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Abstract. We consider some classes of Banach spaces with integrable derivatives.
An important compactness lemma for nonreflexive spaces is obtained. However some
main topological properties for the given spaces are obtained.

Method of monotony and method of compactness represent fundamental approaches
to study nonlinear differential-operator equations, evolutionary inclusions and variational
inequalities in Banach spaces. The general idea is the following: using the corresponding
approximation scheme the approximate solutions of a problem are constructed, for them
some approaching a priori estimations are established, at last they prove the existence of
a sequence of approximate solutions, that converges to an exact solution of problem. In
many cases the aim is obtained by using both a method of compactness and a method
of monotonicity.

In the present paper we obtain a new of compact embedding theorems for Banach
spaces, suggested by researches about differential-operational inclusions in function spaces.
Moreover, we introduce some constructions to prove the convergence of Faedo–Galerkin
method for evolution variation inequalities with wλ–pseudomonotone maps [7], [8], [11],
[14], [5].

In the following referring to Banach spaces X, Y , when we write

X ⊂ Y,

we mean the embedding in the set-theory sense and in the topological sense.
For n ≥ 2 let {Xi}n

i=1 be some family of Banach spaces.

Definition 1. An interpolation family refers to a family of Banach spaces {Xi}n
i=1 such

that for some locally convex linear topological space (LCLTS) Y we have

Xi ⊂ Y for all i = 1, n.

If n = 2, then the interpolation family is called an interpolation pair.

Further let {Xi}n
i=1 be some interpolation family. By analogy with ([3], p. 23), in the

linear variety X = ∩n
i=1Xi we consider the norm

(1) ‖x‖X :=

n
∑

i=1

‖x‖Xi
∀x ∈ X,

where ‖ · ‖Xi
is the norm in Xi.

Proposition 1. Let {X, Y, Z} be an interpolation family. Then

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z = X ∩ Y ∩ Z, X ∩ Y = Y ∩ X
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both in the sense of equality of sets and in the sense of equality of norms.

We also consider the linear space

Z :=

n
∑

i=1

Xi =

{ n
∑

i=1

xi

∣

∣

∣

∣

xi ∈ Xi, i = 1, n

}

with the norm

(2) ‖z‖Z := inf

{

max
i=1,n

‖xi‖Xi

∣

∣

∣

∣

xi ∈ Xi,

n
∑

i=1

xi = z

}

∀z ∈ Z.

Proposition 2. Let {Xi}n
i=1 be an interpolation family. Then X = ∩n

i=1Xi and Z =
∑n

i=1 Xi are Banach spaces and it results in

(3) X ⊂ Xi ⊂ Z for all i = 1, n.

The proof is similar to the proof of the corresponding statement from ([3], chapter I).

Remark 1. ([3], p. 24). Let Banach spaces X and Y satisfy the following conditions:

X ⊂ Y, X is dense in Y,

‖x‖Y ≤ γ‖x‖X ∀x ∈ X, γ = const.

Then

Y ∗ ⊂ X∗, ‖f‖X∗ ≤ γ‖f‖Y ∗ ∀f ∈ Y ∗.

Moreover, if X is reflexive, then Y ∗ is dense in X∗.

Let {Xi}n
i=1 be an interpolation family such that the space X := ∩n

i=1Xi with the norm
(1) is dense in Xi for all i = 1, n. Due to Remark 1, the space X∗

i can be considered as
a subspace of X∗. Thus we can construct

∑n
i=1 X∗

i and

(4)

n
∑

i=1

X∗
i ⊂

( n
⋂

i=1

Xi

)∗

.

Under the given assumptions X is dense in Z :=
n
∑

i=1

Xi for every i = 1, n. So Xi is dense

in Z, too. Thanks to Remark 1 we can consider the space Z∗ as a subspace of X∗
i for all

i = 1, n, and also as a subspace of ∩n
i=1X

∗
i , i.e.,

(5)

( n
∑

i=1

Xi

)∗

⊂
n
⋂

i=1

X∗
i .

Theorem 1. Let {Xi}n
i=1 be an interpolation family such that the space X := ∩n

i=1Xi

with the norm (1) is dense in Xi for all i = 1, n. Then

n
∑

i=1

X∗
i =

( n
⋂

i=1

Xi

)∗

and
( n

∑

i=1

Xi

)∗

=

n
⋂

i=1

X∗
i

both in the sense of equality of sets and in the sense of equality of the norms.

The proof is similar to the proof of the corresponding Theorem I.5.13 from [3] and
based on the next lemma.



ON SOME APPROXIMATIONS AND MAIN TOPOLOGICAL DESCRIPTIONS FOR . . . 257

Lemma 1. Let f ∈ ∩n
i=1X

∗
i . Then for every k = 2, n and xi, yi ∈ Xi (i = 1, k) such

that
∑k

i=1 xi =
∑k

i=1 yi =: x, we have

(6)

k
∑

i=1

f(xi) =

k
∑

i=1

f(yi) =: f(x).

Now let Y be some Banach space, Y ∗ its topological conjugate space, S be some
compact time interval. We consider the classes of functions defined on S with values in
Y (or in Y ∗).

The set Lp(S; Y ) of all Bochner measurable functions (see [3], [4]) for 1 ≤ p ≤ +∞
with natural linear operations and the norm

‖y‖Lp(S;Y ) =

(
∫

S

‖y(t)‖p
Y dt

)1/p

is a Banach space. For p = +∞, L∞(S; Y ) with the norm

‖y‖L∞(S;Y ) = vraimax
t∈S

‖y(t)‖Y

is a Banach space.
The next theorem shows that under the assumption of reflexivity or separability of

Y , the space (Lp(S; Y ))∗ conjugate to Lp(S; Y ), 1 ≤ p < +∞, can be identified with
Lq(S; Y ∗), where q is such that p−1 + q−1 = 1.

Theorem 2. ([4], Theorems 8.18.3, 8.20.5). If the space Y is reflexive and 1 ≤ p < +∞,
then each element f ∈ (Lp(S; Y ))∗ has the unique representation

f(y) =

∫

S

〈ξ(t), y(t)〉Y dt for every y ∈ Lp(S; Y )

with a function ξ ∈ Lq(S; Y ∗), p−1 + q−1 = 1. The correspondence f → ξ, with f ∈
(Lp(S; Y ))∗ is linear and

‖f‖(Lp(S;Y ))∗ = ‖ξ‖Lq(S;Y ∗).

We remark that in the latter theorem, (Lp(S; Y ))∗ is considered to be the Banach
space of all linear continuous functionals that map Lp(S; Y ) into R.

Now let us consider a reflexive separable Banach space V with a norm ‖ · ‖V and
a Hilbert space (H, (·, ·)H) with a norm ‖ · ‖H and, for the given spaces, let the next
conditions be satisfied:

(7)
V ⊂ H, V is dense in H,

∃γ > 0 : ‖v‖H ≤ γ‖v‖V ∀v ∈ V.

Due to Remark 1, under the given assumptions we can consider the space H∗ conjugate
to H as a subspace of V ∗ that is conjugate to V . Since V is reflexive, H∗ is dense in V ∗

and

‖f‖V ∗ ≤ γ‖f‖H∗ ∀f ∈ H∗,

where ‖ · ‖V ∗ and ‖ · ‖H∗ are the norms in V ∗ and in H∗, respectively.
Further, we identify the spaces H and H∗. Then we obtain

V ⊂ H ⊂ V ∗

with a continuous and dense embedding.

Definition 2. The triple of spaces (V ; H ; V ∗), which satisfy the latter conditions, will
be called an evolution triple.
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Let us point out that identifying H with H∗ and H∗ with some subspace of V ∗, an
element y ∈ H is identified with some fy ∈ V ∗ and

(y, x) = 〈fy, x〉V ∀x ∈ V,

where 〈·, ·〉V is the canonical pairing between V ∗ and V . Since an element y and fy are
identified, under condition (7), the pairing 〈·, ·〉V will denote the inner product on H
(·, ·).

We consider pi, ri, i = 1, 2, such that 1 < pi ≤ ri ≤ +∞, pi < +∞. Let qi ≥ r′i ≥ 1
be defined by

p−1
i + q−1

i = r−1
i + r′i

−1
= 1 ∀i = 1, 2.

Remark that 1/∞ = 0.
Now we consider some Banach spaces that play an important role in the investigation

of differential-operator equations and evolution variational inequalities in non-reflexive
Banach spaces.

Referring to evolution triples (Vi; H ; V ∗
i ) (i = 1, 2) such that

(8) the set V1 ∩ V2 is dense in the spaces V1, V2 and H

we consider the functional Banach spaces (proposition 2)

Xi = Xi(S) = Lqi
(S; V ∗

i ) + Lr′

i
(S; H), i = 1, 2

with the norms

‖y‖Xi
= inf

{

max
{

‖y1‖Lqi
(S;V ∗

i
); ‖y2‖Lr′

i
(S;H)

}

∣

∣

∣
y1 ∈ Lqi

(S; V ∗
i ), y2 ∈ Lr′

i
(S; H), y = y1 + y2

}

,

for all y ∈ Xi, and

X = X(S) = Lq1
(S; V ∗

1 ) + Lq2
(S; V ∗

2 ) + Lr′

2
(S; H) + Lr′

1
(S; H)

with

‖y‖X = inf
{

max
i=1,2

{

‖y1i‖Lqi
(S;V ∗

i
); ‖y2i‖Lr′

i
(S;H)

}

∣

∣

∣
y1i ∈ Lqi

(S; V ∗
i ),

y2i ∈ Lr′

i
(S; H), i = 1, 2; y = y11 + y12 + y21 + y22

}

,

for each y ∈ X . Since ri < +∞, due to Theorem 1 and Theorem 2, the space Xi is
reflexive. Analogously, if max {r1, r2} < +∞, the space X is reflexive.

Under the latter theorems we identify the space conjugate to Xi(S), X∗
i = X∗

i (S),
with Lri

(S; H) ∩ Lpi
(S; Vi), where

‖y‖X∗

i
= ‖y‖Lri

(S;H) + ‖y‖Lpi
(S;Vi) ∀y ∈ X∗

i ,

and, respectively, the space conjugate to X(S), X∗ = X∗(S), we identify with

Lr1
(S; H) ∩ Lr2

(S; H) ∩ Lp1
(S; V1) ∩ Lp2

(S; V2),

where

‖y‖X∗(S) = ‖y‖Lr1
(S;H) + ‖y‖Lr2

(S;H) + ‖y‖Lp1
(S;V1) + ‖y‖Lp2

(S;V2) ∀y ∈ X∗.

On X(S) × X∗(S) we denote

〈f, y〉 = 〈f, y〉S =

∫

S

(f11(τ), y(τ))H dτ +

∫

S

(f12(τ), y(τ))H dτ

+

∫

S

〈f21(τ), y(τ)〉V1
dτ +

∫

S

〈f22(τ), y(τ)〉V2
dτ

=

∫

S

(f(τ), y(τ)) dτ ∀f ∈ X, y ∈ X∗,

where f = f11 + f12 + f21 + f22, f1i ∈ Lr′

i
(S; H), f2i ∈ Lqi

(S; V ∗
i ), i = 1, 2.
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Let V = V1 ∩ V2, F(V ) be a filter of all finite-dimensional subspaces of V . Since V is
separable, there exists a countable monotone increasing system of subspaces {Hi}i≥1 ⊂
F(V ) complete in V , and consequently in H . On Hn we consider the inner product
induced from H , which we denote again by (·, ·). Moreover let Pn : H → Hn ⊂ H be an
orthogonal projection from H onto Hn defined by

for every h ∈ H, Pnh = argmin
hn∈Hn

‖h − hn‖H .

Definition 3. We say that the triple ({Hi}i≥1; V ; H) satisfies condition (γ), if

sup
n≥1

‖Pn‖L(V,V ) < +∞,

i.e., there exists C ≥ 1 such that, for every v ∈ V and n ≥ 1,

(9) ‖Pnv‖V ≤ C · ‖v‖V .

Some constructions that satisfy condition (γ) were presented in [9].

Remark 2. It is easy to notice that there exists a complete orthonormal in H vector
system {hi}i≥1 ⊂ V such that, for any n ≥ 1, Hn is a linear capsule stretched on
{hi}n

i=1. Then condition (γ) means that the given system is a Schauder basis in the
space V (see [6], p. 403).

Remark 3. Due to the identification of H∗ and H , it follows that H∗
n and Hn are identified

too.

Remark 4. Since Pn ∈ L(V, V ) for every n ≥ 1, we get P ∗
n ∈ L(V ∗, V ∗) and ‖Pn‖L(V,V ) =

‖P ∗
n‖L(V ∗,V ∗). It is clear that, for every h ∈ H , Pnh = P ∗

nh. Hence, we identify Pn with
its conjugate P ∗

n for every n ≥ 1. Then, condition (γ) means that for every v ∈ V and
n ≥ 1, we have

(10) ‖Pnv‖V ≤ C · ‖v‖V and ‖Pnv‖V ∗ ≤ C · ‖v‖V ∗ .

For each n ≥ 1, we consider the Banach spaces

Xn = Xn(S) = Lq0
(S; Hn) ⊂ X, X∗

n = X∗
n(S) = Lp0

(S; Hn) ⊂ X∗,

where p0 := max{r1, r2}, q−1
0 + p−1

0 = 1 with the natural norms. The space Lq0
(S; Hn)

is isometrically isomorphic to the space X∗
n conjugate of Xn and, moreover, the map

Xn × X∗
n ∋ f, x →

∫

S

(f(τ), x(τ))Hn
dτ =

∫

S

(f(τ), x(τ)) dτ = 〈f, x〉Xn

is the duality form on Xn × X∗
n. This statement is correct due to

Lq0
(S; Hn) ⊂ Lq0

(S; H) ⊂ Lr′

1
(S; H) + Lr′

2
(S; H) + Lq1

(S; V ∗
1 ) + Lq2

(S; V ∗
2 ).

Let us remark that 〈·, ·〉S
∣

∣

Xn(S)×X∗

n(S)
= 〈·, ·〉Xn(S).

Proposition 3. For every n ≥ 1 Xn = PnX, i.e.,

Xn = {Pnf(·) | f(·) ∈ X} .

Moreover, if the triple ({Hj}j≥1; Vi; H), i = 1, 2, satisfies the condition (γ) with C = Ci,
then

for every f ∈ X and n ≥ 1 ‖Pnf‖X ≤ max {C1, C2} · ‖f‖X .

Proof. Let us fix an arbitrary number n ≥ 1. For every y ∈ X let yn(·) := Pny(·), i.e.,
yn(t) = Pny(t) for almost all t ∈ S. Since Pn is linear and continuous on V ∗

1 , on V ∗
2 and

on H we have that yn ∈ Xn ⊂ X . It is immediate that the inverse inclusion is valid.
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Now let us prove the second part of this statement. We suppose that condition (γ)
holds, let us fix f ∈ X and n ≥ 1. Then from condition (γ) it follows that for every
f1i ∈ Lr′

i
(S; H) and f2i ∈ Lqi

(S; V ∗
i ) such that f = f11 + f12 + f21 + f22 we have

‖Pnf11‖Lr′
1
(S;H) + ‖Pnf12‖Lr′

2
(S;H) + ‖Pnf21‖Lq1

(S;V ∗

1
) + ‖Pnf22‖Lq2

(S;V ∗

2
)

≤ max {C1, C2} ·
(

‖f11‖Lr′
1
(S;H) + ‖f12‖Lr′

2
(S;H) + ‖f21‖Lq1

(S;V ∗

1
) + ‖f22‖Lq2

(S;V ∗

2
)

)

,

because C1, C2 ≥ 1. Therefore, due to the definition of the norm in X we complete the
proof. �

Proposition 4. For every n ≥ 1 it results in X∗
n = PnX∗, i.e.,

X∗
n = {Pny(·) | y(·) ∈ X∗},

and
〈f, Pny〉 = 〈f, y〉 ∀y ∈ X∗ and f ∈ Xn.

Furthermore, if the triple ({Hj}j≥1; Vi; H), i = 1, 2 satisfies condition (γ) with C = Ci,
then we have

‖Pny‖X∗ ≤ max {C1, C2} · ‖y‖X∗ ∀y ∈ X∗ and n ≥ 1.

Proof. For every y ∈ X∗, we set yn(·) := Pny(·), i.e., yn(t) = Pny(t) for a.e. t ∈ S.
Since the operator Pn is linear and continuous on V1, on V2 and on H we have that
yn ∈ X∗

n ⊂ X∗. The inverse inclusion is obvious.
Due to condition (γ) and the definition of ‖ · ‖Lpi

(S;Vi) and ‖ · ‖Lri
(S;H), it follows that

‖yn‖Lpi
(S;Vi) ≤ Ci · ‖y‖Lpi

(S;Vi) and ‖yn‖Lri
(S;H) ≤ ‖y‖Lri

(S;H).

Thus ‖yn‖X∗ ≤ max {C1, C2} · ‖y‖X∗ .
Now let us show that, for every f ∈ Xn,

〈f, yn〉 = 〈f, y〉.
Since f ∈ Lp0

(S; Hn), we have

〈f, y〉 =

∫

S

(f(τ), y(τ)) dτ =

∫

S

(f(τ), Pny(τ)) dτ

=

∫

S

(f(τ), yn(τ)) dτ = 〈f, yn〉,

because for every n ≥ 1, h ∈ H and v ∈ Hn, it follows that

(h − Pnh, v) = (h − Pnh, v)H = 0.

The proposition is proved. �

Proposition 5. Under the condition max{r1, r2} < +∞, the set
⋃

n≥1 X∗
n is dense in

(X∗, ‖ · ‖X∗).

Proof. a) At first we prove that the set L∞(S; V ) is dense in the space

(X∗, ‖ · ‖X∗).

Let us fix x ∈ X∗. Then for every n ≥ 1 we consider

(11) xn(t) :=

{

x(t), ‖x(t)‖V ≤ n,
0, elsewhere.

Obviously, for all n ≥ 1, xn ∈ L∞(S; V ). The continuous embedding of V into H assures
existence of some positive γ such that for i = 1, 2 and a.e. t ∈ S we have

(12)

{

‖xn(t) − x(t)‖H ≤ γ‖xn(t) − x(t)‖V → 0,
‖xn(t) − x(t)‖Vi

≤ ‖xn(t) − x(t)‖V → 0 as n → ∞,
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(13) ‖xn(t)‖H ≤ ‖x(t)‖H , ‖xn(t)‖Vi
≤ ‖x(t)‖Vi

.

Further, let us set

φn
H(t) = ‖xn(t) − x(t)‖p0

H , φn
Vi

(t) = ‖xn(t) − x(t)‖pi

Vi
.

So, from (12) and (13) we obtain

(14) φn
H(t) → 0, φn

Vi
(t) → 0 as n → ∞ for a.e. t ∈ S

and for almost every t ∈ S

(15) |φn
H(t)| ≤ 2p0‖x(t)‖p0

H =: φH(t), |φn
Vi

(t)| ≤ 2pi‖x(t)‖pi

Vi
=: φVi

(t).

Since x ∈ X∗, we have φH , φV1
, φV2

∈ L1(S). Thus, due to (14) and (15), we can apply
the Lebesgue theorem with integrable majorants φH , φV1

and φV2
respectively. Hence it

follows that φn
H → 0̄ and φn

Vi
→ 0̄ in L1(S) for i = 1, 2. Consequently, ‖xn − x‖X∗ → 0

as n → ∞.
b) Further, for some linear variety L from V we set

Υ(L) :=
{

y ∈ (S → L) | y is a simple function}

(see [3], p. 152). Let us show that the set Υ(V ) is dense in the normalized space
(L∞(S, V ), ‖ · ‖X∗). Let x be fixed in L∞(S, V ); so, there exists a sequence {xn}n≥1 ⊂
Υ(V ) such that

(16) xn(t) → x(t) in V as n → ∞ for a.e. t ∈ S.

Since x ∈ L∞(S, V ), we have ess supt∈S ‖x(t)‖V =: c < +∞. For every n ≥ 1, let us
introduce

(17) yn(t) :=

{

xn(t), ‖xn(t)‖V ≤ 2c,
0̄, else.

From (16) and (17) it follows that yn ∈ Υ(V ) as n ≥ 1 and, moreover,

yn(t) → x(t) in V as n → ∞ for a.e. t ∈ S.

Hence, taking into account that V ⊂ H as i = 1, 2, for a.e. t ∈ S we obtain the following
convergences

yn(t) → x(t) in H, yn(t) → x(t) in V1, yn(t) → x(t) in V2 as n → ∞.

As in a), assuming that

φH ≡ φV1
≡ φV2

≡ max{(3c)p1 , (3c)p2 , (3cγ)p0} ∈ L1(S))

we obtain that yn → x in X∗ as n → ∞. So, Υ(V ) is dense in

(L∞(S, V ), ‖ · ‖X∗).

c) Since the set span{hn}n≥1 =
⋃

n≥1 Hn is dense in (V, ‖ · ‖V ) and V ⊂ H with
continuous embedding it follows that the set

Υ

(

⋃

n≥1

Hn

)

=
⋃

n≥1

Υ(Hn)

is dense in (Υ(V ), ‖ · ‖X∗).
In order to complete the proof we point out that, for every n ≥ 1, Υ(Hn) ⊂ X∗

n. The
proposition is proved. �
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Now we consider the Banach space W ∗ = {y ∈ X∗| y′ ∈ X} with the norm

‖y‖W∗ = ‖y‖X∗ + ‖y′‖X ,

where the derivative y′ of an element y ∈ X∗ is taken in the sense of the scalar distribution
space D∗(S; V ∗) = L(D(S); V ∗

w ), where V ∗
w is equal to V ∗ with the topology σ(V ∗; V )

[12].
Together with W ∗ = W ∗(S), we consider the Banach space

W ∗
i = W ∗

i (S) = {y ∈ Lpi
(S; Vi)| y′ ∈ X(S)}, i = 1, 2,

with the norm

‖y‖W∗

i
= ‖y‖Lpi

(S;Vi) + ‖y′‖X ∀y ∈ W ∗
i .

We also consider the space W ∗
0 = W ∗

0 (S) = W ∗
1 (S) ∩ W ∗

2 (S) with the norm

‖y‖W∗

0
= ‖y‖Lp1

(S;V1) + ‖y‖Lp2
(S;V2) + ‖y′‖X ∀y ∈ W ∗

0 .

The space W ∗ is continuously embedded in W ∗
i for i = 0, 2.

Theorem 3. It follows that W ∗
i ⊂ C(S; V ∗), where the embedding is continuous for

i = 0, 2.

The proof is similar to the corresponding proof for lemma IV.1.11 from [3].

Remark 5. From the definition of the norms in the spaces W ∗ and W ∗
0 , we obtain that

W ∗ ⊂ C(S; V ∗) with the continuous embedding for the compact S in the natural topology
of the space W ∗.

Having in mind applications to evolution equations and inclusions we need to give
some generalization and some improvement of the results in [3], [13], [10].

Theorem 4. The set C1(S; V ) ∩ W ∗
0 is dense in W ∗

0 .

The proof is similar to the proof for the Lemma IV.1.12 from [3].

Theorem 5. W ∗
0 ⊂ C(S; H) with continuous embedding. Moreover, for every y, ξ ∈ W ∗

0

and s, t ∈ S, the next integration by parts formula takes place:

(18)
(

y(t), ξ(t)
)

−
(

y(s), ξ(s)
)

=

∫ t

s

{

(y′(τ), ξ(τ)) + (y(τ), ξ′(τ))
}

dτ.

In particular, when y = ξ, we have

1

2

(

‖y(t)‖2
H − ‖y(s)‖2

H

)

=

∫ t

s

(y′(τ), y(τ)) dτ.

Proof. Similarly to the proof for the Theorem IV.1.17 from [3] we consider S = [a, b] for
some

−∞ < a < b < +∞.

The validity of formula (18) for y, ξ ∈ C1(S; V ) is checked by a direct calculation. Now
let ϕ ∈ C1(S) be fixed such that ϕ(a) = 0 and ϕ(b) = 1. Moreover, for y ∈ C1(S; V ) let
ξ = ϕy and η = y − ϕy. Then, due to (18),

(

ξ(t), y(t)
)

=

∫ t

a

{

ϕ′(s)
(

y(s), y(s)
)

+ 2ϕ(s)(y′(s), y(s))
}

ds,

−
(

η(t), y(t)
)

=

∫ b

t

{

−ϕ′(s)
(

y(s), y(s)
)

+ 2(1 − ϕ(s))(y′(s), y(s))
}

ds.
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This shows that for ξi ∈ Lqi
(S; V ∗

i ) and ηi ∈ Lr′

i
(S; H) (i = 1, 2) such that y′ =

ξ1 + ξ2 + η1 + η2,

‖y(t)‖2
H =

∫ b

t

{

ϕ′(s)
(

y(s), y(s)
)

+ 2ϕ(s)(y′(s), y(s))
}

ds − 2

∫ b

t

(y′(s), y(s)) ds

≤ max
s∈S

|ϕ′(s)| · ‖y‖C(S;V ∗) · ‖y‖L1(S;V ) + 2

∫

S

(ϕ(s) − 1)(y′(s), y(s)) ds

≤ max
s∈S

|ϕ′(s)| · ‖y‖C(S;V ∗) · ‖y‖L1(S;V )

+ 2 max
s∈S

|ϕ(s) − 1| ·
(

‖ξ1‖Lq1
(S;V ∗

1
)‖y‖Lp1

(S;V1) + ‖ξ2‖Lq2
(S;V ∗

2
)‖y‖Lp2

(S;V2)

+‖η1‖Lr′
1
(S;H)‖y‖Lr1

(S;H) + ‖η2‖Lr′
2
(S;H)‖y‖Lr2

(S;H)

)

≤ max
s∈S

|ϕ′(s)| · ‖y‖C(S;V ∗) ·
(

‖y‖Lp1
(S;V1)mes(S)1/q1 + ‖y‖Lp2

(S;V2)mes(S)1/q2

)

+ 2 max
s∈S

|ϕ(s) − 1| ·
(

‖ξ1‖Lq1
(S;V ∗

1
) + ‖ξ2‖Lq2

(S;V ∗

2
)

+‖η1‖Lr′
1
(S;H) + ‖η2‖Lr′

2
(S;H)

)

·
(

‖y‖Lp1
(S;V1) + ‖y‖Lp2

(S;V2)

+‖y‖C(S;H)mes(S)1/r1 + ‖y‖C(S;H)mes(S)1/r2

)

.

Hence, due to Theorem 3, the definition of ‖ · ‖X , taking ϕ(t) = t−a
b−a for all t ∈ S in last

inequality we obtain

(19) ‖y‖2
C(S;H) ≤ C2 · ‖y‖2

W∗

0
+ C3 · ‖y‖W∗

0
· ‖y‖C(S;H),

where C1 is the constant from the inequality ‖y‖C(S;V ∗) ≤ C1 · ‖y‖W∗

0
for every y ∈ W ∗

0 ,

C2 = 2 +
C1

min {mes(S)1/p1 , mes(S)1/p2} , C3 = 2 · max
{

mes(S)1/ min {r1,r2}, 1
}

.

Remark that 1
+∞ = 0, C2, C3 > 0. From (19) it obviously follows that

(20) ‖y‖C(S;H) ≤ C4 · ‖y‖W∗

0
for all y ∈ C1(S; V ),

where C4 =
C3+

√
C2

3
+4C2

2 does not depend on y.
Now let us apply Theorem 4. For arbitrary y ∈ W ∗

0 , let {yn}n≥1 be a sequence of
elements from C1(S; V ) converging to y in W ∗

0 . Then, in virtue of relation (20), we have

‖yn − yk‖C(S;H) ≤ C4‖yn − yk‖W∗

0
→ 0

and, therefore, the sequence {yn}n≥1 converges in C(S; H) and its limit χ ∈ C(S; H)
such that, for a.e. t ∈ S, χ(t) = y(t). So, we have y ∈ C(S; H) and now the embedding
W ∗

0 ⊂ C(S; H) is proved. If we pass to the limit in (20) with y = yn as n → ∞ we obtain
validity of the given estimate for all y ∈ W ∗

0 . This proves continuity of the embedding
of W ∗ into C(S; H).

Now let us prove formula (18). For every y, ξ ∈ W ∗
0 and for corresponding approx-

imating sequences {yn, ξn}n≥1 ⊂ C1(S; V ) we pass to the limit in (18) with y = yn,
ξ = ξn as n → ∞. In virtue of Lebesgue’s theorem and W ∗

0 ⊂ C(S; V ∗) with continuous
embedding, formula (18) is true for every y ∈ W ∗

0 .
The theorem is proved. �

Since W ∗ ⊂ W ∗
0 with continuous embedding and due to the latter theorem the next

statement is true.

Corollary 1. W ∗ ⊂ C(S; H) with continuous embedding. Moreover, for every y, ξ ∈ W ∗

and s, t ∈ S formula (18) takes place.
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For every n ≥ 1 let us define the Banach space W ∗
n = {y ∈ X∗

n| y′ ∈ Xn} with the
norm

‖y‖W∗

n
= ‖y‖X∗

n
+ ‖y′‖Xn

,

where the derivative y′ is considered in the sense of the scalar distributions space D∗(S; Hn).
Since

D∗(S; Hn) = L(D(S); Hn) ⊂ L(D(S); V ∗
ω ) = D∗(S; V ∗),

it is possible to consider the derivative of an element y ∈ X∗
n in the sense of D∗(S; V ∗).

Remark that, for every n ≥ 1, W ∗
n ⊂ W ∗

n+1 ⊂ W ∗.

Proposition 6. For every y ∈ X∗ and n ≥ 1, we have Pny′ = (Pny)′, where the
derivative of an element x ∈ X∗ is understood in the sense of the scalar distributions
space D∗(S; V ∗).

Remark 6. We remark that in virtue of the previous assumptions, the derivatives of an
element x ∈ X∗

n in taken the sense of D(S; V ∗) and in the sense of D(S; Hn) coincide.

Proof. It is sufficient to show that, for every ϕ ∈ D(S), Pny′(ϕ) = (Pny)′(ϕ). In virtue
of the definition of the derivative in the sense of D∗(S; V ∗), we have

∀ϕ ∈ D(S) Pny′(ϕ) = −Pny(ϕ′) = −Pn

∫

S

y(τ)ϕ′(τ)dτ =

= −
∫

S

Pny(τ)ϕ′(τ)dτ = −(Pny)(ϕ′) = (Pny)′(ϕ).

The proposition is proved. �

Due to propositions 4, 3, 6 we have the following.

Proposition 7. For every n ≥ 1 W ∗
n = PnW ∗, i.e.,

W ∗
n = {Pny(·) | y(·) ∈ W ∗}.

Moreover, if the triple ({Hi}i≥1; Vj ; H), j = 1, 2 satisfies condition (γ) with C = Cj .
Then for every y ∈ W ∗ and n ≥ 1

‖Pny(·)‖W∗ ≤ max{C1, C2} · ‖y(·)‖W∗ .

Theorem 6. Let the triple ({Hi}i≥1; Vj ; H), j = 1, 2 satisfy condition (γ) with C = Cj .
We consider bounded in X∗ set D ⊂ X∗ and E ⊂ X that is bounded in X. For every
n ≥ 1, let us us consider

Dn :=
{

yn ∈ X∗
n

∣

∣ yn ∈ D and y′
n ∈ PnE

}

⊂ W ∗
n .

Then

(21) ‖yn‖W∗ ≤ ‖D‖+ + C · ‖E‖+ for all n ≥ 1 and yn ∈ Dn,

where C = max{C1, C2}, ‖D‖+ = supy∈D ‖y‖X∗ and ‖E‖+ = supf∈E ‖f‖X.

Remark 7. Due to Proposition 3, Dn is well-defined and Dn ⊂ W ∗
n .

Remark 8. A priori estimates (like (21)) appear when studying solvability of differential–
operator equations, inclusions and evolutional variational inequalities in Banach spaces
with maps of wλ-pseudomonotone type by using Faedo–Galerkin method (see [7], [8])
at boundary transition, when it is necessary obtain a priori estimates for approximate
solutions yn in X∗ and its derivatives y′

n in X .

Proof. Due to proposition 3, for every n ≥ 1 and yn ∈ Dn,

‖yn‖W∗ = ‖yn‖X∗ + ‖y′
n‖X ≤ ‖D‖+ + ‖PnE‖+ ≤ ‖D‖+ + max{C1, C2} · ‖E‖+.

The theorem is proved. �
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Further, let B0, B1, B2 be some Banach spaces such that

(22) B0, B2 are reflexive, B0 ⊂ B1 with compact embedding,

(23) B0 ⊂ B1 ⊂ B2 with continuous embedding.

The next result and its proof is some variations on Theorem 5 and Theorem 7 from [13].

Theorem 7. Let conditions (22)–(23) for B0, B1, B2 be satisfied, p0, p1 ∈ [1; +∞), S be
a finite time interval and K ⊂ Lp1

(S; B0) be such that

a)

K is bounded in Lp1
(S; B0);

b) for every ε > 0 there exists such δ > 0 that from 0 < h < δ it follows that

(24)

∫

S

‖u(τ) − u(τ + h)‖p0

B2
dτ < ε ∀u ∈ K.

Then K is precompact in Lmin {p0;p1}(S; B1).
Furthermore, if K is bounded in Lq(S; B1) for some q > 1, then K is precompact in

Lp(S; B1) for every p ∈ [1, q).

Remark 9. Further we consider that every element x ∈ (S → Bi) is equal to 0̄ outside
the interval S.

Proof. At the beginning we consider the first case. For our goal it is enough to show,
that it is possible to choose a Cauchy subsequence from every sequence {yn}n≥1 ⊂ K in
Lmin {p0;p1}(S; B1). Due to Lemma 9 from [13] it is sufficient to prove this statement for
Lmin {p0;p1}(S; B2).

For every x ∈ K ∀h > 0 ∀t ∈ S we put

xh(t) :=
1

h

∫ t+h

t

x(τ) dτ,

where the integral is regarded in the Bochner sense. We point out that ∀h > 0 xh ∈
C(S; B0) ⊂ C(S; B2).

Fixing a positive number ε we construct, for the set

K ⊂ Lp0
(S; B0) ⊂ Lp0

(S; B2),

a final ε-net in Lp0
(S; B2). For ε > 0, we choose δ > 0 from (24). Then, for every fixed

h (0 < h < δ), we have

‖xh(t + u) − xh(t)‖B2
=

1

h

∥

∥

∥

∥

∫ t+u+h

t+u

x(τ) dτ −
∫ t+h

t

x(τ) dτ

∥

∥

∥

∥

B2

=
1

h

∥

∥

∥

∥

∫ t+h

t

x(τ + u) dτ −
∫ t+h

t

x(τ) dτ

∥

∥

∥

∥

B2

≤ 1

h

∫ t+h

t

‖x(τ + u) − x(τ)‖B2
dτ.

Moreover, from the Hölder inequality we obtain

1

h

∫ t+h

t

‖x(τ + u) − x(τ)‖B2
dτ ≤

(

1

h

)
1

p0

(
∫ t+h

t

‖x(τ + u) − x(τ)‖p0

B2
dτ

)
1

p0

≤
(

1

h

)
1

p0

(
∫ T

0

‖x(τ + u) − x(τ)‖p0

B2
dτ

)
1

p0

<

(

ε

h

)
1

p0

∀x ∈ K ∀ 0 < u < δ ∀t ∈ S.

Therefore the family of functions {xh}x∈K is equicontinuous.
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Since ∀x ∈ K ∀t ∈ S,

‖xh(t)‖B2
=

1

h

∥

∥

∥

∥

∫ t+h

t

x(τ) dτ

∥

∥

∥

∥

B2

≤ 1

h

∫ t+h

t

‖x(τ)‖B2
dτ

≤
(

1

h

)
1

p1

(
∫ t+h

t

‖x(τ)‖p1

B2
dτ

)
1

p1

≤
(

1

h

)
1

p1

(
∫ T

0

‖x(τ)‖p1

B2
dτ

)
1

p1

≤
(

C

h

)
1

p1

,

the family of functions {xh}x∈K is uniformly bounded, because the constant C ≥ 0 does
not depend on x ∈ K. Hence, ∀h : 0 < h < δ the family of functions {xh}x∈K is
precompact in C(S; B2), so in Lmin{p0,p1}(S; B2) too.

On the other hand, ∀ 0 < h < δ ∀x ∈ K ∀t ∈ S,

‖x(t) − xh(t)‖B2
≤ 1

h

∫ t+h

t

‖x(t) − x(τ)‖B2
dτ

≤ 1

h

∫ h

0

‖x(t) − x(t + τ)‖B2
dτ ≤

(

1

h

)
1

p0

(
∫ h

0

‖x(t) − x(t + τ)‖p0

B2
dτ

)
1

p0

.

From here, taking into account inequality (24) we obtain

(
∫ T

0

‖x(t) − xh(t)‖p0

B2
dt

)
1

p0

≤
(

∫ T

0

1

h

∫ h

0

‖x(t) − x(t + τ)‖p0

B2
dτdt

)
1

p0

=

(

1

h

∫ h

0

∫ T

0

‖x(t) − x(t + τ)‖p0

B2
dt dτ

)
1

p0

<

(

1

h

∫ h

0

ε dτ

)
1

p0

= ε
1

p0 .

Hence, in virtue of precompactness of the system {xh}x∈K in Lmin{p0,p1}(S; B2) ∀ 0 <
h < δ we have that K is a precompact set in Lmin{p0,p1}(S; B2).

Let us consider the second case. Assume that for some q > 1 the set K is bounded in
Lq(S; B1). Similarly to the previous case, it is enough to show that for every p ∈ [1; q)
and {yn}n≥1 ⊂ K there exists a subsequence {ynk

}k≥1 ⊂ {yn}n≥1 and y ∈ Lp(S; B1)
such that

ynk
→ y in Lp(S; B1) as k → ∞.

Because yn → y in Lmin{p0,p1}(S; B1), passing to a subsequence for n → ∞, we
have ∃{ynk

}k≥1 ⊂ {yn}n≥1 such that λ(Bnk
) → 0 as k → ∞, where Bn := {t ∈

S | ‖yn(t) − y(t)‖B1
≥ 1} for every n ≥ 1, λ is the Lebesgue measure on S. Then, for

every k ≥ 1,
∫

S

‖ynk
(s) − y(s)‖p

B1
ds =

∫

Ank

‖ynk
(s) − y(s)‖p

B1
ds +

∫

Bnk

‖ynk
(s) − y(s)‖p

B1
ds

≤
∫

Ank

‖ynk
(s) − y(s)‖p

B1
ds +

(
∫

S

‖ynk
(s) − y(s)‖q

B1
ds

)

p

q

(λ(Bnk
))

q−p

q =: Ink
+ Jnk

,

where An = S \ Bn for every n ≥ 1.
It is clear that Jnk

→ 0 as k → ∞. Let us consider Ink
. Since {ynk

}k≥1 is precompact
in Lmin{p0,p1}(S; B1), there exists {ymk

}k≥1 ⊂ {ynk
}k≥1 such that ymk

(t) → y(t) in B1

as k → ∞ almost everywhere in S. Setting

∀k ≥ 1 ∀t ∈ S ϕmk
(t) :=

{

‖ymk
(t) − y(t)‖p

B1
, t ∈ An

0, otherwise,

using definition of Amk
, we see that the sequence {ϕmk

}k≥1 satisfies the conditions of
the Lebesgue theorem with the integrable majorant φ ≡ 1. So ϕmk

→ 0 in L1(S) as
k → ∞. Thus, within to a subsequence, yn → y in Lq(S; B1).

The theorem is proved. �
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Let Banach spaces B0, B1, B2 satisfy all assumptions (22)–(23), p0, p1 ∈ [1; +∞) be
arbitrary numbers. We consider the set with the natural operations,

W = {v ∈ Lp0
(S; B0) | v′ ∈ Lp1

(S; B2)},
where the derivative v′ of an element v ∈ Lp0

(S; B0) is considered in the sense of the
scalar distribution space D(S; B2). It is clear that

W ⊂ Lp0
(S; B0).

We remark that the set W with the natural operations and the graph norm

‖v‖W = ‖v‖Lp0
(S;B0) + ‖v′‖Lp1

(S;B2)

is a Banach space. Under conditions (22)–(23), W ⊂ C(S; B2) with the continuous
embedding. (The proof clearly follows from the proof for Theorem 1.11 from ([3], p. 173)
using Theorem 2.2 from ([2], p. 19).)

The next result represents some generalization of the compactness lemma [10] (Theo-
rem 1.5.1, p. 70) to the case p0, p1 ∈ [1; +∞). A Similar proposition formulated in [13]
on p. 89 (see (10.6)) without a valid proof. The author remarks that the proof is based
on Theorem 7 (an analogue of Theorem 7) and on Lemma 4 (an analogue of Lemma 2).
The proof of the given lemma is based on the inequalities (1.3)–(1.5) that are given in
author’s paper without a substantiation (the reference to paper [13] is groundless). We
remark that the proof of an analogue of (25) for the spaces Lp(S; B2) with p > 1 is easier
and essentially differs from the proof for the case p = 1. We remark also that we do not
assume the that (10.1) from ([13], p. 87) holds. So, we try to give a formal proof for an
analogue of (10.6) given in paper [13].

Theorem 8. Under conditions (22)–(23), for all p0, p1 ∈ [1; +∞), the Banach space W
is compactly embedded in Lp0

(S; B1).

Proof. At the beginning we prove that the embedding of W into L1(S; B2) is compact.
For every y ∈ W and h ∈ R let us take

yh(t) =

{

y(t + h), if t + h ∈ S,
0̄, otherwise.

In virtue of the continuous embedding W ⊂ C(S; B2), the given definition is correct.

Lemma 2. For every y ∈ W and h ∈ R,

(25) ‖y − yh‖L1(S;B2) ≤ h · ‖y′‖L1(S;B2).

Proof. Let y ∈ W be fixed. Then

‖y − yh‖L1(S;B2) =

∫

S

‖y(t + h) − y(t)‖B2
dt =

∫

S

∥

∥

∥

∫ t+h

t

y′(τ)dτ
∥

∥

∥

B2

dt.

Let us put

gy(t) =

∫ t+h

t

y′(τ) dτ = y(t + h) − y(t) ∀t ∈ S, i = 1, 2.

Since the embedding W ⊂ C(S; B2) is continuous, gy ∈ C(S; B2). Hence, as S is a
compact set, we have that gy ∈ L1(S; B2). Therefore, due to Proposition ([1], p. 191) with
X = L1(S; B2) and using Theorem 2 it follows that there exists hy ∈ L∞(S; B∗

2) ≡ X∗

such that
∫

S

‖gy(t)‖B2
dt =

∫

S

〈hy(t), gy(t)〉B2
dt and ‖hy‖L∞(S;B∗

2
) = 1.



268 PAVLO KASYANOV, VALERIY MEL’NIK, AND ANNA MARIA PICCIRILLO

Hence,

∫

S

∥

∥

∥

∫ t+h

t

y′(τ) dτ
∥

∥

∥

B2

dt =

∫

S

‖gy(t)‖B2
dt =

∫

S

〈hy(t), gy(t)〉B2
dt

=

∫

S

〈

hy(t),

∫ t+h

t

y′(τ)dτ
〉

B2

dt =

∫

S

∫ t+h

t

〈hy(t), y′(τ)〉B2
dτdt

=

∫

S

∫ τ

τ−h

〈hy(t), y′(τ)〉B2
dt dτ =

∫

S

〈

∫ τ

τ−h

hy(t)dt, y′(τ)
〉

B2

dτ

≤ ess sup
t∈S

‖hy(t)‖B∗

2
· h ·

∫

S

‖y′(τ)‖B2
dτ ≤ h · ‖y′‖L1(S;B2).

So, we have obtained the necessary estimate (25).
The lemma is proved. �

Let us continue the proof of the theorem. Let K ⊂ W be an arbitrary bounded set.
Then, for some C > 0,

(26) ‖y‖Lp0
(S;B0) ≤ C, ‖y′‖Lp1

(S;B2) ≤ C ∀y ∈ K.

In order to prove precompactness of K in L1(S; B1), let us apply Theorem 7 with B0 =
B0, B1 = B1, B2 = B2, p0 = 1, p1 = p1. Due to estimates (25) and (26), all conditions
of the theorem are satisfied. So, the set K is precompact in L1(S; B1) and, hence, in
L1(S; B2). In virtue of W ⊂ C(S; B2) with the continuous embedding and the Lebesgue
theorem it follows that the set K is precompact in Lp0

(S; B0). Hence, due to Lemma 9
from [13] we obtain the necessary statement.

The theorem is proved. �

Proposition 8. Let Banach spaces B0, B1, B2 satisfy conditions (22)–(23), p0, p1 ∈
[1; +∞), {uh}h∈I ⊂ Lp1

(S; B0), where I = (0, δ) ⊂ R+, S = [a, b] such that

a) {uh}h∈I is bounded in Lp1
(S; B0);

b) there exists c : I → R+ such that limn→∞ c( b−a
2n ) = 0 and

∀h ∈ I

∫

S

‖uh(t) − uh(t + h)‖p0

B2
dt ≤ c(h)hp0 .

Then there exists {hn}n≥1 ⊂ I (hn ց 0+ as n → ∞) such that {uhn
}n≥1 converges in

Lmin {p0,p1}(S; B1).

Remark 10. We assume that uh(t) = 0 for t > b.

Remark 11. Without loss of generality let us consider S = [0, 1].

Proof. At first we prove this statement for Lp0
(S; B2). In virtue of the Minkowski in-

equality, for every h = 1
2N ∈ I and k ≥ 1,

(
∫ 1

0

‖uh(t) − u h

2k
(t)‖p0

B2
dt

)
1

p0

≤
(

∫ 1

0

‖uh(t) − uh(t + h)‖p0

B2
dt

)
1

p0

+

(
∫ 1

0

‖uh(t + h) − u h

2k
(t + h)‖p0

B2
dt

)
1

p0

+

(
∫ 1

0

‖u h

2k
(t + h) − u h

2k
(t)‖p0

B2
dt

)
1

p0
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≤ c
1

p0 (h)h +

(
∫ 1

h

‖uh(t) − u h

2k
(t)‖p0

B2
dt

)
1

p0

+

2k−1
∑

i=0

(
∫ 1

0

∥

∥

∥

∥

u h

2k

(

t +
i + 1

2k
h

)

−u h

2k

(

t +
i

2k
h

)∥

∥

∥

∥

p0

B2

dt

)
1

p0

≤ c
1

p0 (h)h + 2k h

2k
c

1
p0 (h/2k)

+

(
∫ 1

h

‖uh(t) − u h

2k
(t)‖p0

B2
dt

)
1

p0

≤ h

(

c
1

p0 (h) + c
1

p0 (h/2k)

)

+

(
∫ 1

h

‖uh(t) − uh(t + h)‖p0

B2
dt

)
1

p0

+

(
∫ 1

h

‖uh(t + h) − u h

2k
(t + h)‖p0

B2
dt

)
1

p0

+

(
∫ 1

h

‖u h

2k
(t + h) − u h

2k
(t)‖p0

B2
dt

)
1

p0

≤ · · · ≤ 2h

(

c
1

p0 (h) + c
1

p0 (h/2k)

)

+

(
∫ 1

2h

‖uh(t) − uh(t + h)‖p0

B2
dt

)
1

p0

≤ · · · ≤ 2Nh

(

c
1

p0 (h) + c
1

p0 (h/2k)

)

= c
1

p0 (h) + c
1

p0 (h/2k).

So, for every N ≥ 1 and k ≥ 1, it results in

(
∫ 1

0

‖u1/2N (t) − u1/2N+k(t)‖p0

B2
dt

)
1

p0

≤ c
1

p0

(

1

2N

)

+ c
1

p0

(

1

2N+k

)

.

In virtue of assumption b) we can choose {hn}n≥1 ⊂
{

1
2m

}

m≥1

⋂

I such that c(hn) → 0

as n → ∞. So, the sequence {uhn
}n≥1 is fundamental in Lp0

(S; B2). Because of B0 ⊂ B1

with compact embedding, the sequence {uhn
}n≥1 is bounded in Lmin {p0,p1}(S; B0); due

to the lemma 9 from [13] it follows that {uhn
}n≥1 is fundamental in Lmin {p0,p1}(S; B1).

The proposition is proved. �

Now we combine all the results to obtain a necessary a priori estimate.

Theorem 9. Let all conditions of Theorem 6 be satisfied and V ⊂ H with compact
embedding. Then (21) holds and the set

⋃

n≥1

Dn is bounded in C(S; H) and precompact in Lp(S; H)

for every p ≥ 1.

Proof. Estimate (21) follows from Theorem 6. Now we use the compactness Theorem 8
with B0 = V , B1 = H , B2 = V ∗, p0 = 1, p1 = 1. Remark that X∗ ⊂ L1(S; V ) and
X ⊂ L1(S; V ∗) with continuous embedding. Hence, the set

⋃

n≥1

Dn is precompact in L1(S; H).

In virtue of (21) and Theorem 5 on continuous embedding of W ∗ in C(S; H), it follows
that the set

⋃

n≥1

Dn is bounded in C(S; H).

Further, by using standard conclusions and the Lebesgue theorem we obtain the necessary
statement.

The theorem is proved. �
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