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A STOCHASTIC INTEGRAL OF OPERATOR-VALUED FUNCTIONS

VOLODYMYR TESKO

To Professor M. L. Gorbachuk on the occasion of his 70th birthday.

Abstract. In this note we define and study a Hilbert space-valued stochastic integral
of operator-valued functions with respect to Hilbert space-valued measures. We show
that this integral generalizes the classical Itô stochastic integral of adapted processes
with respect to normal martingales and the Itô integral in a Fock space.

1. Introduction

Here and subsequently, we fix a real number T > 0. Let H be a complex Hilbert
space, M be a fixed vector from H and [0, T ] 3 t 7→ Et be a resolution of identity in H.
Consider the H-valued function (abstract martingale)

[0, T ] 3 t 7→ Mt := EtM ∈ H.

In this paper we construct and study an integral

(1)
∫

[0,T ]

A(t) dMt

for a certain class of operator-valued functions [0, T ] 3 t 7→ A(t) whose values are linear
operators in the space H. We define such an integral as an element of the Hilbert space
H and call it a Hilbert space-valued stochastic integral (or H-stochastic integral). By
analogy with the classical integration theory we first define integral (1) for a certain class
of simple operator-valued functions and then extend this definition to a wider class.

We illustrate our abstract constructions with a few examples. Thus, we show that the
classical Itô stochastic integral is a particular case of the H-stochastic integral. Namely,
let H := L2(Ω,A, P ) be a space of square integrable functions on a complete probability
space (Ω,A, P ), {At}t∈[0,T ] be a filtration satisfying the usual conditions and {Nt}t∈[0,T ]

be a normal martingale on (Ω,A, P ) with respect to {At}t∈[0,T ], i.e.,

{Nt}t∈[0,T ] and {N2
t − t}t∈[0,T ]

are martingales for {At}t∈[0,T ]. It follows from the properties of martingales that

Nt = E[NT |At], t ∈ [0, T ],

where E[ · |At] is a conditional expectation with respect to the σ-algebra At. It is well
known that E[ · |At] is the orthogonal projector in the space L2(Ω,A, P ) onto its subspace
L2(Ω,At, P ) and, moreover, the corresponding projector-valued function R+ 3 t 7→ Et :=
E[ · |At] is a resolution of identity in L2(Ω,A, P ), see e.g. [13, 3, 4, 12, 7]. In this way
the normal martingale {Nt}t∈[0,T ] can be interpreted as an abstract martingale, i.e.,

[0, T ] 3 t 7→ Nt = E[NT |At] = EtNT ∈ H.

Hence, in the space L2(Ω,A, P ) we can construct the H-stochastic integral with respect
to the normal martingale Nt. Let F ∈ L2([0, T ] × Ω, dt × P ) be a square integrable
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stochastic process adapted to the filtration {At}t∈[0,T ]. We consider the operator-valued
function [0, T ] 3 t 7→ AF (t) whose values are operators AF (t) of multiplication by the
function F (t) = F (t, ·) ∈ L2(Ω,A, P ) in the space L2(Ω,A, P ),

L2(Ω,A, P ) ⊃ Dom(AF (t)) 3 G 7→ AF (t)G := F (t)G ∈ L2(Ω,A, P ).

In this paper we prove that the H-stochastic integral of [0, T ] 3 t 7→ AF (t) coincides
with the classical Itô stochastic integral

∫
[0,T ]

F (t) dNt of F . That is,∫
[0,T ]

AF (t) dNt =
∫

[0,T ]

F (t) dNt.

In the last part of this note we show that the Itô integral in a Fock space is the H-
stochastic integral and establish a connection of such an integral with the classical Itô
stochastic integral. The corresponding results are given without proofs (the proofs will
be given in a forthcoming publication). Note that the Itô integral in a Fock space is a
useful tool in the quantum stochastic calculus, see e.g. [2] for more details.

We remark that in [3, 4] the authors gave a definition of the operator-valued stochastic
integral

B :=
∫

[0,T ]

A(t) dEt

for a family {A(t)}t∈[0,T ] of commuting normal operators in H. Such an integral was
defined using a spectral theory of commuting normal operators. It is clear that for a
fixed vector M ∈ Dom(B) ⊂ H the formula∫

[0,T ]

A(t) dMt :=
( ∫

[0,T ]

A(t) dEt

)
M

can be regarded as a definition of integral (1). In this way we obtain another definition
of integral (1) different from the one we have proposed in this paper.

2. The construction of the H-stochastic integral

Let H be a complex Hilbert space, L(H) be a space of all bounded linear operators in
H, M 6= 0 be a fixed vector from H and

[0, T ] 3 t 7→ Et ∈ L(H)

be a resolution of identity in H, that is a right-continuous increasing family of orthogonal
projections inH such that ET = 1. Note that the resolution of identity E can be regarded
as a projector-valued measure B([0, T ]) 3 α 7→ E(α) ∈ L(H) on the Borel σ-algebra
B([0, T ]). Namely, for any interval (s, t] ⊂ [0, T ] we set

E((s, t]) := Et − Es, E({0}) := E0, E(∅) := 0,

and extend this definition to all Borel subsets of [0, T ], see e.g. [6] for more details.
By definition, the H-valued function

[0, T ] 3 t 7→ Mt := EtM ∈ H

is an abstract martingale in the Hilbert space H.
In this section we give a definition of integral (1) for a certain class of operator-valued

functions with respect to the abstract martingale Mt. A construction of such an integral
is given step-by-step, beginning with the simplest class of operator-valued functions. Let
us introduce the required class of simple functions.

For each point t ∈ [0, T ], we denote by

HM (t) := span{Ms2 −Ms1 | (s1, s2] ⊂ (t, T ]} ⊂ H

the linear span of the set {Ms2 −Ms1 | (s1, s2] ⊂ (t, T ]} in H and by

LM (t) = L(HM (t) → H)
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the set of all linear operators inH that continuously act fromHM (t) toH. The increasing
family LM = {LM (t)}t∈[0,T ] will play here a role of the filtration {At}t∈[0,T ] in the
classical martingale theory.

For a fixed t ∈ [0, T ), a linear operator A in H will be called LM (t)-measurable if
(i) A ∈ LM (t) and, for all s ∈ [t, T ),

‖A‖LM (t) = ‖A‖LM (s) := sup
{‖Ag‖H
‖g‖H

∣∣∣ g ∈ HM (s), g 6= 0
}

.

(ii) A is partially commuting with the resolution of identity E. More precisely,

AEsg = EsAg, g ∈ HM (t), s ∈ [t, T ].

Such a definition of LM (t)-measurability is motivated by a number of reasons:
• LM (t)-measurability is a natural generalization of the usual At-measurability in

classical stochastic calculus, see Lemma 1 (Section 3) for more details;
• in some sense, LM (t)-measurability (for each t) is the minimal restriction on the

behavior of a simple operator-valued function [0, T ] 3 t 7→ A(t) that will allow us
to obtain an analogue of the Itô isometry property (see inequality (4) below) and
to extend the H-stochastic integral from a simple class of functions to a wider
one.

In what follows, it is convenient for us to call LM (T )-measurable all linear operators
in H. Evidently, if a linear operator A in H is LM (t)-measurable for some t ∈ [0, T ] then
A is LM (s)-measurable for all s ∈ [t, T ].

A family {A(t)}t∈[0,T ] of linear operators in H will be called a simple LM -adapted
operator-valued function on [0, T ] if, for each t ∈ [0, T ], the operator A(t) is LM (t)-
measurable and there exists a partition 0 = t0 < t1 < · · · < tn = T of [0, T ] such
that

(2) A(t) =
n−1∑
k=0

Akκ(tk,tk+1](t), t ∈ [0, T ],

where κα(·) is the characteristic function of the Borel set α ∈ B([0, T ]).
Let S = S(M) denote the space of all simple LM -adapted operator-valued functions

on [0, T ]. For a function A ∈ S with representation (2) we define an H-stochastic integral
of A with respect to the abstract martingale Mt through the formula

(3)
∫

[0,T ]

A(t) dMt :=
n−1∑
k=0

Ak(Mtk+1 −Mtk
) ∈ H.

We can show that this definition does not depend on the choice of representation of the
simple function A in the space S.

In the space S we introduce a quasinorm by setting

‖A‖S2 :=
( ∫

[0,T ]

‖A(t)‖2LM (t) dµ(t)
) 1

2
:=

( n−1∑
k=0

‖Ak‖2LM (tk)µ((tk, tk+1])
) 1

2

for each A ∈ S with representation (2). Here the measure µ is defined by the formula

B([0, T ]) 3 α 7→ µ(α) := ‖M(α)‖2H = (E(α)M,M)H ∈ R+,

where M(α) := E(α)M for all α ∈ B([0, T ]), in particular,

M((tk, tk+1]) := E((tk, tk+1])M = Mtk+1 −Mtk
, (tk, tk+1] ⊂ [0, T ].

The following statement is fundamental.

Theorem 1. Let A,B ∈ S and a, b ∈ C. Then∫
[0,T ]

(
aA(t) + bB(t)

)
dMt = a

∫
[0,T ]

A(t) dMt + b

∫
[0,T ]

B(t) dMt
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and

(4)
∥∥∥∫

[0,T ]

A(t) dMt

∥∥∥2

H
≤

∫
[0,T ]

‖A(t)‖2LM (t) dµ(t).

Proof. The first assertion is trivial.
Let us check inequality (4). Using (i), (ii) and properties of the resolution of identity

E, for A ∈ S with representation (2), we obtain∥∥∥∫
[0,T ]

A(t) dMt

∥∥∥2

H
=

( ∫
[0,T ]

A(t) dMt,

∫
[0,T ]

A(t) dMt

)
H

=
n−1∑

k,m=0

(
AkM(∆k), AmM(∆m)

)
H

=
n−1∑

k,m=0

(
AkE(∆k)M,AmE(∆m)M

)
H

=
n−1∑

k,m=0

(
E(∆k)AkE(∆k)M,E(∆m)AmE(∆m)M

)
H

=
n−1∑
k=0

(
AkE(∆k)M,AkE(∆k)M

)
H =

n−1∑
k=0

‖AkM(∆k)‖2H

≤
n−1∑
k=0

‖Ak‖2LM (tk)‖M(∆k)‖2H =
n−1∑
k=0

‖Ak‖2LM (tk)µ(∆k)

=
∫

[0,T ]

‖A(t)‖2LM (t) dµ(t),

where ∆k := (tk, tk+1] for all k ∈ {0, . . . , n− 1}. �

Inequality (4) enables us to extend the H-stochastic integral to operator-valued func-
tions [0, T ] 3 t 7→ A(t) which are not necessarily simple. Namely, denote by S2 = S2(M)
a Banach space associated with the quasinorm ‖ · ‖S2 . For its construction, it is first
necessary to pass from S to the factor space

Ṡ := S/{A ∈ S | ‖A‖S2 = 0}
and then to take the completion of Ṡ. It is not difficult to see that elements of the space
S2 are equivalence classes of operator-valued functions on [0, T ] whose values are linear
operators in the space H.

An operator-valued function [0, T ] 3 t 7→ A(t) will be called H-stochastic integrable
with respect to Mt if A belongs to the space S2. It follows from the definition of the
space S2 that for each A ∈ S2 there exists a sequence (An)∞n=0 of simple operator-valued
functions An ∈ S such that

(5)
∫

[0,T ]

‖A(t)−An(t)‖2LM (t) dµ(t) → 0 as n →∞.

Due to (4), for such a sequence (An)∞n=0, the limit

lim
n→∞

∫
[0,T ]

An(t) dMt

exists in H and does not dependent on the choice of the sequence (An)∞n=0 ⊂ S satisfying
(5). We denote this limit by∫

[0,T ]

A(t) dMt := lim
n→∞

∫
[0,T ]

An(t) dMt

and call it the H-stochastic integral of A ∈ S2 with respect to the abstract martingale
Mt. It is clear that for all A ∈ S2 the assertions of Theorem 1 still hold.
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Note one simple property of the integral introduced above. Let U be some unitary
operator acting from H onto another complex Hilbert space K. Then

[0, T ] 3 t 7→ Gt := UMt ∈ K
is an abstract martingale in the space K because, for any t ∈ [0, T ],

Gt = UMt = XtG, Xt := UEtU
−1, G := UM ∈ K,

and Xt is a resolution of identity in the space K.
Let an operator-valued function [0, T ] 3 t 7→ A(t) be H-stochastic integrable with

respect to Mt. One can show that the operator-valued function [0, T ] 3 t 7→ UA(t)U−1

is H-stochastic integrable with respect to Gt and

U
( ∫

[0,T ]

A(t) dMt

)
=

∫
[0,T ]

UA(t)U−1 dGt ∈ K.

3. The Itô stochastic integral as an H-stochastic integral

Let (Ω,A, P ) be a complete probability space and {At}t∈[0,T ] be a right continuous
filtration. Suppose that the σ-algebra A0 contains all P -null sets of A and A = AT .
Moreover, we assume that A0 is trivial, i.e., every set α ∈ A0 has probability 0 or 1.

Let N = {Nt}t∈[0,T ] be a normal martingale on (Ω,A, P ) with respect to {At}t∈[0,T ].
That is, Nt ∈ L2(Ω,At, P ) for all t ∈ [0, T ] and

E[Nt −Ns|As] = 0, E[(Nt −Ns)2|As] = t− s

for all s, t ∈ [0, T ] such that s < t. Without loss of generality one can assume that
N0 = 0. Note that there are many examples of normal martingales, — the Brownian
motion, the compensated Poisson process, the Azéma martingales and others, see for
instance [10, 8, 12].

We will denote by L2
a([0, T ]×Ω) the set of all functions (equivalence classes), adapted

to the filtration {At}t∈[0,T ], from the space

L2([0, T ]× Ω) := L2([0, T ]× Ω,B([0, T ])×A, dt× P )

where dt is the Lebesgue measure on B([0, T ]).
Let us show that the Itô stochastic integral

∫
[0,T ]

F (t) dNt of F ∈ L2
a([0, T ]× Ω) with

respect to the normal martingale N can be considered as an H-stochastic integral (see
e.g. [15, 16] for the definition and properties of the classical Itô integral). To this end,
we set H := L2(Ω,A, P ) and consider, in this space, the resolution of identity

[0, T ] 3 t 7→ Et := E[ · |At] ∈ L(H)

generated by the filtration {At}t∈[0,T ]. Let M := NT ∈ L2(Ω,A, P ), then the corres-
ponding abstract martingale

[0, T ] 3 t 7→ Nt := EtNT = E[NT |At] ∈ H
is our normal martingale. Note also that

µ([0, t]) = ‖N([0, t])‖2L2(Ω,A,P ) = ‖Nt‖2L2(Ω,A,P ) = E[N2
t ] = E[N2

t | A0] = t,

i.e., µ is the Lebesgue measure on B([0, T ]).
In the context of this section, LM (t)-measurability is equivalent to the usual At-

measurability. More precisely, the following result holds.

Lemma 1. Let t ∈ [0, T ). For given F ∈ L2(Ω,A, P ) the operator AF of multiplica-
tion by the function F in the space L2(Ω,A, P ) is LN (t)-measurable if and only if the
function F is At-measurable, i.e., F = E[F |At]. Moreover, if F ∈ L2(Ω,A, P ) is an
At-measurable function then

(6) ‖AF ‖LN (t) = ‖AF ‖LN (s) = ‖F‖L2(Ω,A,P ), s ∈ [t, T ).
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Proof. Suppose F ∈ L2(Ω,A, P ) is an At-measurable function. Let us show that the
operator AF is LN (t)-measurable.

First, we prove that AF ∈ LN (t). Taking into account that F is an At-measurable
function, {Nt}t∈[0,T ] is the normal martingale and the σ-algebra A0 is trivial, for any
interval (s1, s2] ⊂ (t, T ], we obtain

‖AF (Ns2 −Ns1)‖2L2(Ω,A,P ) = ‖F (Ns2 −Ns1)‖2L2(Ω,A,P ) = E[F 2(Ns2 −Ns1)
2]

= E[F 2(Ns2 −Ns1)
2|A0] = E

[
F 2E[(Ns2 −Ns1)

2|As1 ]
∣∣A0

]
= E

[
F 2E[(Ns2 −Ns1)

2|As1 ]
]

= E[F 2](s2 − s1)

= E[F 2]E[(Ns2 −Ns1)
2]

= ‖F‖2L2(Ω,A,P )‖Ns2 −Ns1‖2L2(Ω,A,P ).

We can similarly show that

‖AF G‖2L2(Ω,A,P ) = ‖F‖2L2(Ω,A,P )‖G‖
2
L2(Ω,A,P )

for all G ∈ HN (t) = span{Ns2−Ns1 |(s1, s2] ⊂ (t, T ]}. Hence AF ∈ LN (t) and, moreover,
equality (6) takes place.

Let us check that AF is partially commuting with E, i.e.,

AF EsG = EsAF G, G ∈ HN (t), s ∈ [t, T ].

Since F ∈ L2(Ω,A, P ) is an At-measurable function and FG ∈ L2(Ω,A, P ), for any
s ∈ [t, T ] and any function G ∈ HN (t), we have

AF EsG = FEsG = FE[G|As] = E[FG|As] = EsAF G.

Thus, the first part of the lemma is proved.
Let us prove the converse statement of the lemma: if for a given F ∈ L2(Ω,A, P ) the

operator AF is LN (t)-measurable then F is an At-measurable function.
Since AF is an LN (t)-measurable operator, we see that for any s ∈ [t, T ]

AF EsG = EsAF G, G ∈ HN (t),

or, equivalently,

(7) AF E[G|As] = E[AF G|As], G ∈ HN (t).

Let s ∈ (t, T ) and (s1, s2] ⊂ (t, s]. We take

G := Ns2 −Ns1 ∈ HN (t).

Evidently, G is an As-measurable function and

AF E[G|As] = AF G = FG, E[AF G|As] = E[FG|As] = GE[F |As].

Hence, using (7), we obtain
FG = GE[F |As].

As a result,
F = E[F |As], s ∈ (t, T ].

Since the resolution of identity [0, T ] 3 s 7→ Es = E[ · |As] ∈ L(H) is a right-continuous
function, the latter equality still holds for s = t, and therefore F is an At-measurable
function. �

As a simple consequence of Lemma 1 we obtain the following result.

Theorem 2. Let F belong to L2([0, T ]×Ω). The family {AF (t)}t∈[0,T ] of the operators
AF (t) of multiplication by F (t) = F (t, ·) ∈ L2(Ω,A, P ) in the space L2(Ω,A, P ),

L2(Ω,A, P ) ⊃ Dom(AF (t)) 3 G 7→ AF (t)G := F (t)G ∈ L2(Ω,A, P ),

is H-stochastic integrable with respect to the normal martingale N (i.e. belongs to S2) if
and only if F belongs to the space L2

a([0, T ]× Ω).
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The next theorem shows that the Itô stochastic integral with respect to the normal
martingale N can be interpreted as an H-stochastic integral.

Theorem 3. Let F ∈ L2
a([0, T ] × Ω) and {AF (t)}t∈[0,T ] be the corresponding family of

the operators AF (t) of multiplication by F (t) in the space L2(Ω,A, P ). Then∫
[0,T ]

AF (t) dNt =
∫

[0,T ]

F (t) dNt.

Proof. Taking into account Theorem 2, Lemma 1 and the definitions of the integrals∫
[0,T ]

AF (t) dNt and
∫

[0,T ]

F (t) dNt,

it is sufficient to prove Theorem 3 for simple functions F ∈ L2
a([0, T ] × Ω). But in this

case Theorem 3 is obvious. �

4. The Itô integral in a Fock space as an H-stochastic integral

Let us recall the definition of the Itô integral in a Fock space, see e.g. [2] for more
details. We denote by F the symmetric Fock space over the real separable Hilbert space
L2([0, T ]) := L2([0, T ], dt). By definition (see e.g. [5]),

F :=
∞⊕

n=0

Fnn!,

where F0 := C and, for each n ∈ N, Fn := (L2
C([0, T ]))b⊗n is an n-th symmetric tensor

power ⊗̂ of the complex Hilbert space L2
C([0, T ]). Thus, the Fock space F is the complex

Hilbert space of sequences f = (fn)∞n=0 such that fn ∈ Fn and

‖f‖2F =
∞∑

n=0

‖fn‖2Fn
n! < ∞.

We denote by L2([0, T ];F) the Hilbert space of all F-valued functions

[0, T ] 3 t 7→ f(t) ∈ F , ‖f‖L2([0,T ];F) :=
( ∫

[0,T ]

‖f(t)‖2F dt
) 1

2
< ∞

with the corresponding scalar product. A function f(·) = (fn(·))∞n=0 ∈ L2([0, T ];F) is
called Itô integrable if, for almost all t ∈ [0, T ],

f(t) = (f0(t), κ[0,t]f1(t), . . . , κ[0,t]nfn(t), . . .).

We denote by L2
a([0, T ];F) the set of all Itô integrable functions.

Let f belong to the space L2
a,s([0, T ];F) of all simple Itô integrable functions. That

is, f belongs to L2
a([0, T ];F) and there exists a partition 0 = t0 < t1 < · · · < tn = T of

[0, T ] such that

f(t) =
n−1∑
k=0

f(k)κ(tk,tk+1](t) ∈ F

for almost all t ∈ [0, T ]. The Itô integral I(f) of such a function f is defined by the
formula

I(f) :=
n−1∑
k=0

f(k)♦(0, κ(tk,tk+1], 0, 0, . . .) ∈ F ,

where the symbol ♦ denotes the Wick product in the Fock space F . Let us recall that
for given f = (fn)∞n=0 and g = (gn)∞n=0 from F the Wick product f♦g is defined by

f♦g :=
( n∑

m=0

fm ⊗̂ gn−m

)∞
n=0

,
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provided the latter sequence belongs to the Fock space F .
The Itô integral I(f) of a simple function f ∈ L2

a,s([0, T ];F) has the isometry property∥∥I(f)
∥∥2

F =
∫

[0,T ]

∥∥f(t)
∥∥2

F dt,

see e.g. [2, 1]. Hence, extending the mapping

L2
a([0, T ];F) ⊃ L2

a,s([0, T ];F) 3 f 7→ I(f) ∈ F

by continuity we obtain a definition of the Itô integral I(f) for each f ∈ L2
a([0, T ];F) (we

keep the same notation I for the extension).
Let us show that the Itô integral I(f) of f ∈ L2

a([0, T ];F) can be considered as an
H-stochastic integral. To do this we set H := F and consider in this space the resolution
of identity

[0, T ] 3 t 7→ Xtf := (f0, κ[0,t]f1, . . . , κ[0,t]nfn, . . .) ∈ L(F), f = (fn)∞n=0 ∈ F .

Let Z := (0, 1, 0, 0, . . .) ∈ F and

[0, T ] 3 t 7→ Zt := XtZ = (0, κ[0,t], 0, 0, . . .) ∈ F

be the corresponding abstract martingale in the Fock space F . Note that now

µ([0, t]) := ‖Zt‖2F = ‖κ[0,t]‖2L2
C([0,T ]) = t, t ∈ [0, T ],

i.e., µ is the Lebesgue measure on B([0, T ]).
We have the following analogues of Theorems 2 and 3.

Theorem 4. A function f ∈ L2([0, T ];F) belongs to the space L2
a([0, T ];F) if and only if

the corresponding operator-valued function [0, T ] 3 t 7→ Af (t) whose values are operators
Af (t) of Wick multiplication by f(t) ∈ F in the Fock space F ,

F ⊃ Dom(Af (t)) 3 g 7→ Af (t)g := f(t)♦g ∈ F ,

belongs to the space S2.

Theorem 5. Let f ∈ L2
a([0, T ];F) and {Af (t)}t∈[0,T ] be the corresponding family of the

operators Af (t) of Wick multiplication by f(t) ∈ F in the Fock space F . Then

I(f) =
∫

[0,T ]

Af (t) dZt.

Taking into account Theorem 5, in what follows we will denote the Itô integral I(f)
of f ∈ L2

a([0, T ];F) by
∫
[0,T ]

f(t) dZt. Note that this integral can be expressed in terms
of the Fock space F . Namely, for any f(·) = (fn(·))∞n=0 ∈ L2

a([0, T ];F), we have

(8)
∫

[0,T ]

f(t) dZt = (0, f̂1, . . . , f̂n, . . .) ∈ F ,

where, for each n ∈ N and almost all (t1, . . . , tn) ∈ [0, T ]n,

f̂n(t1, . . . , tn) :=
1
n

n∑
k=1

fn−1(tk; t1, . . . , tk� , . . . , tn),

i.e., f̂n is the symmetrization of fn−1(t; t1, . . . , tn−1) with respect to n variables.

5. A connection between the classical Itô integral
and the Itô integral in the Fock space

As before, let (Ω,A, P ) be a complete probability space with a right continuous filtra-
tion {At}t∈[0,T ], A0 be the trivial σ-algebra containing all P -null sets of A and A = AT .
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Let N = {Nt}t∈[0,T ] be a normal martingale on (Ω,A, P ) with respect to {At}t∈[0,T ],
N0 = 0. It is known that the mapping

F 3 f = (fn)∞n=0 7→ If :=
∞∑

n=0

In(fn) ∈ L2(Ω,A, P )

is well-defined and isometric. Here I0(f0) := f0 and, for each n ∈ N,

In(fn) := n!
∫ T

0

∫ tn

0

· · ·
( ∫ t2

0

fn(t1, . . . , tn) dNt1

)
. . . dNtn−1 dNtn

is an n-iterated Itô integral with respect to N . We suppose that the normal martingale
N has the chaotic representation property (CRP). In other words, we assume that the
mapping I : F → L2(Ω,A, P ) is a unitary. Note that

Nt = IZt ∈ L2(Ω,A, P ), t ∈ [0, T ],

i.e., N is the I-image of the abstract martingale [0, T ] 3 t 7→ Zt = (0, κ[0,t], 0, 0, . . .) ∈ F .
The Brownian motion, the compensated Poisson process and some Azéma martingales

are examples of normal martingales which possess the CRP, see e.g. [10, 11].
We note that the spaces L2([0, T ] × Ω) and L2([0, T ];F) can be understood as the

tensor products L2([0, T ])⊗ L2(Ω,A, P ) and L2([0, T ])⊗F , respectively. Therefore,

1⊗ I : L2([0, T ];F) → L2([0, T ]× Ω)

is a unitary operator.
The next result gives a relationship between the classical Itô integral with respect to

the normal martingale with CRP and the Itô integral in the Fock space F .

Theorem 6. We have

L2
a([0, T ]× Ω) = (1⊗ I)L2

a([0, T ];F)

and, for arbitrary f ∈ L2
a([0, T ];F),

I
( ∫

[0,T ]

f(t) dZt

)
=

∫
[0,T ]

If(t) dNt.

Since N has CRP, for any F ∈ L2
a([0, T ] × Ω) there exists a uniquely defined vector

f(·) = (fn(·))∞n=0 ∈ L2
a([0, T ];F) such that

F (t) = If(t) =
∞∑

n=0

In(fn(t))

for almost all t ∈ [0, T ]. Hence, using Theorem 6 and equality (8) we obtain∫
[0,T ]

F (t) dNt = I
( ∫

[0,T ]

f(t) dZt

)
=

∞∑
n=1

In(f̂n) ∈ L2(Ω,A, P ).

It should be noticed that the right hand side of the latter equality was used by Hit-
suda [9] and Skorohod [14] to define an extension of the Itô integral. Namely, a function

F (·) =
∞∑

n=0

In(fn(·)) ∈ L2([0, T ]× Ω)

is Hitsuda-Skorohod integrable if and only if
∞∑

n=1

In(f̂n) ∈ L2(Ω,A, P ) or, equivalently,
∞∑

n=1

‖f̂n‖2Fn
n! < ∞.

The corresponding Hitsuda-Skorohod integral IHS(F ) of F is defined by the formula

IHS(F ) :=
∞∑

n=1

In(f̂n).
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