G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES

ABBAS NAJATI, M. H. FAROUGHI, AND ASGHAR RAHIMI

ABSTRACT. Wenchang Sun in his paper [Wenchang Sun, *G*-frames and *g*-Riesz bases, J. Math. Anal. Appl. **322** (2006), 437–452] has introduced *g*-frames which are generalized frames and include ordinary frames and many recent generalizations of frames, e.g., bounded quasi-projectors and frames of subspaces. In this paper we develop the *g*-frame theory for separable Hilbert spaces and give characterizations of *g*-frames and we show that *g*-frames share many useful properties with frames. We present a version of the Paley-Wiener Theorem for *g*-frames which is in spirit close to results for frames, due to Ole Christensen.

1. INTRODUCTION

There are some generalizations of frames, for example bounded quasi-projectors [8] and frames of subspaces [3]. The mean of g-frames has been presented by W. Sun in [15]. This is an extension of frames that include all of the previous extensions of frames.

Through this paper, \mathcal{H} and \mathcal{K} are Hilbert spaces and $\{\mathcal{H}_i : i \in I\}$ is a sequence of Hilbert spaces, where I is a subset of \mathbb{Z} . $\mathcal{L}(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{H}_i .

Note that for any sequence $\{\mathcal{H}_i : i \in I\}$, we can assume that there exists a Hilbert space \mathcal{K} such that for all $i \in I, \mathcal{H}_i \subseteq \mathcal{K}$ (for example $\mathcal{K} = \bigoplus_{i \in I} \mathcal{H}_i$).

Definition 1.1. We call a sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ a generalized frame, or simply a *g*-frame, for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ if there exist two positive constants A and B such that

(1.1)
$$A\|f\|^{2} \leq \sum_{i \in I} \|\Lambda_{i}f\|^{2} \leq B\|f\|^{2}, \quad f \in \mathcal{H}.$$

We call A and B the lower and upper g-frame bounds, respectively.

We call $\{\Lambda_i : i \in I\}$ a tight g-frame if A = B and a Parseval g-frame if A = B = 1.

We call $\{\Lambda_i : i \in I\}$ an exact g-frame if it ceases to be a g-frame whenever any of its elements is removed.

We say simply a g-frame for \mathcal{H} whenever the space sequence $\{\mathcal{H}_i : i \in I\}$ is clear.

We say also a g-frame for \mathcal{H} with respect to \mathcal{K} whenever $\mathcal{H}_i = \mathcal{K}$, for each $i \in I$.

We say $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame sequence, if it is a g-frame for $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I}$.

We say { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a g-Bessel sequence with bound B, if we only have the upper bound in (1.1).

Notation 1.2. For each sequence $\{\mathcal{H}_i\}_{i\in I}$, we define the space $\left(\sum_{i\in I}\bigoplus \mathcal{H}_i\right)_{\ell_2}$ by (1.2) $\left(\sum_{i\in I}\bigoplus \mathcal{H}_i\right)_{\ell_2} = \left\{\{f_i\}_{i\in I}: f_i\in \mathcal{H}_i, i\in I \text{ and } \sum_{i\in I} \|f_i\|^2 < +\infty\right\}$

Key words and phrases. Frames, g-frames, g-Riesz bases, g-orthonormal bases.

²⁰⁰⁰ Mathematics Subject Classification. Primary 41A58; Secondary 42C15.

with the inner product defined by

$$\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.$$

It is clear that $\left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ is a Hilbert space with pointwise operations.

2. Characterization of g-frames

In this section, we will try to characterize g-frames from the point of view of operator theory. We are starting with the definition of a synthesis operator for a g-frame. For this mean, we must show that the series appearing in the definition of a synthesis operator converges unconditionally. So we need the next lemma.

Lemma 2.1. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-Bessel sequence for \mathcal{H} with bound B. Then for each sequence $\{f_i\}_{i \in I} \in \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$, the series $\sum_{i \in I} \Lambda_i^*(f_i)$ converges unconditionally.

Proof. Let $J \subseteq I$ with $|J| < \infty$, then

$$\begin{split} \left\| \sum_{i \in J} \Lambda_i^*(f_i) \right\| &= \sup_{\|g\|=1} \left| \left\langle \sum_{i \in J} \Lambda_i^*(f_i), g \right\rangle \right| \\ &\leq \left(\sum_{i \in J} \|f_i\|^2 \right)^{\frac{1}{2}} \sup_{\|g\|=1} \left(\sum_{i \in J} \|\Lambda_i g\|^2 \right)^{\frac{1}{2}} \leq \sqrt{B} \left(\sum_{i \in J} \|f_i\|^2 \right)^{\frac{1}{2}}. \end{split}$$

It follows that $\sum_{i \in I} \Lambda_i^*(f_i)$ is weakly unconditionally Cauchy and hence unconditionally convergent in \mathcal{H} (see [6], page 44, Theorems 6 and 8).

Definition 2.2. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a *g*-frame for \mathcal{H} . Then the synthesis operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is the operator

$$T: \Big(\sum_{i\in I}\bigoplus \mathcal{H}_i\Big)_{\ell_2} \longrightarrow \mathcal{H}$$

defined by

$$T(\{f_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^*(f_i).$$

We call the adjoint T^* of the synthesis operator the *analysis operator*.

The following proposition will provide a concrete formula for the analysis operator.

Proposition 2.3. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} . Then the analysis operator $T^* : \mathcal{H} \longrightarrow \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ is given by

$$T^*(f) = \{\Lambda_i f\}_{i \in I}.$$

Proof. For all $f \in \mathcal{H}$ and $\{g_i\}_{i \in I} \in \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ we have

$$\left\langle T^*f, \{g_i\}_{i \in I} \right\rangle = \left\langle f, T\{g_i\}_{i \in I} \right\rangle = \left\langle f, \sum_{i \in I} \Lambda_i^*(g_i) \right\rangle$$
$$= \sum_{i \in I} \left\langle \Lambda_i f, g_i \right\rangle = \left\langle \{\Lambda_i f\}_{i \in I}, \{g_i\}_{i \in I} \right\rangle.$$

So that $T^*f = {\Lambda_i f}_{i \in I}$.

The following proposition characterizes g-Bessel sequences.

272

Proposition 2.4. { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a g-Bessel sequence for \mathcal{H} with bound B, if and only if the operator

$$T: \Big(\sum_{i\in I} \bigoplus \mathcal{H}_i\Big)_{\ell_2} \longrightarrow \mathcal{H}$$

defined by

$$T(\{f_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^*(f_i)$$

is a well-defined and bounded operator with $||T|| \leq \sqrt{B}$.

Proof. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-Bessel sequence for \mathcal{H} with bound B. Then by Lemma 2.1, T is well-defined and $||T|| \leq \sqrt{B}$.

Conversely, let T be a well-defined and bounded operator with $||T|| \leq \sqrt{B}$. Let $J \subseteq I$ with $|J| < +\infty$, then for each $f \in \mathcal{H}$,

$$\sum_{i \in J} \|\Lambda_i f\|^2 = \sum_{i \in J} \langle \Lambda_i^* \Lambda_i f, f \rangle = \left\langle T\{g_i\}_{i \in I}, f \right\rangle \le \|T\| \|\{g_i\}_{i \in I}\| \|f\|$$

where

$$g_i := \begin{cases} 0 & \text{if } i \in I \setminus J \\ \Lambda_i f & \text{if } i \in J \end{cases}$$

Hence

$$\sum_{i \in J} \|\Lambda_i f\|^2 \le \|T\| \Big(\sum_{i \in J} \|\Lambda_i f\|^2 \Big)^{\frac{1}{2}} \|f\|$$

and so

$$\sum_{i \in J} \|\Lambda_i f\|^2 \le \|T\|^2 \|f\|^2$$

Therefore

$$\sum_{i \in I} \|\Lambda_i f\|^2 \le \|T\|^2 \|f\|^2.$$

It follows that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} with bound B. \Box

Definition 2.5. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a *g*-frame for \mathcal{H} , the operator

$$S: \mathcal{H} \longrightarrow \mathcal{H}, \quad S = TT^*$$

is called the *g*-frame operator of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}.$

For any $f \in \mathcal{H}$ we have

$$Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

and

$$\langle Sf, f \rangle = \left\langle \sum_{i \in I} \Lambda_i^* \Lambda_i f, f \right\rangle = \sum_{i \in I} \langle \Lambda_i f, \Lambda_i f \rangle = \sum_{i \in I} \|\Lambda_i f\|^2.$$

Therefore

$$A\langle f, f \rangle \le \langle Sf, f \rangle \le B\langle f, f \rangle,$$

i.e.,

$$AI \leq S \leq BI.$$

Therefore S is a bounded, positive and invertible operator. In this case we have the reconstruction formula

$$f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f, \quad f \in \mathcal{H}.$$

The well-known relation between a frame and the associated synthesis operator also hold in g-frames.

Proposition 2.6. A sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} if and only if

$$T: \{f_i\}_{i \in I} \to \sum_{i \in I} \Lambda_i^*(f_i)$$

is a well-defined and bounded mapping from $\left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ onto \mathcal{H} .

Proof. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} , then $S = TT^*$ is invertible. So T is onto. Conversely, let T be well-defined, bounded and onto. Then by Proposition 2.4, $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} . Therefore $T^*f = \{\Lambda_i f\}_{i \in I}$ for all $f \in \mathcal{H}$. Since T is onto, there exists an operator $T^{\dagger} : \mathcal{H} \longrightarrow \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ such that $TT^{\dagger} = I_{\mathcal{H}}$. Hence $(T^{\dagger})^*T^* = I_{\mathcal{H}}$. Then for all $f \in \mathcal{H}$,

$$||f||^{2} \leq ||(T^{\dagger})^{*}||^{2} ||T^{*}f||^{2} = ||T^{\dagger}||^{2} ||T^{*}f||^{2} = ||T^{\dagger}||^{2} \sum_{i \in I} ||\Lambda_{i}f||^{2}$$

It follows that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} with lower g-frame bound $||T^{\dagger}||^{-2}$ and upper g-frame bound $||T||^2$.

Proposition 2.7. A sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} if and only if

$$S: f \to \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

is a well-defined and bounded mapping from \mathcal{H} onto \mathcal{H} .

Proof. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} , then S is the g-frame operator. Therefore S is well-defined, bounded and onto. Conversely, let S be a well-defined, bounded and onto operator. Since S is positive, (i.e., $\langle Sf, f \rangle \geq 0$ for all $f \in \mathcal{H}$) $\mathcal{R}_S^{\perp} = N(S)$. Then S is injective and therefore it is invertible. So $0 \notin \sigma(S)$. Let $C := \inf_{\|f\|=1} \langle Sf, f \rangle$. By Proposition 70.8 in [11], $C \in \sigma(S)$. Then C > 0. Hence for all $f \in \mathcal{H}$ we have

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \langle Sf, f \rangle \ge C \|f\|^2$$

and

$$\sum_{i\in I} \|\Lambda_i f\|^2 = \langle Sf, f\rangle \le \|S\| \|f\|^2.$$

Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-frame for \mathcal{H} .

Corollary 2.8. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators, then T is welldefined, bounded and onto if and only if S is well-defined, bounded and onto.

Similarly to g-frames, we can define g-complete, g-Riesz bases and g-orthonormal bases.

Definition 2.9. (i) We say that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete, if $\{f : \Lambda_i f = 0, i \in I\} = \{0\}$.

(*ii*) We say that { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a *g*-orthonormal basis for \mathcal{H} , if it satisfies the following

(2.1)
$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in I, \quad g_i \in \mathcal{H}_i, \quad g_j \in \mathcal{H}_j$$

(2.2)
$$\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.$$

(*iii*) We say that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g- Riesz basis for \mathcal{H} , if it is g-complete and there exist constants $0 < A \leq B < \infty$, such that for any finite subset $J \subseteq I$ and $g_i \in \mathcal{H}_i, i \in J$,

(2.3)
$$A\sum_{i\in J} \|g_i\|^2 \le \left\|\sum_{i\in J} \Lambda_i^* g_i\right\|^2 \le B\sum_{i\in J} \|g_i\|^2$$

Proposition 2.10. If { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a g-frame for \mathcal{H} , then $\overline{\operatorname{span}} \{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I} = \mathcal{H}$.

Proof. Let $f \in \mathcal{H}$ and $f \perp \operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I}$. Then for all $i \in I$ and $g \in \mathcal{H}_i$,

$$\langle \Lambda_i f, g \rangle = \langle f, \Lambda_i^* g \rangle = 0.$$

Therefore $\Lambda_i f = 0$, for all $i \in I$. Since $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-frame for \mathcal{H} , then f = 0.

The following proposition gives an equivalent condition for g-completeness of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$.

Proposition 2.11. { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is g-complete if and only if

$$\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i\in I}=\mathcal{H}.$$

Proof. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be g-complete. Since $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I} \subseteq \mathcal{H}$, it is enough to prove that if $f \in \mathcal{H}$ and $f \perp \operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I}$, then f = 0. Let $f \in \mathcal{H}$ and $f \perp \operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I}$. Since for any $i \in I$, $f \perp \Lambda_i^*\Lambda_i(f)$, then for all $i \in I$,

$$\|\Lambda_i f\|^2 = \langle f, \Lambda_i^* \Lambda_i(f) \rangle = 0.$$

Therefore f = 0, by g-completeness of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$. Conversely, let $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I} = \mathcal{H}$. Let $f \in \mathcal{H}$ and suppose that $\Lambda_i f = 0$ for all $i \in I$. Then for each $g \in \mathcal{H}_i$

$$\langle \Lambda_i f, g \rangle = \langle f, \Lambda_i^* g \rangle = 0,$$

hence $f \perp \operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I}$. Therefore $f \perp \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in I} = \mathcal{H}$. It shows that f = 0. Hence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete.

The following proposition shows that we can remove the second equality in 2.9.

Proposition 2.12. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} and suppose that (2.1) holds. Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-orthogonal basis for \mathcal{H} .

Proof. Let S be the g-frame operator of $\{\Lambda_i\}$ and let $\mathcal{K} = \{f \in \mathcal{H} : Sf = f\}$. It is clear that \mathcal{K} is a nonempty closed subspace of \mathcal{H} . We show that $\mathcal{K}^{\perp} = \{0\}$. Let $f \in \mathcal{H}$ and $j \in I$, then $\Lambda_i^* \Lambda_j f \in \mathcal{K}$ since for $i \neq j$ we have

$$\Lambda_i^* \Lambda_i \Lambda_j^* \Lambda_j f = 0,$$

$$\Lambda_j^* \Lambda_j \Lambda_j^* \Lambda_j f = \Lambda_j^* \Lambda_j f$$

 \mathbf{SO}

$$\sum_{i \in I} \Lambda_i^* \Lambda_i \Lambda_j^* \Lambda_j f = \Lambda_j^* \Lambda_j f.$$

Hence for $f \in \mathcal{K}^{\perp}$ and $g \in \mathcal{K}$ we have

$$\langle \Lambda_j^* \Lambda_j f, g \rangle = \langle f, \Lambda_j^* \Lambda_j g \rangle = 0, \quad j \in I.$$

Therefore

$$\Lambda_i^* \Lambda_i f = 0, \quad i \in I$$

and so $\|\Lambda_i f\| = 0$, for each $i \in I$. By definition of g-frame we conclude f = 0 and therefore $\mathcal{H} = \mathcal{K}$. So S = I and hence for every $f \in \mathcal{H}$

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \langle Sf, f \rangle = \langle f, f \rangle = \|f\|^2.$$

Corollary 2.13. { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a g-orthonormal basis for \mathcal{H} if and only if { Λ_i } is a g-frame and for all $i, j \in I$ and $g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j$

$$\langle \Lambda_i^* g_i, \Lambda_i^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle.$$

Proposition 2.14. $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-orthonormal basis for \mathcal{H} if and only if

(1) Λ_i^* is isometric for all $i \in I$;

(2) $\bigoplus_{i \in I} \Lambda_i^*(\mathcal{H}_i) = \mathcal{H}.$

Proof. First assume that $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-orthonormal basis for \mathcal{H} . Then for each $i \in I$ and $g \in \mathcal{H}_i$, we obtain from (2.1)

$$\langle \Lambda_i^* g, \Lambda_i^* g \rangle = \delta_{i,i} \langle g, g \rangle = \langle g, g \rangle.$$

Then Λ_i^* is isometric for all $i \in I$. Therefor $\Lambda_i^*(\mathcal{H}_i)$ is a closed subspace of \mathcal{H} , for all $i \in I$. From (2.2), we obtain

$$\langle f, f \rangle = \sum_{i \in I} \langle \Lambda_i f, \Lambda_i f \rangle = \sum_{i \in I} \langle \Lambda_i^* \Lambda_i f, f \rangle = \Big\langle \sum_{i \in I} \Lambda_i^* \Lambda_i f, f \Big\rangle, \quad f \in \mathcal{H}.$$

Hence

$$f = \sum_{i \in I} \Lambda_i^* \Lambda_i f, \quad f \in \mathcal{H}.$$

By letting $g_i = \Lambda_i f$, we have $f = \sum_{i \in I} \Lambda_i^* g_i$ and

$$\sum_{i \in I} \|\Lambda_i^* g_i\|^2 = \sum_{i \in I} \|g_i\|^2 = \sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2$$

Then $\mathcal{H} = \bigoplus_{i \in I} \Lambda_i^*(\mathcal{H}_i)$. Conversely, if (1) and (2) are satisfied, then it is clear that (2.1) holds, since for all $i \neq j$, $\Lambda_i^*\mathcal{H}_i \perp \Lambda_j^*\mathcal{H}_j$ and Λ_i^* is isometric for all $i \in I$. Let $f \in \mathcal{H}$, then we obtain from (2),

$$f = \sum_{i \in I} \Lambda_i^* g_i, \quad g_i \in \mathcal{H}_i, \quad i \in I,$$

and

$$||f||^2 = \sum_{i \in I} ||\Lambda_i^* g_i||^2 = \sum_{i \in I} ||g_i||^2.$$

Let $m \in I$, then for each $h \in \mathcal{H}$, we have

$$\langle \Lambda_m f, h \rangle = \left\langle \sum_{i \in I} \Lambda_m \Lambda_i^* g_i, h \right\rangle = \sum_{i \in I} \langle \Lambda_i^* g_i, \Lambda_m^* h \rangle = \langle \Lambda_m^* g_m, \Lambda_m^* h \rangle = \langle g_m, h \rangle$$

Hence $g_m = \Lambda_m f$, for all $m \in I$. Therefore $f = \sum_{i \in I} \Lambda_i^* \Lambda_i f$, for all $f \in \mathcal{H}$. It follows that

$$||f||^2 = \sum_{i \in I} ||\Lambda_i f||^2, \quad f \in \mathcal{H}.$$

Corollary 2.15. Every g-orthonormal basis for \mathcal{H} is a g-Riesz basis for \mathcal{H} with bounds A = B = 1.

In the following proposition we show that g-frames for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ are characterized as the families $\{\Theta_i V^*\}_{i \in I}$, where $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a gorthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ and $V : \mathcal{H} \to \mathcal{H}$ is bounded and onto.

Proposition 2.16. Let $\{ \Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ be a g-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ and $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$. Then there is a bounded and onto operator $V : \mathcal{H} \longrightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i V^*$, for all $i \in I$.

Proof. Let

$$V: \mathcal{H} \longrightarrow \mathcal{H}, \quad Vf = \sum_{i \in I} \Lambda_i^* \Theta_i f,$$

then V is well defined, since for any finite $J \subseteq I$ and $f \in \mathcal{H}$,

$$\left\|\sum_{i\in J}\Lambda_i^*\Theta_i f\right\| = \sup_{\|h\|=1} \left|\left\langle\sum_{i\in J}\Lambda_i^*\Theta_i f, h\right\rangle\right| \le \sqrt{B} \left(\sum_{i\in J}\|\Theta_i f\|^2\right)^{\frac{1}{2}},$$

where B is an upper g-frame bound for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$. Since for all $f \in \mathcal{H}$, $\sum_{i \in I} \|\Theta_i f\|^2 = \|f\|^2$, it follows that $\sum_{i \in I} \Lambda_i^* \Theta_i f$ is weakly unconditionally Cauchy and hence unconditionally convergent in \mathcal{H} (see[6], Page 44, Theorems 6 and 8). Also it is clear that $\|V\| \leq \sqrt{B}$. Since $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-orthonormal basis, then $\Theta_i \Theta_i^* g = \delta_{ij} g$ and

$$V\Theta_j^*g = \sum_{i \in I} \Lambda_i^* \Theta_i \Theta_j^*g = \Lambda_j^* \Theta_j \Theta_j^*g = \Lambda_j^*g,$$

for all $g \in \mathcal{H}_j, j \in I$. Therefore

$$\Theta_j V^* = \Lambda_j, \quad j \in I.$$

Now we show that V is onto. Let T_{Λ} and T_{Θ} be the synthesis operators for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ respectively. Let $f \in \mathcal{H}$. Then there exists $\{g_i\}_{i \in I} \in \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ such that $\sum_{i \in I} \Lambda_i^* g_i = f$, since T_{Λ} is onto. Let $g = T_{\Theta}(\{g_i\}_{i \in I})$. Then

$$Vg = \sum_{i \in I} V\Theta_i^* g_i = \sum_{i \in I} \Lambda_i^* g_i = f.$$

Therefore V is onto.

Corollary 2.17. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval g-frame for \mathcal{H} , then V is co-isometric.

Corollary 2.18. If { $\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a g-Riesz basis for \mathcal{H} , then V is invertible.

Proof. Let $f \in \ker V$. Then $T_{\Theta}^* f = 0$, since $V = T_{\Lambda} T_{\Theta}^*$ and T_{Λ} is one to one. Therefore $\|f\|^2 = \|T_{\Theta}^* f\|^2 = 0$, so f = 0.

Corollary 2.19. If $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-orthonormal basis for \mathcal{H} , then V is unitary.

Proof. By Corollaries 2.15 and 2.18, V is invertible. For each $f \in \mathcal{H}$ we have

$$||f||^{2} = \sum_{i \in I} ||\Lambda_{i}f||^{2} = \sum_{i \in I} ||\Theta_{i}V^{*}f||^{2} = ||V^{*}f||^{2}.$$

Therefore $VV^* = I_{\mathcal{H}}$. It follows that V is unitary.

Han and Larson in [10] have proved that for any Parseval frame $\{f_i\}_{i \in I}$ for a Hilbert space \mathcal{H} there is a Hilbert space $\mathcal{H} \subseteq \mathcal{K}$ and an orthonormal basis $\{e_i\}_{i \in I}$ for \mathcal{K} such that $Pe_i = f_i$, for all $i \in I$, where P is the orthogonal projection of \mathcal{K} onto \mathcal{H} . Asgari and Khosravi in [1] have extended this result for frame of subspaces and the following theorem is its extension to g-frames.

Theorem 2.20. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a Parseval g-frame for \mathcal{H} . Then there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and an orthonormal basis of subspaces $\{\mathcal{K}_i\}_{i \in I}$ for \mathcal{K} such that for each $i \in I$, $P(\mathcal{K}_i) = \Lambda_i^*(\mathcal{H}_i)$, where P is the orthogonal projection from \mathcal{K} onto \mathcal{H} .

Proof. For each $i \in I$, let $\{e_{ij}\}_{j \in J_i}$ be an orthonormal basis for \mathcal{H}_i and for each $i \in I, j \in J_i$, let E_{ij} be an element of $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$ defined by

$$(E_{ij})_k = \begin{cases} e_{ij} & \text{if } i = k\\ 0 & \text{if } i \neq k \end{cases}$$

It is clear that $\{E_{ij}\}_{i\in I, j\in J_i}$ is an orthonormal basis for $\left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$. For each $i\in I$, let $\mathcal{K}_i = \overline{\operatorname{span}}\{E_{ij}\}_{j\in J_i}$, then

$$\bigoplus_{i \in I} \mathcal{K}_i = \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$$

Let $\mathcal{K} = \bigoplus_{i \in I} \mathcal{K}_i$ and let Θ be the analysis operator of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$. Since $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval *g*-frame, then Θ is an isometry. So we can embed \mathcal{H} into \mathcal{K} by identifying \mathcal{H} with $\Theta(\mathcal{H})$. Let $P : \mathcal{K} \longrightarrow \Theta(\mathcal{H})$ be the orthogonal projection. Then for each $i \in I, j \in J_i$ and $f \in \mathcal{H}$ we have

$$\langle \Theta f, P(E_{ij}) \rangle = \langle \Theta f, E_{ij} \rangle = \left\langle \{\Lambda_i f\}_{i \in I}, E_{ij} \right\rangle = \langle \Lambda_i f, e_{ij} \rangle = \langle f, \Lambda_i^* e_{ij} \rangle = \langle \Theta f, \Theta \Lambda_i^* e_{ij} \rangle.$$

Thus $P(E_{ij}) - \Theta \Lambda_i^* e_{ij} \perp \Theta(\mathcal{H})$. Since $P(E_{ij}) - \Theta \Lambda_i^* e_{ij} \in \Theta(\mathcal{H})$, then $P(E_{ij}) = \Theta \Lambda_i^* e_{ij}$. Thus $P(\mathcal{K}_i) = \Theta \Lambda_i^*(\mathcal{H}_i)$.

The next result will turn out to be useful for finding a lower bound for $\sum_{i \in I} ||\Lambda_i f||^2$.

Proposition 2.21. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be two g-Bessel sequences for \mathcal{H} with bounds A and B respectively and let T_{Λ} and T_{Θ} be their analysis operators such that $T_{\Theta}T_{\Lambda}^* = I_{\mathcal{H}}$. Then both $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ are g-frames.

Proof. For any $f \in \mathcal{H}$ we have

$$||f||^{4} = \langle f, f \rangle^{2} = \langle T_{\Lambda}^{*}f, T_{\Theta}^{*}f \rangle^{2} \leq ||T_{\Lambda}^{*}f||^{2} ||T_{\Theta}^{*}f||^{2} = ||\{\Lambda_{i}f\}_{i \in I}||^{2} ||\{\Theta_{i}f\}_{i \in I}||^{2} \\ = \Big(\sum_{i \in I} ||\Lambda_{i}f||^{2}\Big) \Big(\sum_{i \in I} ||\Theta_{i}f||^{2}\Big) \leq \Big(\sum_{i \in I} ||\Lambda_{i}f||^{2}\Big) B ||f||^{2}.$$

So $\frac{1}{B} ||f||^2 \leq \sum_{i \in I} ||\Lambda_i f||^2$. Therefore $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame. Similarly $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame. \Box

The next proposition shows that with a given g-frame, we can produce another g-frame by using its g-frame operator.

Proposition 2.22. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with frame operator S and frame bounds A, B. Then for each $\alpha \in \mathbb{R}$, $\{\Lambda_i S^{\alpha} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} and its frame operator is $S^{2\alpha+1}$.

Proof. Since $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-frame for \mathcal{H} , then

$$A\langle S^{2\alpha}f,f\rangle = A\|S^{\alpha}f\|^2 \le \sum_i \|\Lambda_i S^{\alpha}f\|^2 \le B\|S^{\alpha}f\|^2 = B\langle S^{2\alpha}f,f\rangle.$$

For $\alpha \geq 0$,

$$A \|S^{\alpha}f\|^{2} = A \langle S^{2\alpha}f, f \rangle \ge A A^{2\alpha} \langle f, f \rangle = A^{2\alpha+1} \|f\|^{2},$$

$$B \|S^{\alpha}f\|^{2} = B \langle S^{2\alpha}f, f \rangle \le B B^{2\alpha} \langle f, f \rangle = B^{2\alpha+1} \|f\|^{2}.$$

Therefore

$$A^{2\alpha+1} \|f\|^2 \le \sum_i \|\Lambda_i S^{\alpha} f\|^2 \le B^{2\alpha+1} \|f\|^2$$

Similarly for $\alpha < 0$,

$$B^{2\alpha+1} \|f\|^2 \le \sum_i \|\Lambda_i S^{\alpha} f\|^2 \le A^{2\alpha+1} \|f\|^2$$

Now, let S^{\diamond} be the frame operator of $\{\Lambda_i S^{\alpha} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$, then for any $f \in \mathcal{H}$,

$$S^{\diamond}(f) = \sum_{i} (\Lambda_{i} S^{\alpha})^{*} (\Lambda_{i} S^{\alpha}) f = \sum_{i} S^{\alpha} \Lambda_{i}^{*} \Lambda_{i} S^{\alpha} f$$
$$= S^{\alpha} \sum_{i} \Lambda_{i}^{*} \Lambda_{i} S^{\alpha} f = S^{\alpha} S S^{\alpha} f = S^{2\alpha+1} f.$$

So $S^{\diamond} = S^{2\alpha+1}$.

Corollary 2.23. By assumptions of Proposition 2.22, $\{\Lambda_i S^{-\frac{1}{2}} \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a Parseval g-frame.

Proposition 2.24. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with frame operator S and $U : \mathcal{H} \longrightarrow \mathcal{K}$ be a bounded and onto operator. Then $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{K} and its frame operator is USU^* .

Proof. Let A, B be the frame bounds for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$. Since U is bounded and onto, there exists bounded operator $U^{\dagger} : \mathcal{K} \longrightarrow \mathcal{H}$ such that $UU^{\dagger} = I_{\mathcal{K}}$. Thus $(U^{\dagger})^*U^* = I_{\mathcal{K}}$. Hence for any $f \in \mathcal{K}$, we have

$$A\|(U^{\dagger})^*\|^{-2}\|f\|^2 \le A\|U^*f\|^2 \le \sum_{i \in I} \|\Lambda_i U^*f\|^2 \le B\|U^*f\|^2 \le B\|U^*\|^2\|f\|^2.$$

Therefore $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{K} with frame bounds $A ||U^{\dagger}||^{-2}$ and $B ||U||^2$. Now, let S_U be the frame operator for $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$, then for each $f \in \mathcal{K}$,

$$S_U f = \sum_{i \in I} (\Lambda_i U^*)^* (\Lambda_i U^*) f = U \sum_{i \in I} \Lambda_i^* \Lambda_i U^* f = U S U^* f.$$

Hence $S_U = USU^*$.

Corollary 2.25. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} and let $U : \mathcal{H} \longrightarrow \mathcal{K}$ be a bounded operator with closed range. Then $\{\Lambda_i U^* \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{R}_U .

Corollary 2.26. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} and let $U : \mathcal{H} \longrightarrow \mathcal{K}$ be a bounded and invertible operator. Then $\{\Lambda_i U^{-1} \in \mathcal{L}(\mathcal{K}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{K} .

Corollary 2.27. Every g-Riesz basis for \mathcal{H} is a g-frame for \mathcal{H} .

3. Perturbation of g-frames

Perturbation of frames has been discussed in [2]. However there are similar theorems about perturbation of frames for measurable spaces (see [9], [13]). Stability of g-frames and their duals has been investigated by W. Sun [16]. In this manuscript we give other perturbations of g-frames. At first we need the following lemma which is proved in [2].

Lemma 3.1. Let U be a linear operator on a Banach space X and assume that there exist $\lambda_1, \lambda_2 \in [0, 1)$ such that

$$||x - Ux|| \le \lambda_1 ||x|| + \lambda_2 ||Ux||$$

for all $x \in X$. Then U is bounded and invertible. Moreover

$$\frac{1-\lambda_1}{1+\lambda_2}\|x\| \le \|Ux\| \le \frac{1+\lambda_1}{1-\lambda_2}\|x\|$$

and

$$\frac{1-\lambda_2}{1+\lambda_1} \|x\| \le \|U^{-1}x\| \le \frac{1+\lambda_2}{1-\lambda_1} \|x\|$$

for all $x \in X$.

Theorem 3.2. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with bounds A, B and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a sequence of operators such that for any finite subset $J \subseteq I$ and for each $f \in \mathcal{H}$,

(3.1)
$$\begin{aligned} \left\| \sum_{i \in J} (\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f) \right\| \\ \leq \lambda \left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\| + \mu \left\| \sum_{i \in J} \Theta_i^* \Theta_i f \right\| + \gamma \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}}, \end{aligned}$$

where $0 \leq \max\{\lambda + \frac{\gamma}{\sqrt{A}}, \mu\} < 1$. Then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} with frame bounds

(3.2)
$$A\frac{1-(\lambda+\frac{\gamma}{\sqrt{A}})}{1+\mu} \quad and \quad B\frac{1+\lambda+\frac{\gamma}{\sqrt{B}}}{1-\mu}$$

Proof. Assume that $J \subseteq I$ and $|J| < +\infty$. For each $f \in \mathcal{H}$, we have

$$\begin{split} \left\| \sum_{i \in J} \Theta_i^* \Theta_i f \right\| &\leq \left\| \sum_{i \in J} (\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f) \right\| + \left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\| \\ &\leq (1+\lambda) \left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\| + \mu \left\| \sum_{i \in J} \Theta_i^* \Theta_i f \right\| + \gamma \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}}. \end{split}$$

Then

$$\left\|\sum_{i\in J}\Theta_i^*\Theta_i f\right\| \le \frac{1+\lambda}{1-\mu} \left\|\sum_{i\in J}\Lambda_i^*\Lambda_i f\right\| + \frac{\gamma}{1-\mu} \left(\sum_{i\in J} \|\Lambda_i f\|^2\right)^{\frac{1}{2}}.$$

Also

$$\begin{aligned} \left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\| &= \sup_{\|g\|=1} \left| \langle \sum_{i \in J} \Lambda_i^* \Lambda_i f, g \rangle \right| = \sup_{\|g\|=1} \left| \langle \sum_{i \in J} \Lambda_i f, \Lambda_i g \rangle \right| \\ &\leq \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}} \sup_{\|g\|=1} \left(\sum_{i \in J} \|\Lambda_i g\|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}} \sqrt{B} \leq B \|f\|. \end{aligned}$$

Therefore for all $f \in \mathcal{H}$

$$\left\|\sum_{i\in J}\Theta_i^*\Theta_i f\right\| \le \left(\frac{1+\lambda}{1-\mu}\sqrt{B} + \frac{\gamma}{1-\mu}\right) \left(\sum_{i\in J} \|\Lambda_i f\|^2\right)^{\frac{1}{2}},$$

so $\sum_{i \in I} \Theta_i^* \Theta_i f$ is unconditionally convergent. Let

$$G: \mathcal{H} \longrightarrow \mathcal{H}, \quad G(f) = \sum_{i \in I} \Theta_i^* \Theta_i f, \quad f \in \mathcal{H}$$

Then ${\cal G}$ is well-defined and bounded operator with

$$\|G\| \le \frac{1+\lambda}{1-\mu}B + \frac{\gamma\sqrt{B}}{1-\mu}$$

and for each $f \in \mathcal{H}$, we have

$$\sum_{i \in I} \|\Theta_i f\|^2 = \langle Gf, f \rangle \le \|G\| \|f\|^2.$$

It follows that $\{ \Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ is a g-Bessel sequence for \mathcal{H} .

Let S be the g-frame operator of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ then we obtain from (3.1)

$$||Sf - Gf|| \le \lambda ||Sf|| + \mu ||Gf|| + \gamma \left(\sum_{i \in I} ||\Lambda_i f||^2\right)^{\frac{1}{2}}, \quad f \in \mathcal{H}.$$

Therefore

$$\|f - GS^{-1}f\| \le \lambda \|f\| + \mu \|GS^{-1}f\| + \gamma \left(\sum_{i \in I} \|\Lambda_i S^{-1}f\|^2\right)^{\frac{1}{2}}$$
$$\le (\lambda + \frac{\gamma}{\sqrt{A}})\|f\| + \mu \|GS^{-1}f\|,$$

since $0 \le \max\{\lambda + \frac{\gamma}{\sqrt{A}}, \mu\} < 1$, then by Lemma 3.1, GS^{-1} and consequently G is invertible and

$$||G^{-1}|| \le ||S^{-1}|| ||SG^{-1}|| \le \frac{1+\mu}{A\left(1-(\lambda+\frac{\gamma}{\sqrt{A}})\right)}.$$

Hence by Proposition 2.7, { $\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } is a *g*-frame for \mathcal{H} . It is clear that the optimal lower bound and optimal upper bound of { $\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I$ } are $||G^{-1}||^{-1}$ and ||G||, respectively. Then we can obtain the required frame bounds in (3.2).

Corollary 3.3. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with bounds A, B and let $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators. If there exists a constant 0 < R < A such that

$$\sum_{i\in I} \|\Lambda_i^*\Lambda_i f - \Theta_i^*\Theta_i f\| \le R\|f\|$$

for all $f \in \mathcal{H}$, then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame with g-frame bounds A - R and $\min\left\{1 + R\sqrt{\frac{B}{A}}, R + B\right\}$.

Proof. It is clear that $\sum_{i \in I} \Theta_i^* \Theta_i f$ is converges for each $f \in \mathcal{H}$. So we have

$$\left\|\sum_{i\in I}\Lambda_i^*\Lambda_i f - \Theta_i^*\Theta_i f\right\| \le R\|f\| \le \frac{R}{\sqrt{A}} \Big(\sum_{i\in I}\|\Lambda_i f\|^2\Big)^{\frac{1}{2}}, \quad f\in\mathcal{H}$$

By letting, $\lambda = \mu = 0$ and $\gamma = R/\sqrt{A}$ in Theorem 3.2, $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ will be a g-frame for \mathcal{H} with lower bound A - R and upper bound $1 + R\sqrt{\frac{B}{A}}$. Also we have

$$\left\|\sum_{i\in I}\Theta_i^*\Theta_i f\right\| \le R\|f\| + \left\|\sum_{i\in I}\Lambda_i^*\Lambda_i f\right\| \le (R+B)\|f\|$$

for all $f \in \mathcal{H}$. Hence the upper g-frame bound for $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is

$$\min\left\{1+R\sqrt{\frac{B}{A}},R+B\right\}.\quad \Box$$

Corollary 3.4. Let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} with frame bounds A, B and let $\{g_i\}_{i\in I}$ be a sequence of \mathcal{H} . Suppose that there exist constants λ, μ and γ with $0 \leq \max\{\mu, \lambda + \frac{\gamma}{\sqrt{A}}\} < 1$ such that for each $f \in \mathcal{H}$ and every finite subset $J \subseteq I$,

$$\leq \lambda \Big\| \sum_{i \in J} \langle f, f_i \rangle f_i \Big\| + \mu \Big\| \sum_{i \in J} \langle f, g_i \rangle g_i \Big\| + \gamma \Big(\sum_{i \in J} |\langle f, f_i \rangle| \Big)^{\frac{1}{2}}.$$

Then $\{g_i\}_{i\in I}$ is a frame for \mathcal{H} with frame bonds

 $\left\|\sum_{i \in I} \langle f, f_i \rangle f_i - \langle f, g_i \rangle g_i\right\|$

$$A\frac{1-(\lambda+\frac{\gamma}{\sqrt{A}})}{1+\mu} \quad and \quad B\frac{1+\lambda+\frac{\gamma}{\sqrt{B}}}{1-\mu}$$

Proof. For each $i \in I$, let

$$\Lambda_i: \mathcal{H} \longrightarrow \mathbb{C}, \quad \Lambda_i(f) = \langle f, f_i \rangle$$

and

$$\Theta_i: \mathcal{H} \longrightarrow \mathbb{C}, \quad \Theta_i(f) = \langle f, g_i \rangle$$

Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathbb{C}) : i \in I\}$ is a *g*-frame for \mathcal{H} and (3.3) means (3.1). Therefore the result follows from Theorem 3.2.

The following Theorem is another version of perturbation of g-frames.

Theorem 3.5. Let $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with bounds A, B and let $\{\Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators such that for any $J \subseteq I$ with $|J| < +\infty$,

$$\left\|\sum_{i\in J} (\Lambda_i^* f_i - \Theta_i^* f_i)\right\|$$

$$\leq \lambda \left\|\sum_{i\in J} \Lambda_i^* f_i\right\| + \mu \left\|\sum_{i\in J} \Theta_i^* f_i\right\| + \gamma \left(\sum_{i\in J} \|f_i\|^2\right)^{\frac{1}{2}}, \quad (f_i\in\mathcal{H}_i)$$

(3.4)

where $0 \leq \max\{\lambda + \frac{\gamma}{A}, \mu\} < 1$. Then $\{\Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} with g-frame bounds

$$A\left(\frac{1-(\lambda+\frac{\gamma}{\sqrt{A}})}{1+\mu}\right)^2$$
 and $B\left(\frac{1+\lambda+\frac{\gamma}{\sqrt{B}}}{1-\mu}\right)^2$.

Proof. It is clear that if $J \subseteq I$ with $|J| < +\infty$, then for all $i \in J$ and $f_i \in \mathcal{H}_i$, we have

$$\left\|\sum_{i\in J}\Theta_i^*f_i\right\| \le \left\|\sum_{i\in J}(\Lambda_i^*f_i - \Theta_i^*f_i)\right\| + \left\|\sum_{i\in J}\Lambda_i^*f_i\right\|$$
$$\le (\lambda+1)\left\|\sum_{i\in J}\Lambda_i^*f_i\right\| + \mu\left\|\sum_{i\in J}\Theta_i^*f_i\right\| + \gamma\left(\sum_{i\in J}\|f_i\|^2\right)^{\frac{1}{2}}.$$

So we have

$$\left\|\sum_{i\in J} \Theta_{i}^{*} f_{i}\right\| \leq \frac{\lambda+1}{1-\mu} \left\|\sum_{i\in J} \Lambda_{i}^{*} f_{i}\right\| + \frac{\gamma}{1-\mu} \left(\sum_{i\in J} \|f_{i}\|^{2}\right)^{\frac{1}{2}}.$$

Since

$$\begin{split} \sum_{i \in J} \Lambda_i^* f_i \bigg\| &= \sup_{\|g\|=1} \left| \left\langle \sum_{i \in J} \Lambda_i^* f_i, g \right\rangle \right| \\ &\leq \left(\sum_{i \in J} \|f_i\|^2 \right)^{\frac{1}{2}} \sup_{\|g\|=1} \left(\sum_{i \in J} \|\Lambda_i g\|^2 \right)^{\frac{1}{2}} \leq \sqrt{B} \left(\sum_{i \in J} \|f_i\|^2 \right)^{\frac{1}{2}}, \end{split}$$

then

(3.5)
$$\left\|\sum_{i\in J}\Theta_i^*f_i\right\| \leq \left(\frac{\lambda+1}{1-\mu}\sqrt{B} + \frac{\gamma}{1-\mu}\right) \left(\sum_{i\in J} \|f_i\|^2\right)^{\frac{1}{2}}.$$

Let

$$T: \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2} \longrightarrow \mathcal{H}, \quad T\left(\{f_i\}_{i\in I}\right) = \sum_{i\in I} \Theta_i^* f_i.$$

By (3.5), T is well-defined and bounded with

$$||T|| \le \frac{\lambda+1}{1-\mu}\sqrt{B} + \frac{\gamma}{1-\mu}.$$

Then by Proposition 2.4, $\{ \Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ is a g-Bessel sequence for \mathcal{H} and

$$T^*: \mathcal{H} \longrightarrow \left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}, \quad T^*(f) = \{\Theta_i f\}_{i \in I}.$$

Let U and S be the synthesis operator and g-frame operator for $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$, respectively. Let $G = TU^*S^{-1}$. Then we have from (3.4)

$$\left\|\sum_{i\in I} (\Lambda_i^*\Lambda_i S^{-1}f - \Theta_i^*\Lambda_i S^{-1}f)\right\|$$

$$\leq \lambda \left\|\sum_{i\in I} \Lambda_i^*\Lambda_i S^{-1}f\right\| + \mu \left\|\sum_{i\in I} \Theta_i^*\Lambda_i S^{-1}f\right\| + \gamma \left(\sum_{i\in I} \|\Lambda_i S^{-1}f\|^2\right)^{\frac{1}{2}}, \quad f \in \mathcal{H}.$$

Since for all $f \in \mathcal{H}$, $f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f$, so we have

$$\|f - Gf\| \le \lambda \|f\| + \mu \|Gf\| + \gamma \Big(\sum_{i \in I} \|\Lambda_i S^{-1}f\|^2\Big)^{\frac{1}{2}}$$
$$\le \lambda \|f\| + \mu \|Gf\| + \frac{\gamma}{\sqrt{A}} \|f\| \le (\lambda + \frac{\gamma}{\sqrt{A}}) \|f\| + \mu \|Gf\|$$

Since $0 \le \max\{\lambda + \frac{\gamma}{A}, \mu\} < 1$, by Lemma 3.1, $G = TU^*S^{-1}$ and consequently TU^* is invertible and

$$||G^{-1}|| \le \frac{1+\mu}{1-(\lambda+\frac{\gamma}{\sqrt{A}})}$$

Let $f \in \mathcal{H}$, then $f = GG^{-1}f = \sum_{i \in I} \Theta_i^* \Lambda_i S^{-1}G^{-1}f$. Hence for each $f \in \mathcal{H}$, we have

$$\begin{split} \|f\|^{4} &= |\langle f, f \rangle|^{2} = \left| \left\langle \sum_{i \in I} \Theta_{i}^{*} \Lambda_{i} S^{-1} G^{-1} f, f \right\rangle \right|^{2} \leq \sum_{i \in I} \|\Lambda_{i} S^{-1} G^{-1} f\|^{2} \sum_{i \in I} \|\Theta_{i} f\|^{2} \\ &\leq \frac{1}{A} \|G^{-1} f\|^{2} \sum_{i \in I} \|\Theta_{i} f\|^{2} \leq \frac{1}{A} \left(\frac{1+\mu}{1-(\lambda+\frac{\gamma}{\sqrt{A}})} \right)^{2} \|f\|^{2} \sum_{i \in I} \|\Theta_{i} f\|^{2}. \end{split}$$

Therefore

$$\sum_{i \in I} \|\Theta_i f\|^2 \ge A \Big(\frac{1 - (\lambda + \frac{\gamma}{\sqrt{A}})}{1 + \mu} \Big)^2 \|f\|^2, \quad f \in \mathcal{H}.$$

Then $\{\Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-frame for \mathcal{H} with the required *g*-frame bounds. \Box

The following corollary has been proved in [2].

Corollary 3.6. Let $\{f_i\}_{i \in I}$ be a frame for \mathcal{H} with bounds A, B. Let $\{g_i\}_{i \in I}$ be a sequence in \mathcal{H} and assume that there exist non-negative constants λ, μ and γ such that

$$\max\left\{\mu, \lambda + \frac{\gamma}{\sqrt{A}}\right\} < 1$$

and

(3.6)
$$\left\|\sum_{i} c_{i} f_{i} - c_{i} g_{i}\right\| \leq \lambda \left\|\sum_{i} c_{i} f_{i}\right\| + \mu \left\|\sum_{i} c_{i} g_{i}\right\| + \gamma \left(\sum_{i} |c_{i}|^{2}\right)^{\frac{1}{2}}$$

for all finite scalar sequences $\{c_i\}_i$. Then $\{g_i\}_{i\in I}$ is a frame for \mathcal{H} with frame bounds

$$A\left(\frac{1-(\lambda+\frac{\gamma}{\sqrt{A}})}{1+\mu}\right)^2$$
 and $B\left(\frac{1+\lambda+\frac{\gamma}{\sqrt{B}}}{1-\mu}\right)^2$.

Proof. For each $i \in I$, let

$$\Lambda_i: \mathcal{H} \longrightarrow \mathbb{C}, \quad \Lambda_i(f) = \langle f, f_i \rangle$$

and

$$\Theta_i: \mathcal{H} \longrightarrow \mathbb{C}, \quad \Theta_i(f) = \langle f, g_i \rangle.$$

Then $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathbb{C}) : i \in I\}$ is a *g*-frame for \mathcal{H} and (3.6) means (3.4). Therefore the result follows from Theorem 3.5.

Proposition 3.7. Let $\{\Lambda_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with bounds A, B and let $\{\Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators. If there exists a 0 < R < A such that

$$\sum_{i \in I} \|\Lambda_i f - \Theta_i f\|^2 \le R \|f\|^2$$

for all $f \in \mathcal{H}$. Then $\{ \Theta_i \in L(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ is a g-frame for \mathcal{H} with bounds $(\sqrt{A} - \sqrt{R})^2$ and $(\sqrt{B} + \sqrt{R})^2$.

Proof. By the triangle inequality in $\left(\sum_{i \in I} \bigoplus \mathcal{H}_i\right)_{\ell_2}$, we have

$$\left\| \{\Theta_i f\}_{i \in I} \right\|_{\ell_2} \le \left\| \{\Theta_i f - \Lambda_i f\}_{i \in I} \right\|_{\ell_2} + \left\| \{\Lambda_i f\}_{i \in I} \right\|_{\ell_2}, \quad f \in \mathcal{H}$$

therefore

$$\sum_{i \in I} \|\Theta_i f\|^2 \le (\sqrt{B} + \sqrt{R})^2 \|f\|^2, \quad f \in \mathcal{H}.$$

Also for each $f \in \mathcal{H}$

$$\left|\{\Theta_i f\}_{i \in I}\right\|_{\ell_2} \ge \left\|\{\Lambda_i f\}_{i \in I}\right\|_{\ell_2} - \left\|\{\Theta_i f - \Lambda_i f\}_{i \in I}\right\|_{\ell_2}$$

thus

$$\sum_{i \in I} \|\Theta_i f\|^2 \ge (\sqrt{A} - \sqrt{R})^2 \|f\|^2, \quad f \in \mathcal{H}.$$

The following theorem is a generalization of a result in [5].

Theorem 3.8. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i : i \in I\}$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators. If

$$K: \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2} \longrightarrow \mathcal{H}, \quad K\left(\{f_i\}_{i\in I}\right) = \sum_{i\in I} (\Lambda_i^* - \Theta_i^*) f_i$$

is a well-defined and compact operator, then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame sequence.

Proof. Since $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} and the perturbation operator K is bounded, then the synthesis g-frame operator U for $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is well-defined and bounded. Therefore by Proposition 2.4, $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} . Let T and S be synthesis operator and g-frame operator for $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$, respectively. Then U = T - K and

$$UU^* = (T - K)(T^* - K^*) = S\left(I + S^{-1}(-TK^* - KT^* + KK^*)\right).$$

Since K is compact operator, then $S^{-1}(-TK^* - KT^* + KK^*)$ is a compact operator and by Theorem 4.23 of [14] the operator $I + S^{-1}(-TK^* - KT^* + KK^*)$ has closed range. Composing this with S, we see that UU^* also has closed range. Hence \mathcal{R}_U is closed. So $\mathcal{R}_U = \overline{\text{span}}\{\Theta_i^*(\mathcal{H}_i)\}_{i \in I}$. Therefore the result follows from Proposition 2.6.

Corollary 3.9. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a *g*-frame for \mathcal{H} . Let J be a finite subset of I such that for each $j \in J$, dim $\mathcal{H}_j < \infty$. Then

$$\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I \setminus J\}$$

is a g-frame sequence.

Proof. Let $\{ \Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I \}$ be a sequence of operators such that $\Theta_i = 0$, if $i \in J$ and $\Theta_i = \Lambda_i$, if $i \notin J$. Then the operator

$$K: \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2} \longrightarrow \mathcal{H}, \quad K(\{f_i\}_{i\in I}) = \sum_{i\in I} (\Lambda_i^* - \Theta_i^*)f_i = \sum_{i\in J} \Lambda_i^* f_i$$

has finite dimensional range and hence is compact. Then by Theorem 3.10, $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I \setminus J\}$ is a g-frame sequence.

Theorem 3.10. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-frame for \mathcal{H} and let $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a family of operators. If

$$K: \mathcal{H} \longrightarrow \mathcal{H}, \quad Kf = \sum_{i \in I} (\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f)$$

is a well-defined and compact operator, then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame sequence.

Proof. Let S be the g-frame operator of $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$, then $S^\circ = S - K$ is a bounded operator. Therefore for each $f \in \mathcal{H}$

$$\sum_{i \in I} \|\Theta_i f\|^2 = \langle S^\circ f, f \rangle \le \|S^\circ\| \|f\|^2.$$

Then $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a *g*-Bessel sequence. Let

$$T: \left(\sum_{i\in I} \bigoplus \mathcal{H}_i\right)_{\ell_2} \longrightarrow \mathcal{H}, \quad T(\{f_i\}_{i\in I}) = \sum_{i\in I} \Theta_i^* f_i.$$

By Proposition 2.4, T is bounded and $S^{\circ} = TT^*$. Since $S^{-1}K$ is compact, so S° has closed range. Therefore $\mathcal{R}_{S^{\circ}} = \mathcal{R}_T = \overline{\operatorname{span}}\{\Theta_i^*(\mathcal{H}_i)\}_{i \in I}$. Hence the result follows from Proposition 2.7.

References

- M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005), 541–553.
- P. G. Cazassa and O. Christensen, Perturbation of operators and application to frame theory, J. Fourier Anal. Appl. 3 (1997), 543–557.
- 3. P. G. Casazza and Gitta Kutyniok, Frames of subspaces, Contemp. Math. 345 (2004), 87-113.
- 4. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002.
- O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33–47.

- 6. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
- M. Fornasier, Decompositions of Hilbert space: local construction of global frames, Proc. Int. Conf. Constrictive Function Theory, Varna 2002, B. Bojanov Ed., DARBA, Sofia, 2003, pp. 275–281.
- Jean-Pierre Gabardo and D. Han, Frames associated with measurable space, Adv. Comput. Math. 18 (2003), 127–147.
- D. Han and D. Larson, Frames, bases and group representation, Memoirs Amer. Math. Soc. 147 (2000).
- 11. H. Heuser, Functional Analysis, John Wiley, New York, 1982.
- 12. G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, Boston, 1995.
- A. Rahimi, A. Najati and Y. N. Dehghan, *Continuous frames in Hilbert spaces*, Methods Funct. Anal. Topology **12** (2006), no. 2, 170–182.
- 14. W. Rudin, Functional Analysis, McGraw Hill, New York, 1991.
- 15. Wenchang Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), 437–452.
- 16. Wenchang Sun, Stability of g-frames, J. Math. Anal. Appl. 326 (2007), 858-868.

FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MOHAGHEGH ARDABILI, ARDABIL, ISLAMIC REPUBLIC OF IRAN

E-mail address: a.nejati@@yahoo.com

FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF TABRIZ, TABRIZ, ISLAMIC REPUBLIC OF IRAN *E-mail address*: mhfaroughi@@yahoo.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARAGHEH, MARAGHEH, ISLAMIC REPUBLIC OF IRAN *E-mail address*: asgharrahimi@@yahoo.com

Received 21/06/2007