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ON THE APPROXIMATION TO SOLUTIONS OF OPERATOR

EQUATIONS BY THE LEAST SQUARES METHOD

MYROSLAV L. GORBACHUK AND VALENTYNA I. GORBACHUK

Dedicated to the centenary of S. I. Zuchovitsky.

Abstract. We consider the equation Au = f , where A is a linear operator with
compact inverse in a Hilbert space. For the approximate solution un of this equation
by the least squares method in a coordinate system that is an orthonormal basis
of eigenvectors of a self-adjoint operator B similar to A (D(A) = D(B)), we give a
priori estimates for the asymptotic behavior of the expression Rn = ‖Aun − f‖ as
n → ∞. A relationship between the order of smallness of this expression and the
degree of smoothness of the solution u with respect to the operator B (direct and
converse theorems) is established.

0. Let H be a complex separable Hilbert space with inner product (·, ·) and norm ‖ ·‖,
and let A be a linear operator in H, D(A) = H, 0 ∈ ρ(A), where D(·) and ρ(·) are the
domain and the resolvent set of an operator, respectively.

We consider the equation

(1) Au = f, f ∈ H,

and seek an approximate solution un of this equation by the least squares method [1],

that is, in the form un =
n
∑

k=1

αkek, where {ek}k∈N is a given linearly independent system

of vectors in D(A) (a so-called coordinate system), and αk ∈ C are such that

R2
n = ‖Aun − f‖2

assumes the least value. The numbers αk are uniquely determined by the system of
algebraic equations

n
∑

k=1

αk(Aek, Aei) = (f, Aei), i = 1, . . . , n.

If the system {ek}k∈N is complete in the Hilbert space

H
1(A) = D(A), (f, g)H1(A) = (Af, Ag), f, g ∈ D(A),

then (e.g., see [1]),

rn = ‖u − un‖ → 0, Rn = ‖Aun − f‖ → 0 as n → ∞.

As it will be shown below, the value Rn can tend to zero at infinity in an arbitrary way.
So, it is important to have a priori estimates for this value. As a rule, such estimates
are of an asymptotic character and indicate an order of smallness of Rn. For the Ritz

2000 Mathematics Subject Classification. Primary 41A25, 41A65, 47A58.
Key words and phrases. Operator equation in a Hilbert space, approximate solution, least squares

method, similar operator, a priori estimates, subspaces of infinitely differentiable vectors associated with
a given operator and a given number sequence, entire vector of exponential type, module of continuity.

Partially supported by the Ukrainian State Foundation for Fundamental Research (project 14.1/003)
and CRDF (project UM 1-2421-KV-02).

229



230 MYROSLAV L. GORBACHUK AND VALENTYNA I. GORBACHUK

method, such kind estimates were established under a certain choice of a coordinate
system and some conditions of smoothness for the solution u of equation (1) (see [1–3]).

The purpose of this paper is to obtain similar estimates for the least squares method.
It should be noted that in a number of specific cases, such questions were being con-
sidered by many mathematicians (we refer to [4] for details). But their considerations
concerned only direct theorems and only power decreasing of Rn. To do this in the gen-
eral situation and to obtain not only direct but also converse theorems for an arbitrary
order of convergence of Rn to zero, we use the operator approach proposed in [2,5,6],
with some generalizations and refinements of the results contained there, which we shall
present some later. The results of this paper is partially announced in [7].

We would like also to remark that the significant role in application of the operator
theory to the approximation problems belongs to S. I. Zuchovitsky (in this connection
see, for example, [8,9]).

1. Let B be a closed densely defined operator in H. Denote by C∞(B) the space of
infinitely differentiable vectors of the operator B:

C∞(B) =
⋂

n∈N0=N
S

{0}

H
n(B),

where Hn(B) = D(Bn) is a Hilbert space with respect to the inner product

(f, g)Hn(B) = (f, g) + (Bnf, Bng).

Let {mn}n∈N0
be a nondecreasing sequence of positive numbers (there is no loss of

generality in assuming that m0 = 1). We put

C{mn}(B) =
⋃

α>0

Cα
mn

(B), C(mn)(B) =
⋂

α>0

Cα
mn

(B),

where

Cα
mn

(B) =
{

f ∈ C∞(B)
∣

∣∃c = c(f) > 0, ∀k ∈ N0 : ‖Bkf‖ ≤ cαkmk

}

is a Banach space with the norm

‖f‖Cα
mn

(B) = sup
k∈N0

‖Bkf‖
αkmk

.

The number

σ(f, mn, B) = inf{α : f ∈ Cα
mn

(B)} = lim
n→∞

(‖Bnf‖
mn

)1/n

is called the type of the vector f for the operator B and the sequence {mn}n∈N0
. It is

evident that σ(f, mn, B) = 0 if f ∈ C(mn)(B).
In the cases when mn = n! or mn ≡ 1, we arrive at the well-known spaces of analytic

(C{n!}(B)), entire (C(n!)(B)), and entire of exponential type (C{1}(B)) vectors of the

operator B (see [10–12]). If H = L2(a, b), −∞ < a < b < ∞, and B =
d

dx
, D(B) =

W 1
2 (a, b) (Sobolev space), then C∞(B) is the set of all infinitely differentiable functions

on [a, b], C{n!}(B) (C(n!)(B)) is the space of analytic on [a, b] (entire) functions, the
spaces C{nnβ}(B) and C(nnβ)(B) (β > 1) coincide with the usual Gevrey classes. If

β < 1, C{nnβ}(B) is the space of entire functions of order 1
1−β . In particular, if β = 0,

we have the space C{1}(B) of entire functions f of exponential type, whose exponential
type is equal to σ(f, 1, B).

Consider the functions

(2) ρ1(λ) = sup
n∈N0

λn

mn
, ρ2(λ) =

(

∞
∑

n=0

λ2n

mn
2

)1/2

, ρ3(λ) =

∞
∑

n=0

λn

mn
, λ > 0.
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Under the condition

(3) lim
n→∞

n
√

mn = ∞,

the series for ρ3(λ) converges in the whole complex plane and gives an entire function.
All the functions in (2) are not less than 1 and tend monotonically to ∞ as λ → ∞. It
is not hard also to verify that for any β1 > β > 1,

(4) ρ1(λ) ≤ ρ2(λ) ≤ ρ3(λ) ≤ cβρ2(βλ) ≤ cβ,β1
ρ1(β1λ), λ > 0,

where

cβ =
β

(β2 − 1)1/2
, cβ,β1

=
c(β)β1

(β2
1 − β2)1/2

, 0 < c(β) = const.

Throughout further, c denotes various numerical constants.
If, in addition, for the sequence {mn}n∈N0

there exists a number h > 1 such that

(5) ∀n ∈ N0 : mn+1 ≤ chnmn

(for example, the sequences mn = nnβ and mn = (n!)β with β > 0 satisfy (3) and (5)),
then, as it is easily seen,

(6) ∃c > 0 : ρ(λ) ≥ cλρ(α0λ),

where α0 = h−1 < 1. By ρ(λ) we mean any of the three functions ρi(λ) (i = 1, 2, 3).

Proposition 1. Let the sequence {mn}n∈N0
satisfy the condition (3) and for any (some)

h > 1 the inequality (5) is fulfilled. Then for any (some) a > 1,

(7)

∫ ∞

0

ρ(λ)

ρ(aλ)
dλ < ∞.

Proof. As it follows from (6),

∃c > 0 : ρ3(aλ) ≥ cλ2ρ3(λ),

where a = h2. Then
∫ ∞

1

ρ3(λ)

ρ3(aλ)
dλ ≤ 1

c

∫ ∞

1

1

λ2
dλ < ∞.

Since the function
ρ(λ)

ρ(aλ)
is continuous on [0, 1], the finiteness of the integral (7) is

ensured. �

Suppose the operator B to be nonnegative and self-adjoint. Using the function ρ(λ),
we construct the family of Hilbert spaces associated with this function as follows:

∀a > 0 : H
a
ρ(B) = D(ρ(aB)), (f, g)Ha

ρ(B) = (ρ(aB)f, ρ(aB)g).

Here

ρ(aB) =

∫ ∞

0

ρ(aλ) dEλ,

Eλ = E([0, λ]) is the spectral measure of B. Because of ρ(λ) ≥ 1 and ρ(λ) → ∞
monotonically as λ → ∞, we have

∀f ∈ H
b
ρ(B) : ‖f‖Ha

ρ(B) ≤ ‖f‖Hb
ρ(B) as a < b,

and these norms are compatible. So, the embedding

H
b
ρ(B) ⊆ H

a
ρ(B)

is dense and continuous. We put

H{ρ}(B) =
⋃

a>0

H
a
ρ(B) and H(ρ)(B) =

⋂

a>0

H
a
ρ(B).
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In view of (4),

H{ρ1}(B) = H{ρ2}(B) = H{ρ3}(B), H(ρ1)(B) = H(ρ2)(B) = H(ρ3)(B).

As it was shown in [13],

(8) C{mn}(B) = H{ρ}(B), C(mn)(B) = H(ρ)(B).

2. As above, in this section the operator B is assumed to be nonnegative and self-
adjoint.

For an arbitrary f ∈ H we put

Er(f) = Er(f, B) = inf
g∈C{1}(B):σ(g)≤r

‖f − g‖,

where σ(g) = σ(g, 1, B) is the type of the vector g for the operator B and the sequence
mn ≡ 1. Since Cr

1 = ErH, we have

(9) E2
r (f) = ‖f − Erf‖2 =

∫ ∞

r

d(Eλf, f).

Theorem 1. Let G(λ) be a continuous on [0,∞) and continuously differentiable on
(0,∞) function such that G(λ) ≥ 0 and G′(λ) ≥ 0 as λ > 0. Then the equivalence

(10) f ∈ D(G(B)) ⇐⇒
∫ ∞

0

G(λ)G′(λ)E2
λ(f) dλ < ∞

holds, and

(11) ‖G(B)f‖2 = 2

∫ ∞

0

G(λ)G′(λ)E2
λ(f) dλ + G2(0)E2

0 (f).

Proof. Let f ∈ D(G(B)). As G(λ) is nondecreasing on (0,∞), we have

∀r > 0 : E2
r (f) =

∫ ∞

r

d(Eλf, f) ≤ 1

G2(r)

∫ ∞

r

G2(λ) d(Eλf, f),

whence

(12) G2(r)E2
r (f) → 0 as r → ∞.

Taking into account that

(13)

∫ r

0

G2(λ) d(Eλf, f) = −
∫ r

0

G2(λ) dE2
λ(f)

= −G2(r)E2
r (f) + G2(0)E2

0 (f) + 2

∫ r

0

G(λ)G′(λ)E2
λ(f) dλ,

and there exists the limit of the integral in the left hand side of (13) as r → ∞, we
conclude, by virtue of (12), that the integral

∫ ∞

0

G(λ)G′(λ)E2
λ(f) dλ

is finite, and the equality (11) is true.
Conversely, let

∫∞

0 G(λ)G′(λ)E2
λ(f) dλ < ∞. Then the equality (13) implies

∫ r

0

G2(λ) d(Eλf, f) ≤ G2(0)E2
0 (f) + 2

∫ r

0

G(λ)G′(λ)E2
λ(f) dλ.

It follows from here that
∫∞

0
G2(λ) d(Eλf, f) < ∞, that is, f ∈ D(G(B)). Then the

equality (11) is a direct consequence of (13) and (12). �

Corollary 1. Let G(λ) satisfy the conditions of Theorem 1. Then

(14) f ∈ D(G(B)) =⇒ Er(f) = o(G−1(r)), r → ∞.
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Setting in Theorem 1 G(λ) = λα (α > 0), we obtain the next assertion.

Corollary 2. For an arbitrary α > 0,

f ∈ D(Bα) =⇒ Er(f) = o(r−α),
f ∈ D(Bα) ⇐⇒

∫∞

0 λ2α−1E2
λ(f) dλ < ∞.

Moreover,

‖Bαf‖2 = 2α

∫ ∞

0

λ2α−1E2
λ(f) dλ.

Note that the relation Er(f) = o(r−α) does not yet imply the inclusion f ∈ D(Bα).
But the following statement is valid.

Corollary 3. If for some ε > 0,

rα+εEr(f) = O(1) (r → ∞),

then f ∈ D(Bα).

Proof. Taking in (13) G(λ) = λα, we obtain for any r > 0
∫ r

0

λ2α d(Eλf, f) = −r2αE2
r (f) + 2α

∫ r

0

λ2α−1E2
λ(f) dλ

≤ 2α

∫ r

0

λ2(α+ε)E2
λ(f)

dλ

λ1+2ε

≤ 2α sup
λ∈[0,∞)

(

λ2(α+ε)E2
λ(f)

)

∫ r

0

dλ

λ1+2ε
,

whence f ∈ D(Bα). �

Corollary 4. Let G(λ) satisfy the conditions of Theorem 1, and

(15)

∫ ∞

r0

G′(λ)

G(aλ)
dλ < ∞

with some r0 > 0, a > 1. Then

Eλ(f) = O(G−1(aλ)) (λ → ∞) =⇒ f ∈ D(G(B)).

Proof. Assume that the condition (15) is fulfilled, and Eλ(f) = O(G−1(aλ)). Then for
sufficiently large λ (we may consider λ > r0)

∃c > 0 : Eλ(f) < cG−1(aλ),

and, as it follows from (13), for r > r0 we have
∫ r

0

G2(λ) d(Eλf, f) ≤ G2(0)E2
0 (f) + 2

∫ r

0

G(λ)G′(λ)E2
λ(f) dλ

≤ G2(0)E2
0 (f) + 2

∫ r0

0

G(λ)G′(λ)E2
λ(f) dλ + 2c

∫ r

r0

G′(λ)

G(aλ)
dλ,

whence
∫∞

0
G2(λ) d(Eλf, f) < ∞, that is, f ∈ D(G(B)). �

Corollary 5. If the sequence {mn}n∈N0
satisfies the conditions (3) and (5) with h > 1,

then

ρ(h2λ)Eλ(f) = O(1) (λ → ∞) =⇒ f ∈ D(ρ(B)),

where, as before, ρ(λ) stands for any function from (2).
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Proof. In view of (4), it is sufficient to consider only the case ρ(λ) = ρ3(λ). Since h > 1,
we have n ≤ ch2n, n ∈ N0. Hence, for λ > 1,

ρ′3(λ) =

∞
∑

n=1

nλn−1

mn
≤ c

∞
∑

n=1

(h2λ)n

mn
= cρ3(h

2λ),

and, by Proposition 1,
∫ ∞

1

ρ3(λ)ρ′3(λ)E2
λ(f) dλ ≤ c

∫ ∞

1

ρ3(λ)ρ3(h
2λ)

dλ

ρ2
3(h

2λ)
= c

∫ ∞

1

ρ3(λ)

ρ3(h2λ)
dλ < ∞.

In view of Theorem 1, f ∈ D(ρ3(B)). �

Remark 1. It is not hard to see that the proof of Corollary 5 is suitable for the case
where the function ρµ(λ) = ρ(µλ) (µ > 0) is taken instead of ρ(λ), that is,

ρ(h2µλ)Eλ(f) = O(1) (λ → ∞) =⇒ f ∈ D(ρ(µB)).

For a nondecreasing on [0,∞) function F (λ) such that limλ→∞ F (λ) = ∞, we put

s(f, F, B) = sup{a ∈ (0,∞) :

∫ ∞

0

F 2(aλ) d(Eλf, f) < ∞}.

Theorem 2. Let ρ(λ) be one of the functions ρi(λ), i = 1, 2, 3. If f ∈ C{mn}(B), then

(16) σ(f, mn, B) =
1

s(f, ρ, B)
.

Proof. We shall prove the theorem only for ρ(λ) = ρ2(λ). The rest follows from the
inequalities (4).

Assume that f ∈ C{mn}(B). Due to (8), f ∈ H{ρ2}(B). So, f ∈ D(ρ2(aB)) with some
a > 0, and

(17)

‖ρ2(aB)f‖2 =

∫ ∞

0

∞
∑

n=0

(aλ)2n

m2
n

d(Eλf, f) =

∞
∑

n=0

a2n

m2
n

∫ ∞

0

λ2n d(Eλf, f)

=
∞
∑

n=0

a2n

m2
n

‖Bnf‖2 < ∞.

Therefore

∀n ∈ N0 :
an‖Bnf‖2

mn
< c,

that is, f ∈ C
1/a
mn . The latter means that σ(f, mn, B) ≤ 1

a
. As a is an arbitrary positive

number for which f ∈ D(ρ2(aB)), we can conclude that

σ(f, mn, B) ≤ 1

s(f, ρ2, B)
.

Conversely, let a ≥ σ(f, mn, B). Then

∀ε > 0 :
∞
∑

n=0

‖Bnf‖2

(a + ε)2nm2
n

< ∞,

and the equalities (17) show that
1

a + ε
≤ s(f, ρ2, B), whence

1

σ(f, mn, B)
≤ s(f, ρ2, B).

It follows from here that the formula (16) is true. �
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3. Now we turn to equation (1), where A is a linear operator in H, D(A) = H, and
0 ∈ ρ(A). We say that a closed linear operator B in H is similar to A if D(B) = D(A).
If 0 ∈ ρ(B), then by closed graph theorem, the operators BA−1 and AB−1 are defined
and continuous on the whole space H. In what follows, we assume everywhere that:

1⋄. B is a positive definite self-adjoint operator similar to A;
2⋄. the operator B−1 is compact, and the spectrum λk = λk(B), k ∈ N, of the

operator B is simple (the eigenvalues λk are arranged in ascending order);
3⋄. the orthonormal basis of eigenvectors of the operator B is taken as the coordinate

system {ek}k∈N in the least squares method in approximate solving equation (1).
The relation

∥

∥

∥

∥

A

(

f −
n
∑

k=1

akek

)
∥

∥

∥

∥

=

∥

∥

∥

∥

AB−1B

(

f −
n
∑

k=1

akek

)
∥

∥

∥

∥

≤ ‖AB−1‖
∥

∥

∥

∥

B

(

f −
n
∑

k=1

akek

)∥

∥

∥

∥

shows that the system {ek}k∈N is complete in H1(A), and therefore,

‖Aun − f‖ → 0, n → ∞,

where un =
∑n

k=1 αkek is the approximate solution of (1) by means of the least square
method with the coordinate system {ek}k∈N. The next theorem shows that this conver-
gence may be as slow as desired.

Theorem 3. Let A be a densely defined linear operator in H such that 0 ∈ ρ(A). Suppose
also that the conditions 1⋄–3⋄ hold. Then whatever decreasing number sequence {γn}n∈N,
γn > 0, γn → 0 (n → ∞) may be, there exists a vector f ∈ H such that

∀n ∈ N : Rn = ‖Aun − f‖ = γn.

Proof. First we shall prove that for an arbitrary Hilbert space H and any orthonormal
basis {gk}k∈N in H, there exists a vector v ∈ H such that

∀n ∈ N :

∥

∥

∥

∥

v −
n
∑

k=1

(v, gk)gk

∥

∥

∥

∥

= γn.

Really, put β1 = 0, β2
i = γ2

i−1 − γ2
i (i = 2, 3, . . .). Then the series

∑n
k=1 βigi converges

in H to a certain element v ∈ H, and it is the Fourier series of this element (βi = (v, gi)).
So,

∥

∥

∥

∥

v −
n
∑

k=1

(v, gk)gk

∥

∥

∥

∥

=

( n
∑

k=1

β2
i

)1/2

= γn.

Taking the space H1(A) as H and the sequence {ẽk}k∈N obtained in the process of or-
thogonalization in H1(A) of the coordinate system {ek}k∈N as {gk}k∈N, we conclude that
there exists a vector u ∈ H1(A) such that

∀n ∈ N :

∥

∥

∥

∥

u −
n
∑

k=1

(u, ẽk)H1(A)ẽk

∥

∥

∥

∥

H1(A)

=

∥

∥

∥

∥

A

(

u −
n
∑

k=1

(u, ẽk)H1(A)ẽk

)
∥

∥

∥

∥

= γn.
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Setting f = Au, we get

Rn = ‖Aun − f‖ = min
{ak}k∈N

∥

∥

∥

∥

f −
n
∑

k=1

akAek

∥

∥

∥

∥

= min
{ak}k∈N

∥

∥

∥

∥

A

(

u −
n
∑

k=1

akek

)∥

∥

∥

∥

= min
{ak}k∈N

∥

∥

∥

∥

u −
n
∑

k=1

akek

∥

∥

∥

∥

H1(A)

= min
{ak}k∈N

∥

∥

∥

∥

u −
n
∑

k=1

akẽk

∥

∥

∥

∥

H1(A)

=

∥

∥

∥

∥

u −
n
∑

k=1

(u, ẽk)H1(A)ẽk

∥

∥

∥

∥

H1(A)

= γn.

�

In connection with this, the question arises, what properties the solution u = A−1f
has to possess in order that the value Rn = ‖Aun−f‖ be of a certain order of decreasing
to zero as n → ∞. The answer is given by the theorem below.

Theorem 4. Let {ek}k∈N be the orthonormal basis of eigenvectors of the operator B,
and let un be the approximate solution of equation (1) in the least squares method with
the coordinate system {ek}k∈N. Then for any α ≥ 0

(18) u = A−1f ∈ D(Bα+1) =⇒ Rn = o(λ−α
n+1).

Moreover,

(19) ∃ε > 0 : Rn = o(λ
−(α+ε)
n+1 ) =⇒ u ∈ D(Bα+1).

Proof. We put vn =
∑n

k=1(u, ek)ek. Then

‖Aun − f‖ ≤ ‖Avn − f‖ = ‖A(vn − u)‖ = ‖AB−1B(vn − u)‖

≤ ‖AB−1‖‖Bvn − Bu‖ = ‖AB−1‖
∥

∥

∥

∥

n
∑

k=1

(Bu, ek)ek − Bu

∥

∥

∥

∥

.

As the resolution of identity Eλ of the operator B has the form

Eλg =
∑

k:λk≤λ

(g, ek)ek,

and, because of (9),

Eλn+1
(g) = ‖g − Eλn+1

g‖ =

∥

∥

∥

∥

g −
n
∑

k=1

(g, ek)ek

∥

∥

∥

∥

,

one can conclude that

(20) ‖Aun − f‖ ≤ ‖AB−1‖Eλn+1
(Bu).

Then the relation (18) follows from Corollary 2.
Now assume that the equality in the left hand side of (19) is fulfilled. Then

Eλn+1
(Bu) =

∥

∥

∥

∥

Bu −
n
∑

k=1

(Bu, ek)ek

∥

∥

∥

∥

=

∥

∥

∥

∥

Bu −
n
∑

k=1

(u, ek)Bek

∥

∥

∥

∥

≤
∥

∥

∥

∥

B

(

u −
n
∑

k=1

(u, ek)ek

)∥

∥

∥

∥

≤ ‖BA−1‖‖A(un − u)‖ = o(λ
−(α+ε)
n+1 ).

By Corollary 3, Bu ∈ D(Bα), whence u ∈ D(Bα+1). �
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It should be noted that there exist examples verifying that the equality

‖Aun − f‖ = o(λ−α
n+1)

does not yet imply the inclusion u ∈ D(Bα+1).
According to [14], for the operator B and a vector g ∈ H, we put

ωk(t, g, B) = sup
0≤τ≤t

‖∆k
τg‖, k ∈ N,

where

∆k
τ = (U(τ) − I)k =

k
∑

j=0

Cj
kU(jτ), k ∈ N0, τ ∈ R+ = [0,∞),

and U(τ) = eiτB is a group of unitary operators in H with the generating operator iB.
It follows from this definition that ωk(t, g, B) possesses the following properties:
1) ωk(0, g, B) = 0;
2) for a fixed g, the function ωk(t, g, B) is nondecreasing on R+;
3) ∀α, t > 0 : ωk(αt, g, B) ≤ (1 + α)kωk(t, g, B);
4) for any fixed t ∈ R+, the function ωk(t, g, B) is continuous with respect to g.

As was proved in [3], the following statement holds.

Proposition 2. Let g ∈ D(Bα), α > 0. Then

∀k ∈ N : Er(g, B) ≤
√

k + 1

2krα
ωk(

π

r
, Bαg, B).

Conversely, if ω(t), t ∈ [0,∞), is a function of continuity module type, that is:
(i) ω(t) is continuous and nondecreasing on R+,
(ii) ω(0) = 0,
(iii) ∃c > 0, ∀t > 0 : ω(2t) ≤ cω(t),

and if, in addition, the condition
∫ 1

0

ω(t)

t
dt < ∞,

is satisfied, then

∃c > 0, ∀r > 0 : Er(g, B) ≤ c

rα
ω

(

1

r

)

=⇒ g ∈ D(Bα).

Using this proposition, on the basis of (20), we arrive at the following conclusion.

Theorem 5. If u ∈ D(Bα+1), α > 0, then

∀k ∈ N : ‖Aun − f‖ ≤
√

k + 1

2kλα
n+1

ωk

(

π

λn+1
, Bα+1g, B

)

.

Conversely, let for ω(t) the conditions of Proposition 2 be fulfilled. If u ∈ D(B) and

‖Au − f‖ ≤ λ−α
n+1ω

(

1

λn+1

)

(α > 0),

then u ∈ D(Bα+1).

Now we pass to the approximation by means of the least squares method of the solution
u to equation (1) in assumption that u belongs to some class of infinitely differentiable
vectors for the operator B. First of all, note that Theorem 4 gives as a consequence such
a result.

Corollary 6. The following equivalence holds:

u ∈ C∞(B) ⇐⇒ ∀α > 0 : lim
n→∞

λα
n+1Rn = 0.
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For more smooth u, the assertion below is valid.

Theorem 6. Let the conditions 1⋄–3⋄ hold, and let the sequence {mn}n∈N0
satisfy (3)

and the condition (5) with any h > 1. Then

(21)

u ∈ C{mn}(B), σ(u, mn, B) = σ ⇐⇒ ∀ε > 0 : lim
n→∞

ρ

(

λn+1

σ + ε

)

Rn = 0,

lim
n→∞

ρ

(

λn+1

σ − ε

)

Rn = ∞;

(22) u ∈ C(mn)(B) ⇐⇒ ∀ε > 0 lim
n→∞

ρ

(

λn+1

ε

)

Rn = 0,

where ρ(λ) is any of the three functions ρi(λ), i = 1, 2, 3 from (2).

Proof. Let u ∈ C{mn}(B). Then

∀α > σ, ∀k ∈ N0,

∃c = c(α) > 0 : ‖BkBu‖ = ‖Bk+1u‖ ≤ cαk+1mk+1 ≤ cαk+1hkmk = c(αh)kmk,

which implies that σ(Bu, mn, B) ≤ αh. As h > 1 is arbitrary, we have σ(Bu, mn, B) ≤ σ.
But, by the definition of σ, for any ε ∈ (0, σ), there exists a subsequence ki ∈ N0 such
that

‖Bkiu‖ ≥ c(σ − ε)kimki
.

Therefore
‖Bki−1Bu‖ ≥ c(σ − ε)ki−1mki−1.

Thus,
σ(Bu, mn, B) = σ(u, mn, B) = σ.

Since Bu ∈ C{mn}(B) = H{ρ}(B) and because of Theorem 2, we have

σ(Bu, mn, B) = s−1(Bu, ρ, B).

It follows from the definition of s(u, ρ, B) that

(23) ∀ε ∈ (0, σ) : Bu ∈ D
(

ρ

(

B

σ + ε

))

, Bu /∈ D
(

ρ

(

B

σ − ε

))

.

By Corollary 1,

(24) Er(Bu)ρ

(

r

σ + ε

)

→ 0 as r → ∞.

Moreover,

(25) lim
r→∞

Er(Bu)ρ

(

r

σ − ε

)

= ∞.

Indeed, assume that for some ε > 0 and r ≥ r0,

Er(Bu)ρ

(

r

σ − ε

)

≤ c < ∞.

As it follows from Remark 1, for any ε′ < ε we have

c ≥ Er(Bu)ρ

(

r

σ − ε

)

= Er(Bu)ρ

(

σ − ε′

σ − ε
· r

σ − ε′

)

=⇒ Bu ∈ D
(

ρ

(

B

σ − ε′

))

,

contrary to (23).
According to (20), ‖Aun − f‖ ≤ cEλn+1

(Bu). By (24),

‖Aun − f‖ρ
(

λn+1

σ + ε

)

→ 0 as n → ∞.
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Since

(26)
Eλn+1

(Bu) =

∥

∥

∥

∥

n
∑

k=1

(Bu, ek)ek − Bu

∥

∥

∥

∥

= ‖B(u − un)‖

≤ ‖BA−1‖‖Aun − f‖,
the formula (25) implies the relation

lim
n→∞

‖Aun − f‖ρ
(

λn+1

σ − ε

)

= ∞.

Conversely, let the relations in the right hand side of (21) be fulfilled with some σ > 0.
Because of (26),

ρ

(

λn+1

σ + ε

)

Eλn+1
(Bu) ≤ ρ

(

λn+1

σ + ε

)

‖Aun − f‖‖BA−1‖ → 0 as n → ∞.

In the same way as above, one can show that

Bu ∈ D
(

ρ

(

B

σ + ε′

))

(ε′ > ε),

and therefore,

u ∈ D
(

ρ

(

B

σ + ε′

))

.

So,

s(u, ρ, B) ≥ 1

σ
.

Furthermore, due to (20),

∀ε > 0 : lim
n→∞

ρ

(

λn+1

σ − ε

)

Eλn+1
(Bu) = ∞,

which guarantees, by Corollary 1, that

Bu /∈ D
(

ρ

(

B

σ − ε

))

.

The latter means that
s(Bu, ρ, B) = s(u, ρ, B) = σ−1

that is equivalent to σ(u, mn, B) = σ.
The relation (22) follows from the previous one, because in this case σ(u, mn, B) = 0

for any u ∈ C(mn)(B). �

4. As an example, we consider the case

H = L2(0, π), A = (−1)m d2m

dt2m
+

2m−1
∑

k=0

pk(t)
dk

dtk
,

D(A) = {v(·) ∈ W 2m
2 [0, π]

∣

∣v(2k)(0) = v(2k)(π) = 0, k = 0, . . . , m − 1},
where pk(·) ∈ C[0, π]. It is also assumed that the equation Av = 0 has only the trivial
solution.

We define the operator B as

B = (−1)m d2m

dt2m
, D(B) = D(A).

This operator is self-adjoint and positive definite, its spectrum {λk = k2m}k∈N is discrete

and simple, and the functions
√

2
π sin kt form an orthonormal basis of eigenvectors of B

in L2(0, π).
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It can readily be shown that under the conditions

(27) pk ∈ C2mj [0, π]

and

(28) p
(2r−1)
k (0) = p

(2r−1)
k (π) = 0 for even k (1 ≤ r ≤ mj),

(29) p
(2r)
k (0) = p

(2r)
k (π) = 0 for odd k (0 ≤ r ≤ (m − 1)j),

the relation
D(Aj+1) = D(Bj+1)

is true.
On the basis of Corollary 2, we arrive at the following conclusion.

Proposition 3. If the coefficients pk(t) satisfy the conditions (27)–(29) and if

(30) f(·) ∈ C2mj [0, π] and f (2k)(0) = f (2k)(π) = 0 (k = 0, 1, . . . , mj − 1),

then
(n + 1)2mj‖Aun − f‖L2(0,π) → 0 as n → ∞,

or, equivalently,

(31) (n + 1)2mj‖un − u‖W 2m
2

[0,π] → 0 (n → ∞).

The validity of (31) for m = 1 and j = 1 was established in [15].
Corollary 6 and Theorem 6 for mn = n! imply the following assertion.

Proposition 4. Suppose that all pk(·) belong to C∞[0, π] and satisfy the conditions
(27)–(29) for each r ∈ N0. Then the inclusion f(·) ∈ C∞[0, π] and the condition (30)
for k ∈ N0 are equivalent to the following statement:

∀α > 0 nα‖Aun − u‖L2(0,π) → 0 (n → ∞).

If, in addition, the functions pk(t) are analytic on [0, π], then the assertion

∃α > 0 eαn‖Aun − u‖L2(0,π) → 0 (n → ∞)

is equivalent to the analyticity of the function f(t) on [0, π] and the validity of the con-
dition (30) for all k ∈ N0. If the pk(t) are entire functions, then for the assertion

∀α > 0 eαn‖Aun − u‖L2(0,π) → 0 (n → ∞)

to be true, it is necessary and sufficient that the function f(t) be entire and satisfy the
condition (30) for all k ∈ N0.

It should be noted that the expression ‖Aun − u‖L2(0,π) in the last Proposition can
be replaced by ‖un − f‖W 2m

2
[0,π].

References

1. S. G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, Moscow, 1970.
2. M. L. Gorbachuk and V. I. Gorbachuk, Operator approach to approximation problems, St. Pe-

tersburg Math. J. 9 (1998), no. 6, 1097–1110.
3. M. L. Gorbachuk, Ya. I. Grushka, and S. M. Torba, Direct and inverse theorems in the theory

approximations by the Ritz method, Ukrain. Mat. Zh. 57 (2005), no. 5, 751–764.
4. A. Yu. Luchka and T. F. Luchka, The Appearance and Development of Direct Methods in

Mathematical Physics, Naukova Dumka, Kiev, 1985.
5. M. L. Gorbachuk, V. I. Gorbachuk, The spaces of infinitely differentiable vectors of a closed

operator and their applications to approximation problems, Uspekhi Mat. Nauk 48 (1993),
no. 4, p. 180.

6. M. L. Gorbachuk and V. I. Gorbachuk, On approximation of smooth vectors of a closed operator

by entire vectors of exponential type, Ukrain. Mat. Zh. 47 (1995), no. 5, 616–628.
7. M. L. Gorbachuk, On the approximation to solutions of operator equations by the least squares

method, Funktsional. Anal. i Prilozhen. 39 (2005), no. 1, 85–90.



ON THE APPROXIMATION TO SOLUTIONS OF OPERATOR EQUATIONS . . . 241

8. S. I. Zuchovitsky, On the approximation in Chebyshev’s sense of real functions, Uspekhi Mat.
Nauk 11 (1956), no. 2, 125–159.

9. S. I. Zuchovitsky and G. I. Eskin, On the approximation of abstract continuous functions by

unbounded operator-functions, Dokl. Akad. Nauk SSSR 116 (1957), no. 5, 731–734.
10. E. Nelson, Analytic vectors, Ann. Math. 70 (1959), no. 3, 572–615.
11. R. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math.

Soc. 143 (1969), 55–76.
12. Ya. V. Radyno, The space of vectors of exponential type, Dokl. Akad. Nauk BSSR 27 (1983),

no. 9, 791–793.
13. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator-Differential

Equations, Kluwer, Dordrecht, 1991.
14. N. P. Kupcov, Direct and inverse theorems of approximation theory and semigroups of opera-

tors, Uspekhi Mat. Nauk 23 (1968), no. 4, 118–178.
15. N. M. Krylov, Selected Papers in 3 Volumes, vol. 3, Izdat. Akad. Nauk Ukrain. SSR, Kiev,

1961.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: imath@horbach.kiev.ua

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,

Kyiv, 01601, Ukraine

E-mail address: imath@horbach.kiev.ua

Received 25/06/2008


