(Γ, |λ|q,mq),
p∏
k=1

Hs+1+mq+mk(Γ, |λ|q,mq)
]
ψ

↔
[ p∏
j=1

Hs−1+mj (Γ),
p∏
j=1

Hs+1+mj (Γ)
]
ψ
.

In addition, by Proposition 3.1 the norm of operator (6.10) and the norm of the operator
inverse to (6.10) are uniformly bounded with respect to the parameter λ. (Note that
the couples of spaces written in formula (6.10) are normal.) We obtain from this, by
Proposition 3.4, the following topological isomorphism

(6.11)

A(λ) :
p∏
k=1

[
Hs−1+mq+mk(Γ, |λ|q,mq), Hs+1+mq+mk(Γ, |λ|q,mq)

]
ψ

↔
p∏
j=1

[
Hs−1+mj (Γ), Hs+1+mj (Γ)

]
ψ
.

Here the norms of operators (6.10) and (6.11) are equal as well as the norms of the
operators inverse to them. Now we need Proposition 6.1 where we set

σ := s+mq +mk, ρ := |λ|q, θ := mq, ε = δ = 1

and Proposition 3.2. Using them we see that operator (6.11) gives the topological iso-
morphism

(6.12) A(λ) :
p∏
k=1

Hs+mq+mk,ϕ(Γ, |λ|q,mq) ↔
p∏
j=1

Hs+mj ,ϕ(Γ)

such that the norm of operator (6.12) and the norm of the inverse operator are uniformly
bounded with respect to the parameter λ. This means that the two-sided estimate (6.8)
with the constant c is independent of the parameter λ and vector-valued functions (6.7).
Assertion (ii) is proved. �

Theorem 6.1 (i) implies the following proposition on the index of the operator corre-
sponding to an elliptic system with a parameter (compare with [36, Sec. 6.4]).

Corollary 6.1. Let system (6.2) be elliptic with a parameter on a certain closed ray
K := {λ ∈ C : arg λ = const}. Then operator (6.5) has the zero index for every λ ∈ C.

Proof. System (6.2) is Douglis-Nirenberg elliptic for every fixed λ ∈ C. Therefore, by
Theorem 5.1, operator (6.5) has a finite index independent of s ∈ R and ϕ ∈ M.
Moreover, this index does not depend on the parameter λ as well. Indeed, by virtue of
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(6.1), the parameter λ influences only the lowest terms of the elements of the matrix
PsDO A(λ),

A(λ)−A(0) =
q−1∑
r=0

λq−rA(r) =
( q−1∑
r=0

λq−rA
(r)
j,k

)p
j,k=1

,

where
q−1∑
r=0

λq−rA
(r)
j,k ∈ Ψm(q−1)+mk−mj

ph (Γ).

Therefore, in view of Lemma 3.1, we have the bounded operator

A(λ)−A(0) :
p∏
k=1

Hs+mq+mk,ϕ(Γ) →
p∏
j=1

Hs+m+mj ,ϕ(Γ).

However Proposition 2.1 (i) and the conditionm > 0 imply compactness of the embedding
of the space Hs+m+mj ,ϕ(Γ) into the space Hs+mj ,ϕ(Γ). Thus the operator

A(λ)−A(0) :
p∏
k=1

Hs+mq+mk,ϕ(Γ) →
p∏
j=1

Hs+mj ,ϕ(Γ)

is compact. This implies that the operators A(λ) and A(0) have the same index, i.e., the
index does not depend on the parameter λ (see [3, Corollary 19.1.8]). Further, according
to Theorem 6.1 (i) we have topological isomorphism (6.6) for every λ ∈ K large enough
in modulus. Hence the index of the operator A(λ) is equal to zero for λ ∈ K, |λ| � 1,
so it is for all λ ∈ C. Assertion (ii) is proved. �
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