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AN EXACT INNER STRUCTURE OF THE BLOCK JACOBI-TYPE
UNITARY MATRICES CONNECTED WITH THE CORRESPONDING

DIRECT AND INVERSE SPECTRAL PROBLEMS

MYKOLA E. DUDKIN

Dedicated to Myroslav Lvovych Gorbachuk on the occasion of his 70th birthday.

Abstract. We discuss a problem posed by M. J. Cantero, L. Moral, and L. Velázquez
about representing an arbitrary unitary operator with a CMV-matrix. We consider
this problem from the point of view of a one-to-one correspondence between a non-
finite unitary operator and an infinite (five-diagonal) block three-diagonal Jacobi-
type matrix in the form of the corresponding direct and inverse spectral problems for
the trigonometric moment problem. Since the earlier obtained block three-diagonal
Jacobi-type unitary matrix has not been fully described, we continue this investiga-
tions in the present article. In particular, we show that this exact inner structure
coincides with an earlier obtained CMV-matrix.

1. Introduction

At the beginning let us make a few remarks about the previous paper [2].
Paper [2] deals with direct and inverse spectral problems for block three-diagonal

Jacobi-type unitary matrices connected with trigonometric moment problem and corre-
sponding to orthogonal polynomials on the unit circle. A solution of the inverse problem
was presented using Theorem 1 [2]. Namely, a unitary operator (with a cyclic vector) de-
fined by its spectral measure on the unit circle was represented by a block three-diagonal
Jacobi-type unitary matrix, elements of which can be represented in an orthonormal ba-
sis of polynomials on the unit circle. The direct problem was presented in Theorem 2 [2].
Namely, for a given block three-diagonal Jacobi-type unitary matrix with a cyclic vector,
we have recovered thew spectral measure (on the unite circle) in the sense of its Fourier
coefficients that are a generalized eigenvectors of the corresponding unitary operator in
its eigenfunction expansion.

The direct and inverse spectral problems (together) establish, obviously, a one-to-one
correspondence between any non-finite unitary operator and an infinite (five-diagonal)
block three-diagonal Jacobi-type matrices under the condition that the unitary operator
has a cyclic vector.

Note that the five-diagonal matrices have appeared, in general, in [4, 5] and later
were called CMV-matrices [8, 9, 10]. However, the question about the possibility to
represent an arbitrary unitary operator in the CMV form was posed in [5]. A solution
to a similar question was given for the first time in a talk of Yu. M. Berezansky at the
International Conference on Difference Equations, Special Functions and Applications,
July 25–30, 2005, Munich, Germany, and later realized in [2]. Namely, this question
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is about a one-to-one correspondence between any non-finite unitary operator and an
infinite (five-diagonal) block three-diagonal Jacobi-type matrices with a cyclic vector.

But the inner structure of such a block Jacobi-type unitary matrix with special forms
of its elements was not fully investigated in [2]. The form of this matrix coincides with
the form formulated in [5] with a sketch of the proof. The present paper deals with a
study of block Jacobi-type unitary matrix and, in fact, contains a detailed proof of the
corresponding part of Theorem 3.2 in [5].

Note that a similar representation for a finite matrix of a unitary operator in a trun-
cated CMV-matrix has been obtained in [7]. Let us also remark that an indirect answer
to this problem can be found in [9, 10], where each unitary operator corresponds to Schur
parameters and Schur parameters are equal to the Verblunsky coefficients related to the
spectral measure of the unitary operator (Geronimus’ Theorem) and finally the Verblun-
sky coefficients correspond to any CMV-matrix. Numerous properties of CMV-matrices
are also presented in [1, 6–12] and in the cited works.

The exact inner structure of the block Jacobi-type normal matrix (given and investi-
gated in [3]), an analogous theory of either Verblunsky coefficients or Schur parameters
corresponding to the spectral measure of the normal operator connected with a given
normal matrix are important open problems.

2. Preliminary results

Let T = {z ∈ C | |z| = 1} = {eiθ | θ ∈ [0, 2π)} denote the unit circle in the
complex plane C and dρ(z) = dρ(θ) be a Borel probability measure on T. Denote by
L2 = L2(T, dρ(θ)) the space of square integrable complex-valued functions defined on T.
Suppose that the support of this measure is an infinite set and, therefore, the functions
[0, 2π) 3 θ 7−→ eliθ, l ∈ Z, are linearly independent in L2.

Consider a sequence of functions,

(1) 1; eiθ, e−iθ; e2iθ, e−2iθ; . . . ; eniθ, e−niθ; . . . ,

and start the orthogonalization via the Schmidt procedure. As a result we obtain an
orthonormal system of polynomials (each one is a polynomial in eiθ and e−iθ) which we
denote as follows:

(2) P0(θ) ≡ 1;P1;1(θ), P1;2(θ);P2;1(θ), P2;2(θ); · · · ;Pn;1(θ), Pn;2(θ); · · · .

Let us consider the Hilbert space

(3) l2 = H0 ⊕H1 ⊕H2 ⊕ · · · , H0 = C, H1 = H2 = · · · = C2.

Each vector f ∈ l2 has the form f = (fn)∞n=0, fn ∈ Hn and, consequently, ∀f, g ∈ l2,

‖f‖2l2 =
∞∑

n=0

‖fn‖2Hn
< ∞, (f, g)l2 =

∞∑
n=0

(fn, gn)Hn .

For n ∈ N, denote by (fn;1, fn;2) the coordinates of the vector fn ∈ H in the space C2

with respect to the standard orthonormal basis {en;1, en;2} and, hence, we have fn =
(fn;1, fn;2).

Using the orthonormal system (2) one can define a mapping from l2 into L2. Putting
∀θ ∈ [0, 2π), Pn(θ) = (Pn;1(θ), Pn;2(θ)) ∈ Hn, we have

(4) l2 3 f = (fn)∞n=0 7−→ f̂(θ) =
∞∑

n=0

(fn, Pn(θ))Hn ∈ L2, Ff = f̂ .

Since, for n ∈ N (fn, Pn(θ))Hn = fn;1Pn;1(θ) + fn;2Pn;2(θ) and ‖f‖2l2 = ‖(f0, f1;1, f1;2,

f2,1, . . .)‖2l2 , we see that (4) is a mapping from the usual space l2 into L2 defined by the
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orthonormal system (2) and, hence, this mapping is isometric. The image of l2 under
the mapping (4) coincides with the space L2.

Let A be a bounded linear operator defined on the space l2. It is possible to construct
an operator-valued matrix A = (aj,k)∞j,k=0 so that ∀f, g ∈ l2 we have

(5) (Af)j =
∞∑

k=0

aj,kfk, j ∈ N0, (Af, g)l2 =
∞∑

j,k=0

(aj,kfk, gj)Hj ,

where, for each j, k ∈ N, aj,k is an operatorHk −→ Hj that has the matrix representation
(aj,k;α,β)2α,β=1, so that

(6) aj,k;α,β = (Aek;β , ej;α)l2 .

Let us consider the image Â = FAF−1 : L2 −→ L2 of the above operator A, given by
the mapping (4). Its matrix is equal to the usual matrix of the operator A in the basis
(2), l2 −→ l2 in the corresponding basis (e0, e1;1, e1;2, e2;1, e2;2, . . .). Using (6) and the
above mentioned procedure, we get the operator matrix (aj,k)∞j,k=0 for A : l2 −→ l2. By
the definition this matrix is also the operator matrix of Â : L2 −→ L2. The next theorem
is related, in general, to the inverse spectral problem [2].

Theorem 1. (Related to the inverse spectral problem.) The unitary operator Â of
multiplication by eiθ in the space L2 in the orthonormal basis (2) of polynomials has the
form of a three-diagonal block Jacobi type unitary matrix, J = (aj,k)∞j,k=0, that acts on
the space (3).

The norms of all operators aj,k : Hk −→ Hj are uniformly bounded with respect to
j, k ∈ N0. This matrix has the form

(7) J =


b0 c0 0 0 0 . . .
a0 b1 c1 0 0 . . .
0 a1 b2 c2 0 . . .
0 0 a2 b3 c3 . . .
...

...
...

...
...

. . .

 ,
cn := an,n+1,
bn := an,n,
an := an+1,n, n ∈ N0,

and, more precisely,

(8) J =



∗b0 ∗ c0 + . . .
+ ∗ ∗ 0 0
a0 b1 c1 0 . . .
0 ∗ ∗ ∗ +

+ ∗ ∗ ∗ 0 0
a1 b2 c2 . . .

0 0 ∗ ∗ ∗ +
+ ∗ ∗ ∗ 0 0

0 a2 b3 c3 . . .
0 0 ∗ ∗ ∗ +

...
...

...
...

...
. . .



.

In (8), b0 = b0;2,2 is a (1 × 1)-matrix (i.e., a scalar matrix), a0 is a (2 × 1)-matrix:
a0 = (a0;α,2)2α=1, c0 is a (1 × 2)-matrix: c0 = (c0;2,β)2β=1; for j ∈ N, the elements
aj = (aj;α,β)2α,β=1, bj = (bj;α,β)2α,β=1, cj = (cj;α,β)2α,β=1 are (2 × 2)-matrices. In these
matrices aj, bj and cj, some elements are zero and others are positive, i.e.

(9)
a0;1,2 > 0, a0;2,2 = 0; c0;2,2 > 0;
an;2,1 = an;2,2 = 0, an;1,1 > 0; cn;1,1 = cn;1,2 = 0, cn;2,2 > 0; n ∈ N.

The matrix (8), in the scalar form, is five-diagonal of the indicated structure.
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The adjoint operator (Â)∗ has the form of an analogous three-diagonal block Jacobi-
type matrix J+ in basis (2).

These matrices J , J+ act as follows: ∀f = (fn)∞n=0 ∈ l2,

(10)
(Jf)n = an−1fn−1 + bnfn + cnfn+1,

(J+f)n = c∗n−1fn−1 + b∗nfn + a∗nfn+1, n ∈ N0, f−1 = 0

(here ∗ denotes the usual adjoint of a matrix).

The next theorem contains a solution of the direct spectral problem corresponding to
the inverse one mentioned in Theorem 1 in this article and in [2]. (This theorem combines
Theorem 2 and Lemma 5 from [2].

Theorem 2. (The direct spectral problem.) Consider the space (3) and the linear
operator A which is defined on finite vectors lfin by a block three-diagonal Jacobi-type
matrix J of the form (8) in terms of the first expression in (10). We suppose that all
its coefficients an, bn and cn are uniformly bounded, some elements of these matrices
are equal to zero or positive according to (9) and the extension of A by continuity is a
unitary operator on this space.

Let ϕ(z) = (ϕn(z))∞n=0, ϕn(z) ∈ Hn, z ∈ C, be a fixed solution from (lfin)′ of the
following system with the initial condition ϕ0(z) = ϕ0 ∈ C,

(11)

(Jϕ(z))n = an−1ϕn−1(z) + bnϕn(z) + cnϕn+1(z) = zϕn(z),

(J+ϕ(z))n = c∗n−1ϕn−1(z) + b∗nϕn(z) + a∗nϕn+1(z) = z̄ϕn(z),

n ∈ N0, ϕ−1(z) = 0.

Then this solution exist ∀ϕ0 and has the form: ∀n ∈ N

(12) ϕn(z) = Qn(z)ϕ0 = (Qn;1, Qn;2)ϕ0,

where Qn;1 and Qn;2 are polynomials in z and z̄ and these polynomials have the form

(13) Qn;1(z) = ln;1z̄
n + qn;1(z), Qn;2(z) = ln;2z

n + qn;2(z).

Here ln;1 > 0, ln;2 > 0 and qn;1(z), qn;2(z) are linear combinations of zj z̄k for 0 ≤ j+k ≤
n− 1; Q0(z) = 1, z ∈ C.

Then the eigenfunction expansion of the operator A has the following description.
Namely, the Fourier transform has the form

(14)

l2 ⊃ lfin 3 f = (fn)∞n=0 7−→ f̂(z) =
∞∑

n=0

Q∗
n(z)fn

= f0 +
∞∑

n=1

(Qn;1(z)fn;1 + Qn;2(z)fn;2) ∈ L2(T, dρ(z)).

Here Q∗
n(z) : Hn −→ H0 is the adjoint to the operator Qn(z) : H0 −→ Hn, dρ(z) is

the probability spectral measure of A.
The Parseval equality has the following form: ∀f, g ∈ lfin

(15) (f, g)l2 =
∫

T
f̂(z)ĝ(z) dρ(z), (Jf, g)l2 =

∫
T

zf̂(z)ĝ(z) dρ(z).

Identities (14) and (15) are extended by continuity to ∀f, g ∈ l2 making the operator (14)
unitary, which maps l2 onto the whole L2(T, dρ(z)).
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The polynomials Qn;α(z), n ∈ N, α = 1, 2, and Q0,α(z) = 1, form an orthonormal
system in L2(T, dρ(z)). The orthogonality in the sense∫

T
Q∗

k;β(z)Qj;αdρ(z) = δj,kδα,β (Q0;α = Q0(z)).

This system is total in L2(T, dρ(z)).

3. The inner structure of the unitary matrix (8)

We will find a condition that would guarantee the unitary for the matrix J of the
type (8). The formal adjoint matrix J+ has the form

(16) J+ =


b∗0 a∗0 0 0 · · ·
c∗0 b∗1 a∗1 0 · · ·
0 c∗1 b∗2 a∗2 · · ·
...

...
...

...
. . .

 ,
c∗n : Hn −→ Hn+1,
b∗n : Hn −→ Hn,
a∗n : Hn+1 −→ Hn, n ∈ N0.

Multiplying matrices (7) and (16) we get
(17)

JJ+ =


b0b

∗
0 + c0c

∗
0 b0a

∗
0 + c0b

∗
1 c0a

∗
1 0 0 · · ·

a0b
∗
0 + b1c

∗
0 a0a

∗
0 + b1b

∗
1 + c1c

∗
1 b1a

∗
1 + c1b

∗
2 c1a

∗
2 0 · · ·

a1c
∗
0 a1b

∗
1 + b2c

∗
1 a1a

∗
1 + b2b

∗
2 + c2c

∗
2 b2a

∗
2 + c2b

∗
3 c2a

∗
3 · · ·

...
...

...
...

...
. . .

 .

The expression for J+J is analogous to (17) if an, bn and cn are replaced with c∗n, b∗n
and a∗n, respectively, and vice versa.

Comparing these expressions for JJ+ and J+J with the identity I we conclude that
the equality JJ+ = J+J = I is equivalent to fulfillment of the following equalities:

(18)

b0b
∗
0 + c0c

∗
0 = b∗0b0 + a∗0a0 = 1,

cna∗n+1 = a∗ncn+1 = 0,
bna∗n + cnb∗n+1 = b∗ncn + a∗nbn+1 = 0,
ana∗n + bn+1b

∗
n+1 + cn+1c

∗
n+1 = c∗ncn + b∗n+1bn+1 + a∗n+1an+1 = I, n ∈ N0,

where I is the identity operator in the corresponding space. In [3] we obtained equalities
of the type (18) in any general case, where J is a bounded normal operator i.e. satisfies
the relation JJ+ = J+J .

Note that the necessary equalities

anb∗n + bn+1c
∗
n = c∗nbn + b∗n+1an = 0, an+1c

∗
n = c∗n+1an = 0, n ∈ N0,

follow from the third and the second equalities in (18) by taking ∗ the adjoints.
Taking the initial matrices a0, b0, c0 and finding from (18) step by step a1, b1, c1;

a2, b2, c2; . . . etc. (in a non-unique manner) we can construct some unitary matrix J .
But for such a matrix, Theorem 2 in general is not valid, because it is necessary to find
these matrices in such way that an and cn must be of the form (8). Only in this case the
functions (1) are linearly independent and Theorem 2 is applicable.

For an analysis we write (18) in the matrix form

(19) b0b
∗
0 + (c0;2,1 c0;2,2)

(
c̄0;2,1

c̄0;2,2

)
= b∗0b0 + (a0;1,1 0)

(
ā0;1,1

0

)
,

and for n ∈ N

(20)
(

0 0
cn;2,1 cn;2,2

) (
ān+1;1,1 0
ān+1;2,1 0

)
=

(
ān;1,1 0
ān;2,1 0

) (
0 0

cn+1;2,1 cn+1;2,2

)
,
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(21)
(

bn;1,1 bn;1,2

bn;2,1 bn;2,2

) (
ān;1,1 0
ān;1,2 0

)
+

(
0 0

cn;2,1 cn;2,2

) (
b̄n+1;1,1 b̄n+1;2,1

b̄n+1;1,2 b̄n+1;2,2

)
= 0,

(22)
(

b̄n;1,1 b̄n;2,1

b̄n;1,2 b̄n;2,2

) (
0 0

cn;2,1 cn;2,2

)
+

(
ān;1,1 0
ān;1,2 0

) (
bn+1;1,1 bn+1;1,2

bn+1;2,1 bn+1;2,2

)
= 0,

(23)(
an;1,1 an;1,2

0 0

) (
ān;1,1 0
ān;1,2 0

)
+

(
bn+1;1,1 bn+1;1,2

bn+1;2,1 bn+1;2,2

) (
b̄n+1;1,1 b̄n+1;2,1

b̄n+1;1,2 b̄n+1;2,2

)
+

(
0 0

cn+1;2,1 cn+1;2,2

) (
0 c̄n+1;2,1

0 c̄n+1;2,2

)
=

(
1 0
0 1

)
,

(24)(
0 c̄n;2,1

0 c̄n;2,2

) (
0 0

cn;2,1 cn;2,2

)
+

(
b̄n+1;1,1 b̄n+1;2,1

b̄n+1;1,2 b̄n+1;2,2

) (
bn+1;1,1 bn+1;1,2

bn+1;2,1 bn+1;2,2

)
+

(
ān+1;1,1 0
ān+1;1,2 0

) (
an+1;1,1 an+1;1,2

0 0

)
=

(
1 0
0 1

)
.

If we suppose for a convenience that b0, a0 and c0 are of the form

(25) b0 =
(

0 0
0 b0;2,2

)
, a0 =

(
0 a0;1,2

0 0

)
, c0 =

(
0 0

c0;2,1 c0;2,2

)
,

than we can write equalities (20–24) for n ∈ N0.
From (19) we obtain

(26) |c0;2,1|2 + |c0;2,2|2 + |b0;2,2|2 = |a0;1,1|2 + |b0;2,2|2 = 1.

Taking into account (25) for equalities (20–24) we recover from (20):

(27) cn;2,1ān+1;1,1 + cn;2,2ān+1;1,2 = 0;

from (21):

(28)

bn;1,1ān;1,1 + bn;1,2ān;1,2 = 0,

bn;2,1ān;1,1 + bn;2,2ān;1,2 + cn;2,1b̄n+1;1,1 + cn;2,2b̄n+1;1,2 = 0,

cn;2,1b̄n+1;2,1 + cn;2,2b̄n+1;2,2 = 0;

from (22):

(29)

b̄n;2,1cn;2,1 + ān;1,1bn+1;1,1 = 0,

b̄n;2,1cn;2,2 + ān;1,1bn+1;1,2 = 0,

b̄n;2,2cn;2,1 + ān;1,2bn+1;1,1 = 0,

b̄n;2,2cn;2,2 + ān;1,2bn+1;1,2 = 0;

from (23):

(30)

|an;1,1|2 + |an;1,2|2 + |bn+1;1,1|2 + |bn+1;1,2|2 = 1,

bn+1;1,1b̄n+1;2,1 + bn+1;1,2b̄n+1;2,2 = 0,

bn+1;2,1b̄n+1;1,1 + bn+1;2,2b̄n+1;1,2 = 0,

|bn+1;2,1|2 + |bn+1;2,2|2 + |cn+1;2,1|2 + |cn+1;2,2|2 = 1;
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from (24):

(31)

|cn;2,1|2 + |bn+1;1,1|2 + |bn+1;2,1|2 + |an+1;1,1|2 = 1,

c̄n;2,1cn;2,2 + b̄n+1;1,1bn+1;1,2 + b̄n+1;2,1bn+1;2,2 + ān+1;1,1an+1;1,2 = 0,

c̄n;2,2cn;2,1 + b̄n+1;1,2bn+1;1,1 + b̄n+1;2,2bn+1;2,1 + ān+1;1,2an+1;1,1 = 0,

|cn;2,2|2 + |bn+1;1,2|2 + |bn+1;2,2|2 + |an+1;1,2|2 = 1.

We remark that the second equalities of (30) and (31) are adjoint to third equalities
correspondingly.

Denote hk and vk, k = 0, 1, 2, . . . , rows and columns of the matrix (8). Each hk and
vk we understand as a finite vector in l2. Such vector contains no more than fore nonzero
elements. Put (hi, h̄j) = (hi, h̄j)l2 , (vi, v̄j) = (vi, v̄j)l2 as usual scalar product in l2, (h̄j ,
(v̄j) is a vector with adjoint elements).

Lemma 1. The equalities (26–31) are equivalent the following equalities:

(vm, v̄n) = 0, m 6= n, (vm, v̄m) = ‖vm‖2 = 1,

(hm, h̄n) = 0, m 6= n, (hm, h̄m) = ‖hm‖2 = 1, m, n ∈ N0.

Proof. Proof follows immediately from the direct observation of (26–31) using (8). Namely,
the equalities (26–31) are equivalent to the following (32–37) correspondingly:

(32) ‖v0‖ = ‖h0‖ = 1;

(33) (h2n+1, h̄2(n+2)) = 0;

(34)

(h2n, h̄2(n+1)) = 0,

(h2n+1, h̄2(n+1)) = 0,

(h2n+1, h̄2(n+1)+1) = 0;

(35)

(v̄2n, v2(n+1)) = 0,

(v̄2n, v2(n+1)+1) = 0,

(v̄2n+1, v2(n+1)) = 0,

(v̄2n+1, v2(n+1)+1) = 0;

(36)

‖h2(n+1)‖ = 1,

(h2(n+1), h̄2(n+1)+1) = 0,

(h̄2(n+1)+1, h2(n+1)) = 0,

‖h2(n+1)+1‖ = 1;

(37)

‖v2(n+1)‖ = 1,

(v̄2(n+1), v2(n+1)+1) = 0,

(v2(n+1)+1, v̄2(n+1)) = 0,

‖v2(n+1)+1‖ = 1.

�
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Now, using Lemma 1 we will obtain the inner structure of J . In the beginning we put
b0;2,2 := ᾱ0 ∈ C. Since (v0, v̄0) = ‖v0‖2 = 1 i.e. (32), we conclude that |α0| ≤ 1 and
a0;1,2 := ρ0 =

√
1− |α|2. In the ”zero” step we have

(38) J =


ᾱ0 ∗ c0 + . . .
ρ0 ∗ ∗ 0 0

b1 c1 0 . . .
0 ∗ ∗ ∗ +
...

...
...

...
...

. . .

 .

Then we use (v0, v̄1) = 0 and (v0, v̄2) = 0, Lemma 1, i.e. the first and the second
equalities in (35) with n = 0. Put

c0;2,1 := ᾱ1ρ0, c0;2,2 := ρ1ρ0, b1;1,1 := −ᾱ1α0, b1;1,2 := −ρ1α0,

where α1 ∈ C and ρ1 ∈ R are some proportion coefficients. Since (h0, h̄0) = 1, i.e. (32),

|α0|2 + |ᾱ1ρ0|2 + |ρ1ρ0|2 = 1,

and taking into account |α0|2 + |ρ0|2 = 1, we recover |α1|2 + |ρ1|2 = 1.
After the ”zero” and ”first” steps we have

(39) J =


ᾱ0 ᾱ1ρ0 ρ1ρ0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0

c1 0 . . .
0 ∗ ∗ ∗ +
...

...
...

...
...

. . .

 .

By the way, we obtain (h1, h̄1) = 1 and (h0, h̄1) = 0, Lemma 1, i.e

|ρ0|2 + |ᾱ1α0|2 + |ρ1α0|2 = 1,

and
(ᾱ0)(ρ0) + (ᾱ1ρ0)(−α1ρ0) + (ρ1ρ0)(−ρ1ᾱ0) = 0.

In the ”second” step we use (h0, h̄2) = 0, Lemma 1, i.e. the third equality (34) for
n = 0 and (h0, h̄3) = 0, Lemma 1, i.e. (33) for n = 0. (Obviously, we can use (h1, h̄2) = 0
and (h1, h̄3) = 0, i.e. the second equality in (36) and the first equality in (34)). Put

b1;2,1 := ᾱ2ρ1, b1;2,2 := −ᾱ2α1, a1;1,1 := ρ2ρ1, a1;1,2 := −ρ2α0,

where α2 ∈ C and ρ2 ∈ R some new proportion coefficient.
Using (v1, v̄1) = 1, Lemma 1, and taking into account |α0|2+|ρ0|2 = 1, |α1|2+|ρ1|2 = 1,

we conclude that |α2|2 + |ρ2|2 = 1.
By the way, we obtain (v1, v̄2) = 0, Lemma 1 i.e. the third equality in (37).
Hence after the ”zero” (38), the ”first” (39) and the ”second” steps we have

J =



ᾱ0 ᾱ1ρ0 ρ1ρ0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0

c1 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ∗ +

ρ2ρ1 −ρ2α1 ∗ ∗ 0 0
b2 c2 . . .

0 0 ∗ ∗ ∗ +
...

...
...

...
...

...
. . .


.

Now we can prove obviously by induction the following proposition, i.e. the part of
Theorem 3.2 [5].
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Theorem 3. The matrix J in (8) has a form
(40)

J =



ᾱ0 ᾱ1ρ0 ρ1ρ0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .

ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 0 0 . . .
0 0 ᾱ4ρ3 −ᾱ4α3 ᾱ5ρ4 ρ5ρ4 . . .

ρ4ρ3 −ρ4α3 −ᾱ5α4 −ρ5α4 0 0 . . .
0 0 0 ᾱ6ρ5 −ᾱ6α5 ᾱ7ρ6 ρ7ρ6 . . .

...
...

...
...

...
...

...
...

...
. . .


,

where αk ∈ C, k ∈ N0 any coefficients with a condition |αk| < 1, and ρk =
√

1− |αk|2.
These coefficients are named Verblunsky coefficients of the measure corresponding to the
matrix J .

Conversely, each matrix of the form (40) is a unitary operator in l2 as five-diagonal
one and in l2 also as block tree-diagonal one.
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