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ON TWO-COMPONENT CONTACT MODEL IN CONTINUUM

WITH ONE INDEPENDENT COMPONENT

D. O. FILONENKO, D. L. FINKELSHTEIN, AND YU. G. KONDRATIEV

In memory of S.I. Zuchovitsky.

Abstract. Properties of a contact process in continuum for a system of particles
of two types, one which is independent of the other, are considered. We study
dynamics of the first and the second order correlation functions, their asymptotics,
and the dependence on parameters of the system.

1. Preliminaries

The configuration space Γ := ΓRd over Rd, d ∈ N, is defined as the set of all locally
finite subsets of Rd,

(1.1) Γ :=
{
γ ⊂ Rd : |γΛ| <∞ for every compact Λ ⊂ Rd

}
,

where |·| denotes the cardinality of a set and γΛ := γ ∩ Λ. As usual we identify each
γ ∈ Γ with the non-negative Radon measure

∑
x∈γ δx ∈ M(Rd), where δx is the Dirac

measure with unit mass at x,
∑

x∈∅
δx is, by definition, the zero measure, and M(Rd)

denotes the space of all non-negative Radon measures on the Borel σ-algebra B(Rd).
This identification allows to endow Γ with the topology induced by the vague topology
on M(Rd), i.e., the weakest topology on Γ with respect to which all mappings

Γ ∋ γ 7−→ 〈f, γ〉 :=

∫

Rd

f(x)dγ(x) =
∑

x∈γ

f(x), f ∈ C0(R
d),

are continuous. Here C0(Rd) denotes the set of all continuous functions on Rd with
compact support. We denote by B(Γ) the corresponding Borel σ-algebra on Γ.

Let us now consider the space of finite configurations

Γ0 :=
∞⊔

n=0

Γ(n),

where Γ(n) := Γ
(n)

Rd := {γ ∈ Γ : |γ| = n} for n ∈ N and Γ(0) := {∅}. For n ∈ N, there is

a natural bijection between the space Γ(n) and the symmetrization (̃Rd)n�Sn of the set

(̃Rd)n := {(x1, . . . , xn) ∈ (Rd)n : xi 6= xj if i 6= j} under the permutation group Sn over

{1, . . . , n} acting on (̃Rd)n by permuting the coordinate indexes. This bijection induces
a metrizable topology on Γ(n), and we endow Γ0 with the topology of disjoint union of
topological spaces. By B(Γ(n)) and B(Γ0) we denote the corresponding Borel σ-algebras
on Γ(n) and Γ0, respectively.
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Given a constant z > 0, let λz be the Lebesgue-Poisson measure

λz :=

∞∑

n=0

zn

n!
m(n),

where each m(n), n ∈ N, is the image measure on Γ(n) of the product measure dx1 · · · dxn

under the mapping (̃Rd)n ∋ (x1, . . . , xn) 7→ {x1, . . . , xn} ∈ Γ(n). For n = 0 we set
m(0)({∅}) := 1.

We proceed to consider the K-transform [8], [9], [10], [4], that is, a mapping which
maps functions defined on Γ0 into functions defined on the space Γ. Let Bc(Rd) denote
the set of all bounded Borel sets in Rd, and for any Λ ∈ Bc(Rd) let ΓΛ := {η ∈ Γ : η ⊂ Λ}.

Evidently ΓΛ =
⊔∞

n=0 Γ
(n)
Λ , where Γ

(n)
Λ := ΓΛ∩Γ(n) for each n ∈ N0, leading to a situation

similar to the one for Γ0, described above. We endow ΓΛ with the topology of the disjoint
union of topological spaces and with the corresponding Borel σ-algebra B(ΓΛ).

Given a B(Γ0)-measurable function G with local support, that is, G↾Γ0\ΓΛ
≡ 0 for some

Λ ∈ Bc(Rd), the K-transform of G is a mapping KG : Γ → R defined at each γ ∈ Γ by

(1.2) (KG)(γ) :=
∑

η⋐γ

G(η),

where η ⋐ γ means that η ⊂ γ and |η| < ∞. Note that for every such function G the
sum in (1.2) has only a finite number of summands different from zero, and thus KG is
a well-defined function on Γ. Moreover, if G has support described as before, then the
restriction (KG)↾ΓΛ is a B(ΓΛ)-measurable function and (KG)(γ) = (KG)↾ΓΛ (γΛ) for
all γ ∈ Γ, i.e., KG is a cylinder function.

Let now G be a bounded B(Γ0)-measurable function with bounded support, that is,
G↾

Γ0\
“

F

N

n=0 Γ
(n)
Λ

”≡ 0 for some N ∈ N0,Λ ∈ Bc(Rd). In this situation, for each C ≥ |G|

one finds |(KG)(γ)| ≤ C(1 + |γΛ|)
N for all γ ∈ Γ. As a result, besides the cylindricity

property, KG is also polynomially bounded. In the sequel we denote the space of all
bounded B(Γ0)-measurable functions with bounded support by Bbs(Γ0). It has been
shown in [4] that the K-transform is a linear isomorphism whose inverse mapping is
defined on cylinder functions by

(1.3)
(
K−1F

)
(η) :=

∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

Note that as mapping K−1 is well-defined on the set of measurable functions.

2. The description of problem and main results

2.1. Basic facts and notations. Two-component contact process in Rd describes a
birth-and-death stochastic dynamics of a infinite system of two type particles. Such a
system may be interpreted as a pair of configurations in Rd as well as one configuration
of marked particles that means that each particle has mark (spin) +1 or −1. The first
interpretation sometimes is more useful but we should additionally assume that these
two configurations don’t interact.

Let us give rigorous definitions. Consider two copies of the space Γ, Γ+ and Γ−. Let

(2.1) Γ2 :=
{

(γ+, γ−) ∈ Γ+ × Γ− : γ+ ∩ γ− = ∅
}
.

Any configuration γ := (γ+, γ−) ∈ Γ2 may be identified with the marked configuration

γ̂ =
{
(x, σx) : x ∈ γ+ ∪ γ−, σx = 11x∈γ+ − 11x∈γ−

}
∈ Γ̂,
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since γ+ ⊔ γ− ∈ Γ. Here Γ̂ is the space of all marked configurations in Rd with marks
equal to ±1. One can induce topology on Γ2 from the weakest topology on Γ̂ such that
all functions

Γ̂ ∋ γ̂ 7−→
∑

(x,σx)∈γ̂

f̂((x, σx)) ∈ R

are continuous for all f̂ ∈ C0(Rd × {−1; 1}). Clearly, in this induced topology on Γ2, all
the functions

Γ2 ∋ γ = (γ+, γ−) 7−→
∑

x∈γ+

f(x) +
∑

y∈γ−

g(y) ∈ R

will be continuous for any f, g ∈ C0(Rd).
On the other hand, this topology may be induced from the topology on product

Γ+ × Γ−. Let B(Γ2) :=
(
B(Γ+) × B(Γ−)

)
∩ Γ2 be the corresponding σ-algebra.

Let us now consider the space of finite configurations. Consider two copies of the
space Γ0: Γ+

0 and Γ−
0 . Let

(2.2) Γ2
0 :=

{
(η+, η−) ∈ Γ+

0 × Γ−
0 : η+ ∩ η− = ∅

}
.

Again one can consider the topology on Γ2
0 induced by the product-topology. By B(Γ2

0)
we denote the corresponding σ-algebra.

We will say that a function G : Γ2
0 → R is a bounded function with bounded support if

there existN ∈ N0,Λ ∈ Bc(Rd) such that G(η+, η−) = 0 for all (η+, η−) /∈
(⊔N

n=0 Γ
(n)
Λ

)
×

(⊔N
n=0 Γ

(n)
Λ

)
. The class of all such functions we denote by Bbs(Γ

2
0).

For any G ∈ Bbs(Γ
2
0) one can define the K-transform of G as mapping KG : Γ2 → R

defined at each γ = (γ+, γ−) ∈ Γ2 by

(2.3) (KG)(γ) =
∑

η+
⋐γ+

η−
⋐γ−

G(η+, η−).

On the other hand, if 11± are unit operators on functions on Γ±
0 and K+ := K ⊗ 11−,

K− := 11+ ⊗K, then

K = K+K− = K−K+.

Hence, KG <∞ and KG is a cylinder function in both variables.
Moreover, KG is polynomially bounded: for proper C > 0, Λ ∈ Bc(Rd), N ∈ N,

|(KG)(γ)| ≤ C(1 + |γ+
Λ |)N (1 + |γ−Λ |)N .

The inverse mapping is given on cylinder (in both variables) functions by

(2.4) (K−1F )(η) :=
∑

ξ+⊂η+

ξ−⊂η−

(−1)|η
+\ξ+|+|η−\ξ−|F (ξ+, ξ−), η = (η+, η−) ∈ Γ2

0

and again this formula makes sense for any measurable function F .

Let µ be a probability measure on
(
Γ2,B

(
Γ2

))
(we denote the class of the all such mea-

sures by M1
(
Γ2

)
). The function kµ : Γ2

0 → R is called a correlation function of the mea-

sure µ if, for any G ∈ Bbs(Γ
2
0),

(2.5)

∫

Γ2

(KG)(γ) dµ(γ) =

∫

Γ2
0

G(η+, η−)kµ(η+, η−) dλ1(η
+) dλ1(η

−).
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2.2. Description of the model. Let us consider the generator L of two-component
contact process with one independent component. A detailed explanation and interpre-
tation of such processes can be found in [2]. This generator is well-defined at least on
cylindrical functions on Γ2 and has the following form:

(2.6) L = L+
CM

+ L−
CM

+ L+
int
.

Here L+
CM

is the generator of the one-component contact model of (+)-system (see [7]),
L−
CM

is the analogous generator of (−)-system, L+
int

is interaction term that describes
birth of (+)-particles under influence of (−)-particles. Therefore, birth of (+)-particles
is by the influence of two types of particles, birth of (−)-particles is by the influence of
particles of the same type; the death of all particles is independent. Namely,

(
L+
CM
F

)
(γ+, γ−) =

∑

x∈γ+

[
F

(
γ+ \ x, γ−

)
− F (γ+, γ−)

]

+ λ+

∫

Rd

( ∑

x′∈γ+

a+ (x− x′)

) [
F

(
γ+ ∪ x, γ−

)
− F (γ+, γ−)

]
dx,

(
L−
CM
F

)
(γ+, γ−) =

∑

y∈γ−

[
F

(
γ+, γ− \ y

)
− F (γ+, γ−)

]

+ λ−
∫

Rd

( ∑

y′∈γ−

a− (y − y′)

) [
F

(
γ+, γ− ∪ y

)
− F (γ+, γ−)

]
dy,

(
L+
int
F

)
(γ+, γ−) = λ

∫

Rd

( ∑

y∈γ−

a (x− y)

) [
F

(
γ+ ∪ x, γ−

)
− F (γ+, γ−)

]
dx.

Constants λ+, λ−, λ are positive, functions a+, a−, a are non-negative, even, integrable
and normalized

〈a+〉 = 〈a−〉 = 〈a〉 = 1.

Here and in the sequel we use the following notation:

〈f〉 :=

∫

Rd

f(x) dx, f ∈ L1(Rd).

We also denote the Fourier transform of such f as f̂

f̂(p) =

∫

Rd

e−i(p,x)f(x) dx,

where (·, ·) is a scalar product in Rd.
Next theorem is the partial case of the results obtained in [2].

Theorem 2.1. Let d ≥ 2 and there exists constants A > 0, δ > 2d such that

(2.7) a+(x) + a−(x) + a(x) ≤
A

(1 + |x|)δ
.

Then there exists a Markov process Xt on Γ2 with generator L.

We will always suppose also that

(2.8) â, â+, â− ∈ L1(Rd).

Hence, one has stochastic dynamics of configurations that implies dynamics of mea-
sures, namely M1

(
Γ2

)
∋ µ0 7→ µt ∈ M1

(
Γ2

)
such that for any measurable bounded

function F : Γ2 → R ∫

Γ2

F (γ) dµt(γ) := E

[∫

Γ2

F (Xγ
t ) dµ0(γ)

]
,
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where process Xγ
t starts from γ ∈ Γ2 (more precisely, γ belongs to proper support set,

see [2]).
This dynamics of measures implies dynamics of corresponding correlation functions

(if they exist). For obtain explicit differential equations for this dynamics we should

calculate so-called descent operator L̂ which defined on functions G ∈ Bbs(Γ
2
0) by

(2.9)
(
L̂G

)
(η) =

(
(K−1LK)G

)
(η), η ∈ Γ2

0.

Next we should obtain the adjoint operator L̂∗ (with respect to measure dλ1dλ1)

(2.10)

∫

Γ2
0

L̂G(η+, η−)k(η+, η−) dλ1(η
+) dλ1(η

−)

=

∫

Γ2
0

G(η+, η−)L̂∗k(η+, η−) dλ1(η
+) dλ1(η

−).

Then equations for time evolution of correlation function will be following:

(2.11)
∂kt(η

+, η−)

∂t
=

(
L̂∗kt

)
(η+, η−).

In the present article we concentrate our attention on the correlation functions of the
first and second orders

(2.12)

k+
t (x) := kt({x},∅), x ∈ Rd;

k−t (y) := kt(∅, {y}), y ∈ Rd;

k++
t (x1, x2) := kt({x1, x2},∅), x1, x2 ∈ Rd;

k+−
t (x, y) := kt({x}, {y}), x, y ∈ Rd;

k−−
t (y1, y2) := kt(∅, {y1, y2}), y1, y2 ∈ Rd.

The main subject for our studying will be explicit expression for correlation functions
of the first and second orders and their asymptotics at t→ ∞.

2.3. Problems and results. In this subsection we state main problems and formulate
results. All proofs are presented in the next section.

First two results give explicit forms of the equation (2.11) for the first and second
order correlation functions (2.12).

Proposition 2.1. For any x, y ∈ Rd

∂k−t (y)

∂t
= −k−t (y) + λ−

∫

Rd

a−(y − y′)k−t (y′) dy′,

∂k+
t (x)

∂t
= −k+

t (x) + λ+

∫

Rd

a+(x − x′)k+
t (x′) dx′ + λ

∫

Rd

a(x− y)k−t (y) dy.

Proposition 2.2. For any x, y, x1, x2, y1, y2 ∈ Rd

∂k−−
t (y1, y2)

∂t
= λ−

∫

Rd

a−(y2 − y′)k−−
t (y1, y

′) dy′ + λ−
∫

Rd

a−(y1 − y′)k−−
t (y2, y

′) dy′

− 2k−−
t (y1, y2) + λ−a−(y1 − y2)[k

−
t (y1) + k−t (y2)],
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∂k+−
t (x, y)

∂t
= λ+

∫

Rd

a+(x− x′)k+−
t (x′, y) dx′ + λ−

∫

Rd

a−(y − y′)k+−
t (x, y′) dy′

− 2k+−
t (x, y) + λa(x− y)k−t (y) + λ

∫

Rd

a(x− y′)k−−
t (y, y′) dy′,

∂k++
t (x1, x2)

∂t
= λ+

∫

Rd

a+(x1 − x′)k++
t (x2, x

′) dx′ + λ+

∫

Rd

a+(x2 − x′)k++
t (x1, x

′) dx′

− 2k++
t (x1, x2) + λ+a+(x1 − x2)[k

+
t (x1) + k+

t (x2)]

+ λ

∫

Rd

a(x1 − y)k+−
t (x2, y) dy + λ

∫

Rd

a(x2 − y)k+−
t (x1, y) dy.

Obviously, equations for (−)-system are independent. Recall that such equations were
studied in [5].

Let us formulate the main problem for the first order correlation functions.

Problem 1. We should to study the asymptotic properties of the solutions of equations
from Proposition 2.1 under following initial conditions:

(2.13) k+
0 (x) = c+ + ψ+(x) ≥ 0, k−0 (y) = c− + ψ−(y) ≥ α− > 0,

where constants c+, c− are positive, functions ψ+, ψ− and their Fourier transforms ψ̂+, ψ̂−

are integrable on Rd.

Explicit expressions for solutions are in the next section. The answer of the Problem 1
may be found in the next theorem.

Theorem 2.2. Let d ≥ 3 and (2.7), (2.8) hold. The first correlation functions have the
following asymptotics at t→ ∞:

1) for any y ∈ Rd

k−t (y) →

{
0, if λ− < 1

∞, if λ− > 1
,

and in the case λ− = 1
k−t (y) → c−;

2) for any x ∈ Rd

k+
t (x) →

{
0, if max{λ+, λ−} < 1
∞, if min{λ+, λ−} ≥ 1

,

next, in the case 1 = λ+ > λ−

k+
t (x) → c+ +

λc−

1 − λ−
,

and in the case λ+ < λ− = 1

k+
t (x) →

λc−

1 − λ+
.

Let us discuss this result. Of course, first part about the independent (−)-system is
the same as in [5, 7]. It state that λ− = 1 is critical value; below of this value (−)-system
will degenerate at infinity, above of this value (−)-system will grow (exponentially, see
next section for details). At this critical value (−)-system continues to be stable.

(+)-system consists of two parts: independent contact and influence from the side
of (−)-system. If max{λ+, λ−} < 1 it means that independent part of (+)-system is sub-
critical (and should disappear at infinity) and additionally it has influence of disappearing
(−)-system; naturally, such (+)-system will disappear. If min{λ+, λ−} ≥ 1 it means
that growing or stable independent part of (+)-system has influence by stable or growing
(−)-system, hence, (+)-system will grow.
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Let us concentrate our attention on two other cases. If λ+ = 1, λ− < 1 it means that
independent part of (+)-system is stable and has influence by degenerating (−)-system.
As a result, (+)-system will keep stability property but the limiting value will have the
initial value of (−)-system which will disappearing at infinity. Hence, (+)-system will
have memory about vanished (−)-system.

If λ+ < 1, λ− = 1 it means that degenerating independent part of (+)-system has
influence by stable (−)-system. In result, (+)-system will stop disappearing and become
stable. But “fare” for this will be absence of the initial value of (+)-system in limit.
Therefore, (+)-system “will lost memory” about its origin and “remember” only about
origin of “donor”.

In studying asymptotics of the second correlation functions we concentrate our atten-
tion only on this two cases when (+)-system will be stable. For simplicity of computations
we consider translation invariant case only

(2.14) ψ+ = ψ− ≡ 0.

Problem 2. We should to study the asymptotic properties of the solutions of equations
from Proposition 2.2 under following initial conditions:

(2.15)

k++
0 (x1, x2) = c++ + ϕ++(x1 − x2) ≥ 0,

k+−
0 (x, y) = c+− + ϕ+−(x− y) ≥ 0,

k−−
0 (y1, y2) = c−− + ϕ−−(y1 − y2) ≥ 0,

where c−−, c+−, c++ are positive constants and and functions ϕ−−, ϕ+−, ϕ++ are even
functions which are integrable on Rd together with their Fourier transforms ϕ̂−−, ϕ̂+−,
ϕ̂++.

Explicit expressions for solutions are also in the next section. The answer of the
Problem 2 may be found in the next theorem.

Theorem 2.3. Let d ≥ 3 and (2.7), (2.8), (2.14) hold. The second correlation functions
have the following asymptotics at t→ ∞:

1) let λ+ = 1, 0 < λ− < 1, then for any x, y, x1, x2, y1, y2 ∈ Rd






k−−
t (y1, y2) → 0,

k+−
t (x, y) → 0,

k++
t (x1, x2) →

(
c++ −

2λc+−

λ− − 1
+

λ2c−−

(λ− − 1)2

)
+ Ω++(x1 − x2) <∞;

2) let λ− = 1, 0 < λ+ < 1, then for any x, y, x1, x2, y1, y2 ∈ Rd






k−−
t (y1, y2) → c−− + Ξ−−(y1 − y2) <∞,

k+−
t (x, y) →

λc−−

1 − λ+
+ Ξ+−(x− y) <∞,

k++
t (x1, x2) →

λ2c−−

(1 − λ+)2
+ Ξ++(x1 − x2) <∞

here functions Ξ−−,Ξ+−,Ξ++ depend on initial value c− only and function Ω++

depends on initial value c+ only (of course, they also depend on λ, λ±, a, a±).

The explicit expressions for limits will be presented in the next section.
As we see, the situation with “memory” which we had for the first correlation functions

is the same for the second one: in the first case (+)-system will obtain additional memory
about vanished (−)-system; in the second case (+)-system will have memory about
(−)-system only.
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Remark 2.1. Note that if c++ = (c+)2, c+− = c+c−, c−− = (c−)2 then the previous
theorems show, in fact, that there exist finite limits of so-called second order Ursell
functions k++

t − (k+
t )2, k+−

t − k+
t k

−
t , k−−

t − (k−t )2.

3. Proofs

In this section we present proofs of all our results.

3.1. Equations for time evolution of the correlation functions. First of all we
show how to obtain the equations from the Propositions 2.1 and 2.2. We start from the
explicit form of the descent operator L̂.

Proposition 3.1. Let G ∈ Bbs(Γ
2
0). Then for any η = (η+, η−) ∈ Γ2

0
(
L̂G

)
(η+, η−) = −

(∣∣η+
∣∣ +

∣∣η−
∣∣)G(η+, η−)

+ λ+

∫

Rd

G
(
η+ ∪ x, η−

) ( ∑

x′∈η+

a+ (x− x′)

)
dx

+ λ+

∫

Rd

∑

x′∈η+

G
(
η+ \ x′ ∪ x, η−

)
a+ (x− x′) dx

+ λ−
∫

Rd

G
(
η+, η− ∪ y

) ( ∑

y′∈η−

a− (y − y′)

)
dy

+ λ−
∫

Rd

∑

y′∈η−

G(η+, η− \ y′ ∪ y)a− (y − y′) dy

+ λ

∫

Rd

G
(
η+ ∪ x, η−

)( ∑

y′∈η−

a (x− y′)

)
dx

+ λ

∫

Rd

∑

y′∈η−

G
(
η+ ∪ x, η− \ y′

)
a (x− y′) dx.

Proof. Let us denote death and birth parts of the operator L+
CM

by

(L+
d F )(γ+, γ−) :=

∑

x∈γ+

[
F

(
γ+ \ x, γ−

)
− F (γ+, γ−)

]
,

(L+
b F )(γ+, γ−) := λ+

∫

Rd

( ∑

x′∈γ+

a+ (x− x′)

) [
F

(
γ+ ∪ x, γ−

)
− F (γ+, γ−)

]
dx.

In the same way we denote death and birth parts of the operator L−
CM

: L−
CM

= L−
d + L−

b .
As a result,

L = L+
d + L+

b + L−
d + L−

b + L+
int
.

Now we calculate pre-image under K-transform of all this operators. One has for any
η = (η+, η−) ∈ Γ2

0
(
L̂+

b G
)

(η) =
(
K−1L+

b KG
)
(η)

=
∑

ξ+⊂η+

(−1)|η
+\ξ+|

∑

ξ−⊂η−

(−1)|η
−\ξ−|λ+

∫

Rd

∑

x′∈ξ+

a+(x− x′)

×

( ∑

ζ+⊂ξ+∪x

∑

ζ−⊂ξ−

G(ζ+, ζ−) −
∑

ζ+⊂ξ+

∑

ζ−⊂ξ−

G(ζ+, ζ−)

)
dx
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= λ+

∫

Rd

∑

x′∈η+

G
(
η+ ∪ x, η−

)
a+ (x− x′) dx

+ λ+

∫

Rd

∑

x′∈η+

G
(
η+ \ x′ ∪ x, η−

)
a+ (x− x′) dx,

analogously, we have that

(
L̂−

b G
)

(η+, η−) = λ−
∫

Rd

∑

y′∈η−

G
(
η+, η− ∪ y

)
a− (y − y′) dy

+ λ−
∫

Rd

∑

y′∈η−

G
(
η+, η− \ y′ ∪ y

)
a− (y − y′) dy.

Next,

(
L̂+
int
G

)
(η) =

(
K−1L+

int
KG

)
(η)

=
∑

ξ+⊂η+

(−1)|η
+\ξ+|

∑

ξ−⊂η−

(−1)|η
−\ξ−|λ

∫

Rd

∑

y∈ξ−

a(x− y)

×

( ∑

ζ+⊂ξ+∪x

∑

ζ−⊂ξ−

G(ζ+, ζ−) −
∑

ζ+⊂ξ+

∑

ζ−⊂ξ−

G(ζ+, ζ−)

)
dx

= λ

∫

Rd

∑

y′∈η−

G
(
η+ ∪ x, η−

)
a (x− y′) dx

+ λ

∫

Rd

∑

y′∈η−

G
(
η+ ∪ x, η− \ y′

)
a (x− y′) dx.

Finally,

(
L̂−

d G
)

(η) =
(
K−1L−

d KG
)
(η)

=
∑

ξ+⊂η+

(−1)|η
+\ξ+|

∑

ξ−⊂η−

(−1)|η
−\ξ−|

×
∑

y∈ξ−

( ∑

ζ+⊂ξ+

∑

ζ−⊂ξ−\y

G(ζ+, ζ−) −
∑

ζ+⊂ξ+

∑

ζ−⊂ξ−

G(ζ+, ζ−)

)

= −
∣∣η−

∣∣G(η+, η−),

and, analogously,
(
L̂+

d G
)

(η+, η−) = −
∣∣η+

∣∣G(η+, η−).

The statement is proved. �

Now we should calculate the adjoint operator L̂∗.

Proposition 3.2. The adjoint operator L̂∗ has the following form:

(
L̂∗k

)
(η+, η−) = −

(∣∣η+
∣∣ +

∣∣η−
∣∣) k(η+, η−)

+ λ+
∑

x∈η+

∑

x′∈η+\x

a+(x− x′)k
(
η+ \ x, η−

)
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+ λ+
∑

x∈η+

∫

Rd

a+(x− x′)k
(
η+ \ x ∪ x′, η−

)
dx′

+ λ−
∑

y∈η−

∑

y′∈η−\y

a−(y − y′)k
(
η+, η− \ y

)

+ λ−
∑

y∈η−

∫

Rd

a−(y − y′)k
(
η+, η− \ y ∪ y′

)
dy′

+ λ
∑

x∈η+

∑

y∈η−

a(x− y)k(η+ \ x, η−)

+ λ
∑

x∈η+

∫

Rd

a(x− y)k
(
η+ \ x, η− ∪ y

)
dy.

Proof. We may use the following corollaries of the classical Mecke formula (see, e.g.,
[11]):

∫

Γ2
0

∑

x∈η+

h+(x, η+, η−)dλ1(η
+)dλ1(η

−)

=

∫

Γ2
0

∫

Rd

h+(x, η+ ∪ x, η−)dxdλ1(η
+)dλ1(η

−),

∫

Γ2
0

∑

y∈η−

h−(y, η+, η−)dλ1(η
+)dλ1(η

−)

=

∫

Γ2
0

∫

Rd

h−(y, η+, η− ∪ y)dydλ1(η
+)dλ1(η

−),

∫

Γ2
0

∑

x∈η+

∑

y∈η−

h(x, η+, η−)dλ1(η
+)dλ1(η

−)

=

∫

Γ2
0

∫

Rd

∫

Rd

h(x, η+ ∪ x, η− ∪ y)dxdydλ1(η
+)dλ1(η

−).

Then one can obtain the explicit formula for the operator L̂∗ directly from defini-
tion (2.10). �

As a result, the statements of the Propositions 2.1 and 2.2 are directly follow from the
Proposition 3.2 and (2.11)–(2.12).

3.2. Solution of the equations for time evolution of the correlation functions.

To solve the equations from the Propositions 2.1 and 2.2 using classical perturbation
method we rewrite these equations in the following forms:

∂k−t (y)

∂t
= (λ− − 1)k−t (y) + λ−(L−k−t )(y),(3.1)

∂k+
t (x)

∂t
= (λ+ − 1)k+

t (x) + λ+(L+k+
t )(x) + λ

∫

Rd

a(x− y)k−t (y) dy,(3.2)

where Markov-type generators L± are defined on functions on Rd by

(L−f)(y) =

∫

Rd

a−(y − y′)[f(y′) − f(y)] dy′,

(L+f)(x) =

∫

Rd

a+(x− x′)[f(x′) − f(x)] dx′;



ON TWO-COMPONENT CONTACT MODEL 219

and for the second order correlation functions

(3.3)

∂k−−
t (y1, y2)

∂t
= 2k−−

t (y1, y2)(λ
− − 1) + λ−(L−−

1 k−−
t )(y1, y2)

+ λ−(L−−
2 k−−

t )(y1, y2) + λ−a−(y1 − y2)[k
−
t (y1) + k−t (y2)],

(3.4)

∂k+−
t (x, y)

∂t
= (λ+ + λ− − 2)k+−

t (x, y) + λ+L+−
1 k+−

t (x, y) + λ−L+−
2 k+−

t (x, y)

+ λa(x− y)k−t (y) + λ

∫

Rd

a(x− y′)k−−
t (y, y′) dy′,

(3.5)

∂k++
t (x1, x2)

∂t
= 2k++

t (x1, x2)(λ
+ − 1) + λ+L++

1 k++
t (x1, x2)

+ λ+L++
2 k++

t (x1, x2) + {λ+a+(x1 − x2)[k
+
t (x1) + k+

t (x2)]

+ λ

∫

Rd

a(x1 − y)k+−
t (x2, y) dy + λ

∫

Rd

a(x2 − y)k+−
t (x1, y) dy},

where Markov-type generators L±±
i , i = 1, 2 are defined on functions on Rd × Rd by

(L−−
1 f)(y1, y2) =

∫

Rd

a−(y1 − y′)[f(y2, y
′) − f(y2, y1)] dy

′,

(L−−
2 f)(y1, y2) =

∫

Rd

a−(y2 − y′)[f(y1, y
′) − f(y1, y2)] dy

′,

(L+−
1 f)(x, y) =

∫

Rd

a+(x− x′)[f(x′, y) − f(x, y)] dx′,

(L+−
2 f)(x, y) =

∫

Rd

a−(y − y′)[f(x, y′) − f(x, y)] dy′,

(L++
1 f)(x1, x2) =

∫

Rd

a+(x1 − x′)[f(x2, x
′) − f(x2, x1)] dx

′,

(L++
2 f)(x1, x2) =

∫

Rd

a+(x2 − x′)[f(x1, x
′) − f(x1, x2)] dx

′.

Next propositions are direct corollaries of the perturbation method (note also that
any Markov semigroup preserves constants).

Proposition 3.3. The solutions of (3.1)–(3.2) with initial values (2.13) have the fol-
lowing forms:

k−t (y) = c−et(λ−−1) + et(λ−−1)etλ−L−

ψ−(y),(3.6)

(3.7)

k+
t (x) = c+et(λ+−1) + et(λ+−1)etλ+L+

ψ+(x) + λc−et(λ+−1)

∫ t

0

eτ(λ−−λ+)dτ

= c+et(λ+−1) + λet(λ+−1)

∫ t

0

eτ(λ−−λ+)e(t−τ)λ+L+

(a ∗ (eτλ−L−

ψ−))(x) dτ.
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Proposition 3.4. Let (2.14) holds. Then the solutions of (3.3)–(3.5) with initial values
(2.15) have the following forms:

k−−
t (y1, y2) = et2(λ−−1)etλ−L

−−

1 etλ−L
−−

2 (c−− + ϕ−−(y1 − y2))

+

∫ t

0

e(t−τ)2(λ−−1)e(t−τ)λ−L
−−

1 e(t−τ)λ−L
−−

2 λ−a−(y1 − y2)[k
−
τ (y1) + k−τ (y2)] dτ,(3.8)

k+−
t (x, y) = et(λ++λ−−2)etλ+L

+−

1 etλ−L
+−

2 (c+− + ϕ+−(x − y))

+

∫ t

0

e(t−τ)(λ++λ−−2)e(t−τ)λ+L
+−

1 e(t−τ)λ−L
+−

2

×

{
λa(x− y)k−τ (y) + λ

∫

Rd

a(x− y′)k−−
τ (y, y′)dy′

}
dτ,(3.9)

k++
t (x1, x2) = et2(λ+−1)etλ+L

++
1 etλ+L

++
2 (c++ + ϕ++(x1 − x2))

+

∫ t

0

e(t−τ)2(λ+−1)e(t−τ)λ+L
++
1 e(t−τ)λ+L

++
2

{
λ+a+(x1 − x2)[k

+
τ (x1) + k+

τ (x2)]

+ λ

∫

Rd

a(x1 − y)k+−
τ (x2, y) dy + λ

∫

Rd

a(x2 − y)k+−
τ (x1, y) dy

}
dτ.(3.10)

3.3. Technical lemmas. In this subsection we present several useful notations and notes
and prove technical lemmas needed in the sequel. Let us define

µ+ := λ+ − 1, µ− := λ− − 1,(3.11)

f+(p) := λ+â+(p) − 1, f−(p) := λ−â−(p) − 1.(3.12)

Note that conditions 0 < λ± ≤ 1 equivalent to −1 < µ± ≤ 0 and µ± = 0 only if
λ± = 1. Recall that a± are positive, even and normalized. Then

(3.13) â±(p) =

∫

Rd

cos(p, x)a±(x) dx, |â±(p)| ≤ 1,

and â±(p) = 1 only at p = 0. Hence, the conditions 0 < λ± ≤ 1 imply

(3.14) −λ± − 1 ≤ f±(p) ≤ µ± ≤ 0,

and f±(p) = µ± only at point p = 0.
Let C−(Rd) be the set of non-positive continuous functions on Rd which equal to 0

only on countable sets. Since Fourier image of integrable function is continuous one has
f± ∈ C−(Rd). For any f ∈ C−(Rd) define two closed sets

(3.15) D
±

f := {x ∈ Rd : f(x) = f±(x)}.

Note that that set Rd\D
+

f− = Rd\D
−

f+ has zero Lebesgue measure only if λ+â+ ≡ λ−â−

and, hence, λ+ = λ−.

Lemma 3.1. Let d ≥ 3 and b ∈ L1(Rd) ∩ L∞(Rd).Then

c±(p) =
b(p)

â±(p) − 1

are integrable functions on Rd.

Proof. By (3.13), â±(0) = 1. Due to (2.7), a± has at least first and second finite moments.
Then using (3.13) one has in some neighborhood of the origin

â±(p) − 1 =

∫

Rd

[cos(p, x) − 1]a±(x) dx ∼ −
1

2

∫

Rd

(p, x)2a±(x) dx ∼ −
1

2
|p|2
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and outside of this neighborhood |â±(p) − 1| are bounded from below.

Hence, c± are integrable in this neighborhood since b is bounded and
1

|p|2
∈ L1(Rd)

for d ≥ 3; and c± are integrable outside of this neighborhood since b is integrable. �

Lemma 3.2. Let d ≥ 3, 0 < λ± ≤ 1, and b ∈ L1(Rd)∩L∞(Rd).Then for any f ∈ C−(Rd)

d±(p) = b(p) sup
t≥0

etf (p) − etf±(p)

f(p) − f±(p)

are integrable functions on Rd \ D
±

f .

Proof. Let p ∈ Rd \ D
+

f for example. Without loss of generality assume that p 6= 0 and

f(p) 6= 0. Set a = f(p), b = f+(p). Then a < 0, b < 0, a 6= b. Let us define

h(t) :=
eta − etb

a− b
, t ≥ 0.

Clearly, h(t) ≥ 0 and h(t) = 0 only at t = 0. One has

h′(t) :=
beta

(a
b
− et(b−a)

)

a− b
.

Set t0 =
1

b− a
ln
a

b
. If 0 > a > b then t0 > 0 and for 0 < t < t0 we have et(b−a) >

a

b
,

hence, h′(t) > 0; for t > t0 one has h′(t) < 0. If 0 > b > a then t0 > 0 also and

for 0 < t < t0 we obtain et(b−a) <
a

b
, therefore, h′(t) > 0; for t > t0 again h′(t) < 0.

As a result,

max
[0;∞)

h(t) = h(t0) =
et0a(1 − et0(b−a))

a− b
=
et0a

(
1 −

a

b

)

a− b
= −

1

b
et0a < −

1

b
,

since −b > 0, a < 0.

Hence, for any p ∈ Rd \ D
+

f , t ≥ 0

0 ≤
etf (p) − etf+(p)

f(p) − f+(p)
< −

1

f+(p)
.

Then using (3.14), (3.11) for λ+ < 1 one has µ+ < 0 and d+(p) <
b(p)

−µ+
that imply

the statement of this Lemma. For λ+ = 1 the result is followed from Lemma 3.1. �

3.4. Asymptotic behavior of the first order correlation functions. In this sub-
section we prove the Theorem 2.2.

1) We should use (3.6). Note that ψ− ∈ L1(Rd) and Markov semigroup maps
L1(Rd) into L1(Rd). Then using inverse Fourier transform one has

(3.16)
(
etλ−L−

ψ−
)
(y) = cd

∫

Rd

ei(p,y)etλ−(â−(p)−1)ψ̂− (p) dp,

where cd :=
1

(2πn)d
. Using (3.13), the expression in the integral in (3.16) goes to 0

for any y and a.a. p. Since ψ̂− ∈ L1(Rd) and
∣∣∣ei(p,y)etλ−(â−(p)−1)

∣∣∣ ≤ 1 one has that

the integral also goes to 0 for any y. Then the statement is directly followed from (3.6).

2) We will use (3.7). Note that similarly to the first step etλ+L+

ψ+ → 0 point-
wisely.



222 D. O. FILONENKO, D. L. FINKELSHTEIN, AND YU. G. KONDRATIEV

2.1) If λ+ > 1 then for any λ− > 0

k+
t (x) → ∞,

since ψ− ≥ α− − c− > −c−, hence, the last term in (3.7) is bigger than

−λc−et(λ+−1)

∫ t

0

eτ(λ−−λ+)dτ

and, therefore,

k+
t (x) > c+et(λ+−1) + et(λ+−1)etλ+L+

ψ+(x) → ∞.

2.2) Let now λ+ ≤ 1. Divide proof on several sub-steps.
2.2.1) Suppose λ+ = λ− = ν then using (3.7) one has

(3.17) k+
t (x) = et(ν−1)c+ + et(ν−1)etνL+

ψ+ (x) + λet(ν−1)c−t+ ut(x)

where

ut(x) = λet(ν−1)

∫ t

0

e(t−τ)νL+
(
a ∗ (eτνL−

ψ−)
)

(x) dτ.

Let us find lim
t→∞

ut(x), for ν ≤ 1. Note that ut ∈ L1(Rd) since semigroup and convolution

preserve integrability. Hence, we may compute the Fourier transform of ut:

(3.18) ût(p) =






λâ(p)ψ̂−(p)etf+(p)t, p ∈ D
+

f− ,

λâ(p)ψ̂−(p)
etf−(p) − etf+(p)

f−(p) − f+(p)
, p ∈ Rd \ D

+

f− .

Since ψ̂− is bounded and â is bounded and integrable due to (2.7) one can apply

Lemma 3.2, hence, ût(p) has integrable majorant on Rd \ D
+

f− . Since etat < −
e−1

a
for

any t ≥ 0, a < 0 one has for any p ∈ D
+

f− \ {0}

∣∣ût(p)
∣∣ ≤ c1

∣∣∣∣
â(p)

f+(p)

∣∣∣∣.

Again if ν < 1 then denominator is separated from zero, otherwise one can apply
Lemma 3.1. As a result, ût(p) has integrable majorant on whole Rd and pointwisely
goes to 0 as t→ ∞ (except case ν = 1, p = 0). Therefore, using dominated convergence
theorem the inverse Fourier transform of ût(p) converges to zero, i.e., pointwise ut(x) → 0
as t→ ∞.

Thus, using (3.17) one has that k+
t → ∞ if ν = 1 and k+

t → 0 if ν < 1.
2.2.2) Let now λ+ 6= λ−. Using (3.7) obtain

k+
t (x) = c+et(λ+−1) + et(λ+−1)etλ+L+

ψ+ (x)

+ λc−
1

λ− − λ+

(
et(λ−−1) − et(λ+−1)

)
(3.19)

+ λet(λ+−1)
∫ t

0

eτ(λ−−λ+)e(t−τ)λ+L+
(
a ∗ eτλ−L−

ψ−
)

(x) dτ.

2.2.2.1) Suppose that λ− > 1. Then since λ+ ≤ 1 and ψ− ≥ α− − c− > 0 we
obtain that

k+
t (x) → ∞, t→ ∞.
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2.2.2.2) Next, let λ− < 1, λ+ < 1. Since ψ̂− is bounded one has for M =

sup
Rd |ψ̂−| that the last term in (3.19) is not bigger (by absolute value) than

M

λ− − λ+

(
et(λ−−1) − et(λ+−1)

)
→ 0.

Then due to (3.19) k+
t (x) → 0.

2.2.2.3) Finally, let λ− < 1, λ+ = 1 or λ− = 1, λ+ < 1. The last term in (3.19)
is integrable function since semigroup and convolution preserve integrability. By direct
computation its Fourier transform has form (3.18). Hence, this last term pointwisely
goes to 0.

As a result, by (3.19) we obtain that if λ+ = 1, λ− < 1

k+
t (x) → c+ +

λc−

1 − λ−
, t→ ∞;

and if λ+ < 1, λ− = 1

k+
t (x) →

λc−

1 − λ+
, t→ ∞.

Theorem 2.2 is proved.

3.5. Asymptotic behavior of the second order correlation functions. In this
subsection we prove the Theorem 2.3.

First of all we present explicit expressions for Ω++, Ξ−−, Ξ+−, Ξ++, and after that
we prove the Theorem. These functions are inverse Fourier transforms of the following

ω++(p) =
λ− + λ− 1

λ− − 1
·
c+â+ (p)

1 − â+ (p)
,(3.20)

ξ−−(p) =
c−â− (p)

1 − â− (p)
,(3.21)

ξ+−(p) =
1

2
·

µ− + 2

2 − λ+â+ (p) − â− (p)
·
c−λâ (p)

1 − â− (p)
,(3.22)

ξ++(p) =
λ

1 − λ+â+(p)

(
λ+c−â+(p)

1 − λ+
+

λc−

2 − λ+â+(p) − â+(p)
·

â2(p)

1 − â−(p)

)
,(3.23)

correspondingly.
Let us introduce the following denotations for the Markov semigroups

T 11
t = etλ+L

++
1 , T 12

t = etλ+L
++
2 , T 13

t = etλ+L
+−

1 ,

T 21
t = etλ−L

−−

1 , T 22
t = etλ−L

−−

2 , T 23
t = etλ−L

+−

1 .

We start with trivial remark that for any even functions c, g ∈ L1(Rd)

(L1g) (x1 − x2) = (L2g) (x1 − x2) ,

where

(L1f)(x1, x2) :=

∫

Rd

c(x1 − x′)[f(x2, x
′) − f(x2, x1)] dx

′,

(L2f)(x1, x2) :=

∫

Rd

c(x2 − x′)[f(x1, x
′) − f(x1, x2)] dx

′.
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After transformations, substitutions and simplifying we obtain for (3.8)–(3.10) the fol-
lowing representations:

k−−
t (y1, y2) = c−−e2µ−t + e2µ−tT 21

t T 22
t ϕ−−(y1 − y2) + U−−

t (y1 − y2),

k+−
t (x, y) =

(
c+− −

λc−−

µ− − µ+

)
e(µ

++µ−)t +
λc−−

µ− − µ+
e2µ−t

+ e(µ
++µ−)tT 13

t T 23
t ϕ+−(x − y) + U+−

t (x− y),

k++
t (x1, x2) =

(
c++ −

2λc+−

µ− − µ+
+

λ2c−−

(µ− − µ+)2

)
e2µ+t

+

(
2λc+−

µ− − µ+
−

2λ2c−−

(µ− − µ+)2

)
e(µ

++µ−)t

+
λ2c−−

(µ− − µ+)2
e2µ−t

+ e2µ+tT 11
t T 12

t ϕ++(x1 − x2) + U++
t (x1 − x2).

Here

U−−
t (y1 − y2) = 2λ−c−

∫ t

0

eµ−τe2µ−(t−τ)T 21
t−τT

22
t−τa

−(y1 − y2) dτ,

U+−
t (x− y)

= λc−
∫ t

0

eµ−τe(µ
++µ−)(t−τ)T 13

t−τT
23
t−τa(x− y) dτ

+ λ

∫ t

0

e2µ−τe(µ
++µ−)(t−τ)T 13

t−τT
23
t−τ

∫

Rd

a(x− y′)T 21
τ T 22

τ ϕ−−(y − y′) dy′dτ

+ 2c−λλ−
∫ t

0

e(µ
++µ−)(t−τ)T 13

t−τT
23
t−τ

×

∫

Rd

a(x− y′)

∫ τ

0

eµ−se2µ−(τ−s)T 21
τ−sT

22
τ−sa

−(y − y′) ds dy′dτ,

U++
t (x1 − x2)

= 2λ+c+
∫ t

0

eµ+τe2µ+(t−τ)T 11
t−τT

12
t−τa

+(x1 − x2) dτ

+ 2λλ+c−
∫ t

0

e2µ+(t−τ)T 11
t−τT

12
t−τa

+(x1 − x2)

∫ τ

0

eµ−seµ+(τ−s) ds dτ

+ 2λ

∫ t

0

e(µ
++µ−)τe2µ+(t−τ)T 11

t−τT
12
t−τ

∫

Rd

a(x1 − y)T 13
τ T 23

τ ϕ+−(x2 − y) dy dτ

+ 2λ2c−
∫ t

0

e2µ+(t−τ)T 11
t−τT

12
t−τ

∫

Rd

a(x1 − y)

×

∫ τ

0

eµ−se(µ
++µ−)(τ−s)T 13

τ−sT
23
τ−sa(x2 − y) dy ds dτ

+ 2λ2

∫ t

0

e2µ+(t−τ)T 11
t−τT

12
t−τ

∫

Rd

a(x1 − y)

∫ τ

0

e2µ−se(µ
++µ−)(τ−s)T 13

τ−sT
23
τ−s

×

∫

Rd

a(x2 − y′)T 21
s T 22

s ϕ−−(y − y′) dy′ds dy dτ

+ 4λ−c−λ2

∫ t

0

e2µ+(t−τ)T 11
t−τT

12
t−τ

∫

Rd

a(x1 − y)
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×

∫ τ

0

e(µ
++µ−)(τ−s)T 13

τ−sT
23
τ−s

∫

Rd

a(x2 − y′)

×

∫ s

0

eµ−θe2µ−(s−θ)T 21
s−θT

22
s−θa

−(y − y′) dθ dy′ds dy dτ.

Since semigroups and convolutions preserve integrability we have that T 21
t T 22

t ϕ−−,
T 13

t T 23
t ϕ+−, T 11

t T 12
t ϕ++ as well as U−−

t , U+−
t and U++

t are integrable on Rd functions.
So, to find their limits as t→ ∞ we may use the Fourier transforms.

Namely,

T 21
t T 22

t ϕ−−(y1 − y2) = cd

∫

Rd

eip(y1−y2)e2(f
−(p)−µ−)tϕ̂−−(p) dp,

T 13
t T 23

t ϕ+−(x− y) = cd

∫

Rd

eip(x−y)e(f
+(p)−µ+)te(f

−(p)−µ−)tϕ̂+−(p) dp,

T 11
t T 12

t ϕ++(x1 − x2) = cd

∫

Rd

eip(x1−x2)e2(f
+(p)−µ+)tϕ̂++(p) dp.

Since ϕ̂−−, ϕ̂+−, ϕ̂++ are integrable we have using (3.14) and dominated convergence
theorem that these three terms go to 0.

Let us introduce for further simplicity of notations the following functions:

h1(p) := µ+ − 2f+(p) ≥ 0,

h2(p) := µ− − 2f−(p) ≥ 0,

h3(p) := f+(p) + f−(p) < 0,

h4(p) := µ− − f+(p) − f−(p) ≥ 0.

These inequalities are followed from (3.11), (3.12) and (3.14) as well as the fact that
equalities are possible only at p = 0.

Consider also the following two functions g1 and g2

g1(p) = f−(p) − f+(p),

g2(p) = µ− − 2f+(p).

They can be equal zero on a set of non-zero measure.
We have in the new notations

Ût

−−
(p) = 2c−λ−â−(p)e2f−(p)t

∫ t

0

eh2(p)τdτ,

Ût

+−
(p) = c−λâ(p)eh3(p)t

∫ t

0

eh4(p)τdτ

+ λâ(p)ϕ̂−−(p)eh3(p)t

∫ t

0

eg1(p)τdτ

+ 2c−λâ(p)λ−â−(p)eh3(p)t

∫ t

0

eg1(p)τ

∫ τ

0

eh2(p)s ds dτ,

Ût

++
(p) = 2c+λ+â+(p)e2f+(p)t

∫ t

0

eh1(p)τdτ

+
2λc−λ+â+(p)

µ− − µ+
e2f+(p)t

(∫ t

0

eg2(p)τdτ −

∫ t

0

eh1(p)τ dτ

)

+ 2λâ(p)ϕ̂+−(p)e2f+(p)t

∫ t

0

eg1(p)τdτ

+ 2c−λ2â2(p)e2f+(p)t

∫ t

0

eg1(p)τ

∫ τ

0

eh4(p)s ds dτ
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+ 2λ2â2(p)ϕ̂+−(p)e2f+(p)t

∫ t

0

eg1(p)τ

∫ τ

0

eg1(p)s ds dτ

+ 4c−λ−â−(p)λ2â2(p)e2f+(p)t

∫ t

0

eg1(p)τ

∫ τ

0

eg1(p)s

∫ s

0

eh2(p)θ dθ ds dτ.

Let us consider the following closed set D = D1 ∪D2, where D1 := {p : g1(p) = 0} =

D
+

f− , D2 = {p : g2(p) = 0}. It’s easy to see that D1 ∩ D2 = ∅. Indeed, by (3.14) for

any p ∈ D1 ∩ D2

µ− = 2f+(p) = 2f−(p) ≤ 2µ−.

But µ− ≤ 0, hence, it should be equality that implies f−(p) = µ−, and with necessity
p = 0. But if 0 ∈ D1 ∩ D2, then f+(0) = f−(0), i.e., µ+ = µ−, that contradicts to the
condition of the theorem.

Next we note that the functions Ût

+−
(p) and Ût

++
(p) have different explicit expres-

sions for p ∈ D and for p ∈ D
c := Rd \D . Note also that these functions are continuous

functions of p as compositions of the integrals of the continuous functions of t with con-
tinuous dependence on a parameter p. Hence, for calculate these expressions for p ∈ D

we may calculate their for p ∈ D
c and take limits as dist(p,D) → 0.

By direct calculations for any p ∈ D
c \ {0} we obtain

Û−−
t (p) = 2λ−c−â−(p)

eµ−t − e2f−(p)t

µ− − 2f−(p)
,

Û+−
t (p) = λc−â(p) ·

µ− + 2

µ− − 2f−(p)
·
eµ−t − e[f

+(p)+f−(p)]t

µ− − [f+(p) + f−(p)]

+

(
λâ(p)ϕ̂−−(p) −

2c−λλ−â(p)â−(p)

µ− − 2f−(p)

)
G

(1)
t (p)e2f−(p)t,

Û++
t (p) =

(
2λc−λ+â+(p)

µ− − µ+
+

2c−λ2â2(p)

µ− − f+(p) − f−(p)
·

µ− + 2

µ− − 2f−(p)

)
G

(2)
t (p)e2f+(p)t

+ 2c+λ+â+(p) ·
µ− − µ+ + λ

µ− − µ+
·
eµ+t − e2f+(p)t

µ+ − 2f+(p)

+

(
λ2â2(p)ϕ̂−−(p) −

2c−λ−â−(p)λ2â2(p)

µ− − 2f−(p)

) (
G

(1)
t (p)

)2

e2f−(p)t

+

(
2λâ(p)ϕ̂+−(p) −

2c−λ2â2(p)

µ− − f+(p) − f−(p)
·

µ− + 2

µ− − 2f−(p)

)

×G
(1)
t (p)e[f

+(p)+f−(p)]t,

where we denote objects which are not defined for p ∈ D by

G
(1)
t (p) =

e[f
+(p)−f−(p)]t − 1

f+(p) − f−(p)
, p ∈ D

c
1 := Rd \ D1,

G
(2)
t (p) =

e[µ
−−2f+(p)]t − 1

µ− − 2f+(p)
, p ∈ D

c
2 := Rd \ D2.

Obviously dist(p,D1) → 0 implies g1(p) → 0 and, hence, G
(1)
t (p) → t. In the same

manner dist(p,D2) → 0 provides G
(2)
t (p) → t. Therefore, for obtain the explicit expres-

sions for Ût

+−
(p) and Ût

++
(p) on D \ {0} it’s enough to define

G
(1)
t (p) := t, p ∈ D1; G

(2)
t (p) := t, p ∈ D2.



ON TWO-COMPONENT CONTACT MODEL 227

Then we have for any b ∈ L1(Rd) ∩ L∞(Rd)

|b(p)|G
(1)
t (p)ef−(p)t ≤






|b(p)|
ef+(p)t − ef−(p)t

f+(p) − f−(p)
, p ∈ D

c
1 \ {0},

|b(p)|
e−1

−2f−(p)
, p ∈ D1.

And by result and proof of Lemma 3.2 this function has an integrable majorant (which

doesn’t depend on t) on whole Rd. Note also that ef±(p)t ≤ 1, hence, all terms with G
(1)
t

have this property.
Next,

|b(p)|G
(2)
t (p)e2f+(p)t ≤






|b(p)|
eµ−t − e2f+(p)t

µ− − 2f+(p)
, p ∈ D

c
2 \ {0},

|b(p)|
e−1

−2f+(p)
, p ∈ D2.

If µ− < 0 then may apply the previous considerations (µ− ∈ C−). Otherwise, we

may use that a function u(t) =
1 − eat

−a
(a < 0) is increasing and, hence, bounded by

u(+∞) = −
1

a
.

Note also that other numerators depended on t in the expressions for Û−−
t , Û+−

t ,

Û++
t may be estimated by 2 (recall that corresponding denominators are not equal to 0

if p 6= 0).

Therefore, for prove that functions Û−−
t , Û+−

t , Û++
t have integrable majorants it’s

enough to show that all terms which independent on t are integrable. Recall that ϕ̂−−,
ϕ̂+− and ϕ̂++ are bounded, â, â+ and â− are bounded and integrable. Thus, we should
prove integrability of two terms

(3.24)
b(p)

µ± − 2f±(p)
and

b(p)

µ− − f−(p) − f+(p)
·

1

µ− − 2f−(p)
,

where b ∈ L1(Rd) ∩ L∞(Rd).
If µ± = 0 then we have

b(p)

µ± − 2f±(p)
= −

1

2

b(p)

â±(p) − 1

and due to Lemma 3.1 these functions are integrable. If µ± < 0 then using (3.14) we
obtain

0 < −µ± ≤ µ± − 2f±(p),

that implies
|b(p)|

µ± − 2f±(p)
≤

|b(p)|

−µ±

which are also integrable functions.
Next, if µ− = 0 then µ+ < 0 and using (3.14)

(µ− − f−(p) − f+(p))(µ− − 2f−(p)) ≥ −2µ+(1 − â−(p)),

and we again may use Lemma 3.1. Finally, if µ− < 0 then µ+ = 0 and
(
(µ− − f−(p)) + (−f+(p))

)
·
(
µ− − 2f−(p)

)
≥ −µ−(1 − â+(p)),

and we also may use Lemma 3.1.

As a result, the functions Û−−
t , Û+−

t , Û++
t have integrable majorants and by do-

minated convergence theorem for obtain limits of U−−
t , U+−

t , U++
t as t → ∞ we may

calculate limits of the Fourier transforms and after apply the inverse Fourier transforms.
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Hence, taking t→ ∞ in the expressions for Û−−
t , Û+−

t , Û++
t we immediately obtain the

statement of the Theorem 2.3 with functions Ω++, Ξ−−, Ξ+−, Ξ++ which are inverse
Fourier transforms of (3.20)–(3.23).

References
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