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AN EXACT INNER STRUCTURE OF THE BLOCK JACOBI-TYPE
UNITARY MATRICES CONNECTED WITH THE CORRESPONDING
DIRECT AND INVERSE SPECTRAL PROBLEMS

MYKOLA E. DUDKIN

Dedicated to Myroslav Lvovych Gorbachuk on the occasion of his 70th birthday.

ABSTRACT. We discuss a problem posed by M. J. Cantero, L. Moral, and L. Veldzquez
about representing an arbitrary unitary operator with a CMV-matrix. We consider
this problem from the point of view of a one-to-one correspondence between a non-
finite unitary operator and an infinite (five-diagonal) block three-diagonal Jacobi-
type matrix in the form of the corresponding direct and inverse spectral problems for
the trigonometric moment problem. Since the earlier obtained block three-diagonal
Jacobi-type unitary matrix has not been fully described, we continue this investiga-
tions in the present article. In particular, we show that this exact inner structure
coincides with an earlier obtained CMV-matrix.

1. INTRODUCTION

At the beginning let us make a few remarks about the previous paper [2].

Paper [2] deals with direct and inverse spectral problems for block three-diagonal
Jacobi-type unitary matrices connected with trigonometric moment problem and corre-
sponding to orthogonal polynomials on the unit circle. A solution of the inverse problem
was presented using Theorem 1 [2]. Namely, a unitary operator (with a cyclic vector) de-
fined by its spectral measure on the unit circle was represented by a block three-diagonal
Jacobi-type unitary matrix, elements of which can be represented in an orthonormal ba-
sis of polynomials on the unit circle. The direct problem was presented in Theorem 2 [2].
Namely, for a given block three-diagonal Jacobi-type unitary matrix with a cyclic vector,
we have recovered thew spectral measure (on the unite circle) in the sense of its Fourier
coefficients that are a generalized eigenvectors of the corresponding unitary operator in
its eigenfunction expansion.

The direct and inverse spectral problems (together) establish, obviously, a one-to-one
correspondence between any non-finite unitary operator and an infinite (five-diagonal)
block three-diagonal Jacobi-type matrices under the condition that the unitary operator
has a cyclic vector.

Note that the five-diagonal matrices have appeared, in general, in [4, 5] and later
were called CMV-matrices [8, 9, 10]. However, the question about the possibility to
represent an arbitrary unitary operator in the CMV form was posed in [5]. A solution
to a similar question was given for the first time in a talk of Yu. M. Berezansky at the
International Conference on Difference Equations, Special Functions and Applications,
July 25-30, 2005, Munich, Germany, and later realized in [2]. Namely, this question
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is about a one-to-one correspondence between any non-finite unitary operator and an
infinite (five-diagonal) block three-diagonal Jacobi-type matrices with a cyclic vector.

But the inner structure of such a block Jacobi-type unitary matrix with special forms
of its elements was not fully investigated in [2]. The form of this matrix coincides with
the form formulated in [5] with a sketch of the proof. The present paper deals with a
study of block Jacobi-type unitary matrix and, in fact, contains a detailed proof of the
corresponding part of Theorem 3.2 in [5].

Note that a similar representation for a finite matrix of a unitary operator in a trun-
cated CMV-matrix has been obtained in [7]. Let us also remark that an indirect answer
to this problem can be found in [9, 10], where each unitary operator corresponds to Schur
parameters and Schur parameters are equal to the Verblunsky coefficients related to the
spectral measure of the unitary operator (Geronimus’ Theorem) and finally the Verblun-
sky coefficients correspond to any CMV-matrix. Numerous properties of CMV-matrices
are also presented in [1, 6-12] and in the cited works.

The exact inner structure of the block Jacobi-type normal matrix (given and investi-
gated in [3]), an analogous theory of either Verblunsky coefficients or Schur parameters
corresponding to the spectral measure of the normal operator connected with a given
normal matrix are important open problems.

2. PRELIMINARY RESULTS

Let T = {2z € C| |2] = 1} = {¢? | 6 € [0,27)} denote the unit circle in the
complex plane C and dp(z) = dp(f) be a Borel probability measure on T. Denote by
L? = L*(T,dp()) the space of square integrable complex-valued functions defined on T.
Suppose that the support of this measure is an infinite set and, therefore, the functions
[0,27) 3 0 — €l | € Z, are linearly independent in L2.

Consider a sequence of functions,

(1) 1; 619, 6—10; 6219’ 6—219; o ean’ e—nze; ol

and start the orthogonalization via the Schmidt procedure. As a result we obtain an
orthonormal system of polynomials (each one is a polynomial in e and e~*) which we
denote as follows:

(2) Po(0) = 15 Pr;a(0), Pri2(0); P21(0), P2 (0); - -+ 5 Pt (0), Pry2(0); - -

Let us consider the Hilbert space
3) L=Hy®@HiOHo® -+, Ho=C, Hi=Hp=--=C2
Each vector f € 15 has the form f = (f,)5%, fn € Hy and, consequently, Vf, g € 1,

A1, =Y fallfe, <000 (Fr901, = D> (s Gn)rt,-
n=0 n=0

For n € N, denote by (fn.1, fn;2) the coordinates of the vector f,, € H in the space C?
with respect to the standard orthonormal basis {ey.1,en.2} and, hence, we have f, =

(fn;la fn;?)'

Using the orthonormal system (2) one can define a mapping from 1y into L?. Putting
Vo € [0,27), P,(0) = (Pp.1(0), Pr2(0)) € H,,, we have

(oo}

(4) 1> f = (fn)'?zozo — f(@) = Z(fnapn(g))?'in € LQ, Ff = f

n=0

Sincea for n eN (fruPn(g))'Hn = fn;an;l(a) + fn;?Pn;2(0) and ||fH122 = ||(f0uf1;17f1;27
fo1,-- )||l22, we see that (4) is a mapping from the usual space o into L? defined by the
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orthonormal system (2) and, hence, this mapping is isometric. The image of 1o under
the mapping (4) coincides with the space L2

Let A be a bounded linear operator defined on the space ly. It is possible to construct
an operator-valued matrix A = (aj,k)fk:o so that Vf, g € I, we have

(5) (Af); =Y ajkfe, 5€No, (Afs91, = D (@jkfrr 951,
k=0 J,k=0

where, for each j, k € N, a; , is an operator H;, — H; that has the matrix representation
(aj,k;aﬁ)iﬁ:lv so that
(6) @j ka8 = (Aek;, €jia)ls-

Let us consider the image A = FAF~1: L2 — L? of the above operator A, given by
the mapping (4). Its matrix is equal to the usual matrix of the operator A in the basis
(2), la — I in the corresponding basis (eq, €1.1, €1.2, €21, €2:2, ...). Using (6) and the
above mentioned procedure, we get the operator matrix (aj,k)ﬁ:o for A:1; — 1. By

the definition this matriz is also the operator matriz offl : L2 — L2. The next theorem
is related, in general, to the inverse spectral problem [2].

Theorem 1. (Related to the inverse spectral problem.) The unitary operator A of
multiplication by e in the space L? in the orthonormal basis (2) of polynomials has the
form of a three-diagonal block Jacobi type unitary matriz, J = (aj,k)go',ok:m that acts on
the space (3).
The norms of all operators aji : Hi — H; are uniformly bounded with respect to

i,k € Ng. This matriz has the form

bo Co 0 0 0

ap bl C1 0 0 . Cn = Qpont1s
(7) J = 0 ajq bQ C2 0 bn = G,

O O as bg C3 . p 1= an+1,na n e N07

and, more precisely,

xbg| * ¢g
+ x| 0 0
an b1 C1 0
0 *
+ x| 0 0
(8) J = a1 bg C2
0 0| =
x| 0 0
0 as b3 C3
0 0] = * |k +

In (8), by = bo,2,2 is a (1 x 1)-matriz (i.e., a scalar matriz), ap is a (2 X 1)-matriz:
ao = (apa2)2_1, co is a (1 x 2)-matriz: cy = (co;gﬁ)%:l; for 7 € N, the elements
aj = (aj;a,ﬁ)i,ﬁzp b, = (bﬁoéﬂ)i,ﬁ:l? ¢ = (Cj;a,ﬁ)i,ﬁﬂ are (2 x 2)-matrices. In these
matrices a;, b; and cj, some elements are zero and others are positive, i.e.

(©) ap;1,2 >0,  agz2 = 0; co2,2 > 0;

(p;2,1 = Gn22 =0, ap1,1 > 0; Cns11 =Cni12 =0, cp22>0; neN

The matriz (8), in the scalar form, is five-diagonal of the indicated structure.
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The adjoint operator (A)* has the form of an analogous three-diagonal block Jacobi-
type matriz Jt in basis (2).
These matrices J, JT act as follows: Vf = (fn)>2, € la,

(Jf>n =an_1fn-1+bnfn+ c’ﬂf’n+17
(J = 1 fa1 + 05 fn+apfayr, neNg, f1=0

(here * denotes the usual adjoint of a matrix).

(10)

The next theorem contains a solution of the direct spectral problem corresponding to
the inverse one mentioned in Theorem 1 in this article and in [2]. (This theorem combines
Theorem 2 and Lemma 5 from [2].

Theorem 2. (The direct spectral problem.) Consider the space (3) and the linear
operator A which is defined on finite vectors lg, by a block three-diagonal Jacobi-type
matriz J of the form (8) in terms of the first expression in (10). We suppose that all
its coefficients a,, b, and c, are uniformly bounded, some elements of these matrices
are equal to zero or positive according to (9) and the extension of A by continuity is a
unitary operator on this space.

Let o(z) = (on(2))520, on(2) € Hp, z € C, be a fized solution from (la,)" of the
following system with the initial condition @o(z) = ¢o € C,

(Je(2))n = an—19n-1(2) + bnn(2) + cnpnt1(2) = 2n(2),
(11) (TF0(2))n = ch_1Pn-1(2) + brpn(2) + @y pns1(2) = Zpa(2),
n €Ny, ¢_1(2)=0.

Then this solution exist Yoo and has the form: ¥Yn € N

(12) ‘Pn(z) = Qn(z)@o = (Qn;h Q’I’L;Q)SD(%
where Qpn;1 and Q.2 are polynomials in z and Z and these polynomials have the form
(13) Qn;l(z) = ln;lzn + Qn;l(z)y Qn;2(z) = ln;2zn + Qn;2(z)~

Herelpa > 0, 1.2 > 0 and ¢n1(2), gni2(2) are linear combinations of 7Z* for0 < j+k <
n—1;Qo(z) =1, z€C.

Then the eigenfunction expansion of the operator A has the following description.
Namely, the Fourier transform has the form

o Ol 3 f = (fa)io — f(2) = D_ Qi(2)fa
(14) o
= fO + Z(Qn;l(z)fn;l + Qn;Q(z)fn;Q) € LQ(T’ dp(Z))

n=1

Here Q7 (2) : Hp, — Ho is the adjoint to the operator Qn(z) : Ho — Hn, dp(z) is
the probability spectral measure of A.
The Parseval equality has the following form: Vf, g € lg,

(15) (f,9), :/Tf(Z)ﬁ(Z) dp(2),  (Jf, 9 :/Tzf(z)g(z) dp(2)-

Identities (14) and (15) are extended by continuity to Vf, g € 1o making the operator (14)
unitary, which maps 1y onto the whole L*(T,dp(z)).
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The polynomials Qp.a(z), n € N, a = 1,2, and Qo o(z) = 1, form an orthonormal
system in L?(T,dp(z)). The orthogonality in the sense

| @ i0sado() = 63805 Qo = Qule)).
This system is total in L*(T,dp(z)).

3. THE INNER STRUCTURE OF THE UNITARY MATRIX (8)

We will find a condition that would guarantee the unitary for the matrix J of the
type (8). The formal adjoint matrix J* has the form

by ay 0 0
c by af 0 .- Cp - Hn — Hnqa,
16  J'=| 0 & b5 ay - |> b Ho—Ha
. ay Hp+1 — Hy, n € Ng.
Multiplying matrices (7) and (16) we get
(17)
bobj + cocl boag + cobi coa} 0 0
N aobl + bich apag + b1b] + cicl biai + c1b5 cias 0
JIT = | ac a bt + boct araf 4 bobls + coch baal + cobh coal -

The expression for J*.J is analogous to (17) if a,, b, and ¢, are replaced with ¢, b%
and a;, respectively, and vice versa.

Comparing these expressions for JJT and JTJ with the identity I we conclude that
the equality JJT = JTJ = I is equivalent to fulfillment of the following equalities:

bobé + C()CS = babo + aéao =1,
L
0y + Cnbh 1 = bpcn +anbyyr =0,
ana; + bn+1b:+1 + Cn+16;k1+1 = C;Cn + b;+1bn+1 + a;+1an+1 = I, n e No,

where T is the identity operator in the corresponding space. In [3] we obtained equalities
of the type (18) in any general case, where J is a bounded normal operator i.e. satisfies
the relation JJ* = J*J.

Note that the necessary equalities
anby, +bpiic,, = by + by 10, =0, angic), =0, =0, n €Ny,

follow from the third and the second equalities in (18) by taking * the adjoints.

Taking the initial matrices ag, by, ¢o and finding from (18) step by step a1, by, c¢1;
as, by, co; ... etc. (in a non-unique manner) we can construct some unitary matrix J.
But for such a matrix, Theorem 2 in general is not valid, because it is necessary to find
these matrices in such way that a,, and ¢, must be of the form (8). Only in this case the
functions (1) are linearly independent and Theorem 2 is applicable.

For an analysis we write (18) in the matrix form

. Co: . do.
(19) bobg + (coi2,1 Co:2,2) ( ol ) = bobo + (ao;1,1 0) < 0(’)1’1 > )
€0;2,2

and for n € N

0 0 Ap+1:1,1 0 Qp:1,1 0 0 0
(20) c a 0) \a 0 ’
n;2,1  Cn;2,2 an+1;2,1 an;2,1 Cn+1;2,1 Cn+1;2,2
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(21) b bniio an;11 0 n 0 0 bnti;11 bnyizn ) _ 0
bn;z,l bn;2,2 Qn;:1,2 0 Cn;2,1  Cn;2,2 bn+1;1,2 bn+1;2,2 ’
(22) bui1 bng2i 0 0 n an;11 0 bnt1;11 bnyrn2 ) _ 0
bn;1,2 bn;2,2 Cn;2,1  Cni2,2 Qn;1,2 0 bn+1;2,1 bn+1;2,2 ’
(23) _ _
An;1,1  An;l1,2 dn;l,l 0 bn+1;1,1 bn+1;1,2 bn+1;1,1 bn+1;2,1
- + > >
0 0 Gn;1,2 0O bnt1:2,1 bnyi22 bntii1,2 bngi2,2
0 0 0 Cn+121 1 0
+ _ = ,
Cn+1;2,1 Cn+1;2,2 0 Cn+1;2,2 0 1
(24)
0 Cn2,1 0 0 n but111 buyi21 bnt1;1,1 bnyisi2
0 Cn;2,2 Cn;2,1  Cn;2,2 bn+1;1,2 n+1;2,2 bn+1;2,1 bn+1;2,2
n Gnt+1;1,1 0 Unt1;1,1 Gnir12 \ _ (10
An+1;1,2 0 0 0 0 1 ’
If we suppose for a convenience that by, ag and ¢y are of the form

0 0 0 ap,2 0 0
25 by = = i1 —
( ) 0 < 0 b0;272 > ) ao ( 0 0 ) ) Co < Co:2.1 C0:2.2 ) 5

than we can write equalities (20-24) for n € Ny.
From (19) we obtain

[=alli=all

(26) lco2,1|* + leoz2l* + [bosz2|* = laoia|” + [bo2,2” = 1.
Taking into account (25) for equalities (20-24) we recover from (20):
(27) Cn;2,10n41;1,1 + Cn;2,20n41;1,2 = 0;
from (21):
bn;1,180n;1,1 + bpy1,2Gn;1,2 = 0,

(28) bn:2,10n;1,1 + bni2,20n:1,2 + Cni2,10n41:1,1 + Cni22bn41;1,2 = 0,

Cni2,1bny1;2.1 + Cn22bng1;22 = 0;

from (22):
bn:2,1Cn2,1 + Gni1,10n41;1,1 = 0,
(20) bn:2,1¢n;2,2 + Gns1,1bn4151,2 = 0,
bni2,2Cn;2,1 + Gni1,2bn4151,1 = 0,
bn;2,2cn;272 + a/n;l,an-i-l;l,Q = 07
from (23):
2 2 2 2
lan1,1]" + lan2l® + [brgral” + bagrae” =1,
(30) brt1;1,10n41;21 + bpg1;1,20n41,22 = 0,

bn+1;2,1bn+1;1,1 + bn+1;2,2bn+1;1,2 = 0;
2 = 1:

)

24+ ‘bn+1;272|2 + |Cn+1;2,1|2 + |Cn+1;272

|brt1;2,1
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from (24):

\Cn;2,1|2 + |bn+1;1,1|2 + [bpt1:21 2+ |Cln-s-1;1,1|2 =1,

(31) Cni2,1Cn;2,2 + bnt1,1,10n4151,2 + bng1:210n41;22 + Gng1i1,10n4+151,2 = 0,
Cni2,2Cn;2,1 + bnt1,1,2004151,1 + bng1:2,20n41;21 + Gng1i1,2an4+1;1,1 = 0,

2y |an+1;1,2|2 =1

\Cn;2,2|2 + |bn+1;1,2|2 + [bnt12,2

We remark that the second equalities of (30) and (31) are adjoint to third equalities
correspondingly.

Denote hg and v, k= 0,1,2,..., rows and columns of the matrix (8). Each hj and
v, we understand as a finite vector in ly. Such vector contains no more than fore nonzero
elements. Put (hy, h;) = (hi, hj)iy, (vi,9;) = (v5,;)1, as usual scalar product in Iz, (h;,
(9;) is a vector with adjoint elements).

Lemma 1. The equalities (26-31) are equivalent the following equalities:
(Vm,0n) =0, m#n, (Vm,0m) = ”va2 =1,
(hmshn) =0, m#n,  (hp, hm) = |hn||* =1, m,n € N.

Proof. Proof follows immediately from the direct observation of (26-31) using (8). Namely,
the equalities (26-31) are equivalent to the following (32-37) correspondingly:

(32) [voll = [lholl = 1;
(33) (h2nt1, ha(nta)) = 0;
(han BZ(n-&-l)) = 0,
(34) (h2n+1, homs1y) =0,
(h2ns1s hagi1y+1) = 0;
(/1727747 U2(n+1)) = 07
(35) (?2”“ v2(n+1)+1) = 07
(U2n+17 U2(n+l)) = 07
(Il_}Qn—i-lv U2(n+1)+1) = 0,
Pyl =1,
(36) (?2(n+1)7 hatms1)+1) =0,
(ho(n+1)415 P2(nt1)) = 0,
||h2(n+1)+1|| =1
[va(ninyll =1,
(37) (D2(n+1), V2(n+1)41) = 0,

(V2(n+1)+15 V2(nt1)) = 0,

lv2nt1)+1ll = 1.
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Now, using Lemma 1 we will obtain the inner structure of J. In the beginning we put
boa,2 = ap € C. Since (vo, o) = |Jvo]|> = 1 i.e. (32), we conclude that |ap| < 1 and

ap:1,2 == po = /1 — |a|?. In the ”zero” step we have

(7)) * Ccop +
£o * * O 0

(38) J = by c1 0
0 * x| % +

Then we use (vp,71) = 0 and (v, ¥2) = 0, Lemma 1, i.e. the first and the second
equalities in (35) with n = 0. Put

Coj2,1 1= Q1Po, C02,2 i= P1Po, D111 = —Qip, bii2 = —pray,
where a; € C and p; € R are some proportion coefficients. Since (hg, ho) = 1, i.e. (32),
aol® + l@pol® + |p1pol® = 1,

and taking into account |ag|? + |po|? = 1, we recover |aq|? + [p1|* = 1.
After the ”zero” and "first” steps we have

Qp| Q1P P10
po| —aiag —piag|l O 0
(39) J = c1 0
0 * * * +

By the way, we obtain (hi,h;) =1 and (hg, h1) = 0, Lemma 1, i.e
[pol? + laraol® + [praol® = 1,
and
(@0)(po) + (@1po)(—a1po) + (p1p0)(—p180) = 0.
In the "second” step we use (hg, h2) = 0, Lemma 1, i.e. the third equality (34) for

n =0 and (hg, h3) = 0, Lemma 1, i.e. (33) for n = 0. (Obviously, we can use (h1,hs) =0
and (hi, hg) =0, i.e. the second equality in (36) and the first equality in (34)). Put

bi21 == dp1, b1 = —Qoay, a1, = pP2P1, a1;1,2 = —pP200,

where as € C and ps € R some new proportion coefficient.

Using (v1,01) = 1, Lemma 1, and taking into account |ag|?+|po|> = 1, |a1 [*+|p1]? = 1,
we conclude that |ag|? + |pa]? = 1.

By the way, we obtain (vy,72) = 0, Lemma 1 i.e. the third equality in (37).

Hence after the "zero” (38), the ”first” (39) and the ”second” steps we have

Qo| @1pg P1P0
po|—Qiag —piag| O 0
C1 0
0| depr  —aQooq| * +
J = p2p1 —p20 x| 0 0
b2 C2
0 0 * * | ok +

Now we can prove obviously by induction the following proposition, i.e. the part of
Theorem 3.2 [5].
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Theorem 3. The matriz J in (8) has a form

(40)

Qp| Q1po P1P0
po|—Q1ap —prag| O 0 0
0| dopr  —Qoaq| aspo P3p2
p2p1  —p201|—agzas  —pzaz| O 0
0 0 Qqp3  —Qqag| Qspy Ps5P4 - J
paps  —paas|—asay  —psaq| O 0
0 0 0 Qeps  —Qgas|Qrpe P76

where oy € C, k € Ny any coefficients with a condition |ag| < 1, and pr, = /1 — |ag|?.
These coefficients are named Verblunsky coefficients of the measure corresponding to the
matriz J.

Conversely, each matriz of the form (40) is a unitary operator in ly as five-diagonal
one and in ls also as block tree-diagonal one.

8.

9.
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