
Methods of Functional Analysis and Topology
Vol. 14 (2008), no. 3, pp. 271–286

G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES

ABBAS NAJATI, M. H. FAROUGHI, AND ASGHAR RAHIMI

Abstract. Wenchang Sun in his paper [Wenchang Sun, G-frames and g-Riesz bases,

J. Math. Anal. Appl. 322 (2006), 437–452] has introduced g-frames which are
generalized frames and include ordinary frames and many recent generalizations of
frames, e.g., bounded quasi-projectors and frames of subspaces. In this paper we
develop the g-frame theory for separable Hilbert spaces and give characterizations of
g-frames and we show that g-frames share many useful properties with frames. We
present a version of the Paley-Wiener Theorem for g-frames which is in spirit close
to results for frames, due to Ole Christensen.

1. Introduction

There are some generalizations of frames, for example bounded quasi-projectors [8]
and frames of subspaces [3]. The mean of g-frames has been presented by W. Sun in [15].
This is an extension of frames that include all of the previous extensions of frames.

Through this paper, H and K are Hilbert spaces and {Hi : i ∈ I} is a sequence of
Hilbert spaces, where I is a subset of Z. L(H,Hi) is the collection of all bounded linear
operators from H to Hi.

Note that for any sequence {Hi : i ∈ I}, we can assume that there exists a Hilbert
space K such that for all i ∈ I,Hi ⊆ K (for example K =

⊕

i∈I Hi).

Definition 1.1. We call a sequence {Λi ∈ L(H,Hi) : i ∈ I } a generalized frame, or
simply a g-frame, for H with respect to {Hi : i ∈ I} if there exist two positive constants
A and B such that

(1.1) A‖f‖2 ≤
∑

i∈I

‖Λif‖2 ≤ B‖f‖2, f ∈ H.

We call A and B the lower and upper g-frame bounds, respectively.
We call {Λi : i ∈ I} a tight g-frame if A = B and a Parseval g-frame if A = B = 1.
We call {Λi : i ∈ I} an exact g-frame if it ceases to be a g-frame whenever any of its

elements is removed.
We say simply a g-frame for H whenever the space sequence {Hi : i ∈ I} is clear.
We say also a g-frame for H with respect to K whenever Hi = K, for each i ∈ I.
We say {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame sequence, if it is a g-frame for

span{Λ∗
i (Hi)}i∈I .

We say {Λi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence with bound B, if we only have
the upper bound in (1.1).

Notation 1.2. For each sequence {Hi}i∈I, we define the space
(

∑

i∈I

⊕Hi

)

ℓ2
by

(1.2)
(

∑

i∈I

⊕

Hi

)

ℓ2
=

{

{fi}i∈I : fi ∈ Hi, i ∈ I and
∑

i∈I

‖fi‖2 < +∞
}
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with the inner product defined by

〈{fi}, {gi}〉 =
∑

i∈I

〈fi, gi〉.

It is clear that
(

∑

i∈I

⊕Hi

)

ℓ2
is a Hilbert space with pointwise operations.

2. Characterization of g-frames

In this section, we will try to characterize g-frames from the point of view of operator
theory. We are starting with the definition of a synthesis operator for a g-frame. For this
mean, we must show that the series appearing in the definition of a synthesis operator
converges unconditionally. So we need the next lemma.

Lemma 2.1. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-Bessel sequence for H with bound B.

Then for each sequence {fi}i∈I ∈
(

∑

i∈I

⊕Hi

)

ℓ2
, the series

∑

i∈I Λ∗
i (fi) converges

unconditionally.

Proof. Let J ⊆ I with |J | < ∞, then
∥

∥

∥

∑

i∈J

Λ∗
i (fi)

∥

∥

∥
= sup

‖g‖=1

∣

∣

∣
〈
∑

i∈J

Λ∗
i (fi), g〉

∣

∣

∣

≤
(

∑

i∈J

‖fi‖2
)

1

2

sup
‖g‖=1

(

∑

i∈J

‖Λig‖2
)

1

2 ≤
√

B
(

∑

i∈J

‖fi‖2
)

1

2

.

It follows that
∑

i∈I Λ∗
i (fi) is weakly unconditionally Cauchy and hence unconditionally

convergent in H (see [6], page 44, Theorems 6 and 8). �

Definition 2.2. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H. Then the synthesis
operator for {Λi ∈ L(H,Hi) : i ∈ I } is the operator

T :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H

defined by

T ({fi}i∈I) =
∑

i∈I

Λ∗
i (fi).

We call the adjoint T ∗ of the synthesis operator the analysis operator.

The following proposition will provide a concrete formula for the analysis operator.

Proposition 2.3. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H. Then the analysis

operator T ∗ : H −→
(

∑

i∈I

⊕Hi

)

ℓ2
is given by

T ∗(f) = {Λif}i∈I .

Proof. For all f ∈ H and {gi}i∈I ∈
(

∑

i∈I

⊕

Hi

)

ℓ2
we have

〈

T ∗f, {gi}i∈I

〉

=
〈

f, T {gi}i∈I

〉

=
〈

f,
∑

i∈I

Λ∗
i (gi)

〉

=
∑

i∈I

〈Λif, gi〉 =
〈

{Λif}i∈I , {gi}i∈I

〉

.

So that T ∗f = {Λif}i∈I . �

The following proposition characterizes g-Bessel sequences.
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Proposition 2.4. {Λi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence for H with bound B,
if and only if the operator

T :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H

defined by

T ({fi}i∈I) =
∑

i∈I

Λ∗
i (fi)

is a well-defined and bounded operator with ‖T ‖ ≤
√

B.

Proof. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-Bessel sequence for H with bound B. Then

by Lemma 2.1, T is well-defined and ‖T ‖ ≤
√

B.

Conversely, let T be a well-defined and bounded operator with ‖T ‖ ≤
√

B. Let J ⊆ I
with |J | < +∞, then for each f ∈ H,

∑

i∈J

‖Λif‖2 =
∑

i∈J

〈Λ∗
i Λif, f〉 =

〈

T {gi}i∈I , f
〉

≤ ‖T ‖‖{gi}i∈I‖‖f‖

where

gi :=

{

0 if i ∈ I \ J

Λif if i ∈ J
.

Hence
∑

i∈J

‖Λif‖2 ≤ ‖T ‖
(

∑

i∈J

‖Λif‖2
)

1

2 ‖f‖

and so
∑

i∈J

‖Λif‖2 ≤ ‖T ‖2‖f‖2.

Therefore
∑

i∈I

‖Λif‖2 ≤ ‖T ‖2‖f‖2.

It follows that {Λi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence for H with bound B. �

Definition 2.5. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H, the operator

S : H −→ H, S = TT ∗

is called the g-frame operator of {Λi ∈ L(H,Hi) : i ∈ I }.
For any f ∈ H we have

Sf =
∑

i∈I

Λ∗
i Λif

and

〈Sf, f〉 =
〈

∑

i∈I

Λ∗
i Λif, f

〉

=
∑

i∈I

〈Λif, Λif〉 =
∑

i∈I

‖Λif‖2.

Therefore

A〈f, f〉 ≤ 〈Sf, f〉 ≤ B〈f, f〉,
i.e.,

AI ≤ S ≤ BI.

Therefore S is a bounded, positive and invertible operator. In this case we have the
reconstruction formula

f =
∑

i∈I

Λ∗
i ΛiS

−1f, f ∈ H.

The well-known relation between a frame and the associated synthesis operator also
hold in g-frames.
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Proposition 2.6. A sequence {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H if and only if

T : {fi}i∈I →
∑

i∈I

Λ∗
i (fi)

is a well-defined and bounded mapping from
(

∑

i∈I

⊕Hi

)

ℓ2
onto H.

Proof. If {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H, then S = TT ∗ is invertible. So T
is onto. Conversely, let T be well-defined, bounded and onto. Then by Proposition 2.4,
{Λi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence for H. Therefore T ∗f = {Λif}i∈I for all

f ∈ H. Since T is onto, there exists an operator T † : H −→
(

∑

i∈I

⊕Hi

)

ℓ2
such that

TT † = IH. Hence (T †)∗T ∗ = IH. Then for all f ∈ H,

‖f‖2 ≤ ‖(T †)∗‖2‖T ∗f‖2 = ‖T †‖2‖T ∗f‖2 = ‖T †‖2
∑

i∈I

‖Λif‖2.

It follows that {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H with lower g-frame bound
‖T †‖−2 and upper g-frame bound ‖T ‖2. �

Proposition 2.7. A sequence {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H if and only if

S : f →
∑

i∈I

Λ∗
i Λif

is a well-defined and bounded mapping from H onto H.

Proof. If {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H, then S is the g-frame operator.
Therefore S is well-defined, bounded and onto. Conversely, let S be a well-defined,
bounded and onto operator. Since S is positive, (i.e., 〈Sf, f〉 ≥ 0 for all f ∈ H)

RS
⊥ = N(S). Then S is injective and therefore it is invertible. So 0 /∈ σ(S). Let

C := inf‖f‖=1〈Sf, f〉. By Proposition 70.8 in [11], C ∈ σ(S). Then C > 0. Hence for all
f ∈ H we have

∑

i∈I

‖Λif‖2 = 〈Sf, f〉 ≥ C‖f‖2

and
∑

i∈I

‖Λif‖2 = 〈Sf, f〉 ≤ ‖S‖‖f‖2.

Then {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H. �

Corollary 2.8. If {Λi ∈ L(H,Hi) : i ∈ I } be a family of operators, then T is well-
defined, bounded and onto if and only if S is well-defined, bounded and onto.

Similarly to g-frames, we can define g-complete, g-Riesz bases and g-orthonormal
bases.

Definition 2.9. (i) We say that {Λi ∈ L(H,Hi) : i ∈ I } is g-complete, if {f : Λif =
0, i ∈ I } = {0}.

(ii) We say that {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis for H, if it satisfies
the following

(2.1) 〈Λ∗
i gi, Λ

∗
jgj〉 = δi,j〈gi, gj〉, i, j ∈ I, gi ∈ Hi, gj ∈ Hj

(2.2)
∑

i∈I

‖Λif‖2 = ‖f‖2, f ∈ H.
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(iii) We say that {Λi ∈ L(H,Hi) : i ∈ I } is a g- Riesz basis for H, if it is g-complete
and there exist constants 0 < A ≤ B < ∞, such that for any finite subset J ⊆ I and
gi ∈ Hi, i ∈ J,

(2.3) A
∑

i∈J

‖gi‖2 ≤
∥

∥

∥

∑

i∈J

Λ∗
i gi

∥

∥

∥

2

≤ B
∑

i∈J

‖gi‖2.

Proposition 2.10. If {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H, then span{Λ∗
i (Hi)}i∈I =

H.

Proof. Let f ∈ H and f ⊥ span{Λ∗
i (Hi)}i∈I . Then for all i ∈ I and g ∈ Hi,

〈Λif, g〉 = 〈f, Λ∗
i g〉 = 0.

Therefore Λif = 0, for all i ∈ I. Since {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H, then
f = 0. �

The following proposition gives an equivalent condition for g-completeness of {Λi ∈
L(H,Hi) : i ∈ I }.

Proposition 2.11. {Λi ∈ L(H,Hi) : i ∈ I } is g-complete if and only if

span{Λ∗
i (Hi)}i∈I = H.

Proof. Let {Λi ∈ L(H,Hi) : i ∈ I } be g-complete. Since span{Λ∗
i (Hi)}i∈I ⊆ H, it is

enough to prove that if f ∈ H and f ⊥ span{Λ∗
i (Hi)}i∈I , then f = 0. Let f ∈ H and

f ⊥ span{Λ∗
i (Hi)}i∈I . Since for any i ∈ I, f ⊥ Λ∗

i Λi(f), then for all i ∈ I,

‖Λif‖2 = 〈f, Λ∗
i Λi(f)〉 = 0.

Therefore f = 0, by g-completeness of {Λi ∈ L(H,Hi) : i ∈ I }. Conversely, let
span{Λ∗

i (Hi)}i∈I = H. Let f ∈ H and suppose that Λif = 0 for all i ∈ I. Then for
each g ∈ Hi

〈Λif, g〉 = 〈f, Λ∗
i g〉 = 0,

hence f ⊥ span{Λ∗
i (Hi)}i∈I . Therefore f ⊥ span{Λ∗

i (Hi)}i∈I = H. It shows that f = 0.
Hence {Λi ∈ L(H,Hi) : i ∈ I } is g-complete. �

The following proposition shows that we can remove the second equality in 2.9.

Proposition 2.12. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H and suppose that
(2.1) holds. Then {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthogonal basis for H.

Proof. Let S be the g-frame operator of {Λi} and let K = { f ∈ H : Sf = f }. It is clear
that K is a nonempty closed subspace of H. We show that K⊥ = {0}. Let f ∈ H and
j ∈ I, then Λ∗

jΛjf ∈ K since for i 6= j we have

Λ∗
i ΛiΛ

∗
jΛjf = 0,

Λ∗
jΛjΛ

∗
jΛjf = Λ∗

jΛjf

so
∑

i∈I

Λ∗
i ΛiΛ

∗
jΛjf = Λ∗

jΛjf.

Hence for f ∈ K⊥ and g ∈ K we have

〈Λ∗
jΛjf, g〉 = 〈f, Λ∗

jΛjg〉 = 0, j ∈ I.

Therefore

Λ∗
i Λif = 0, i ∈ I
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and so ‖Λif‖ = 0, for each i ∈ I. By definition of g-frame we conclude f = 0 and
therefore H = K. So S = I and hence for every f ∈ H

∑

i∈I

‖Λif‖2 = 〈Sf, f〉 = 〈f, f〉 = ‖f‖2.

�

Corollary 2.13. {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis for H if and only if
{Λi} is a g-frame and for all i, j ∈ I and gi ∈ Hi, gj ∈ Hj

〈Λ∗
i gi, Λ

∗
i gj〉 = δij〈gi, gj〉.

Proposition 2.14. {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis for H if and
only if

(1) Λ∗
i is isometric for all i ∈ I;

(2)
⊕

i∈I Λ∗
i (Hi) = H.

Proof. First assume that {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis for H. Then
for each i ∈ I and g ∈ Hi, we obtain from (2.1)

〈Λ∗
i g, Λ∗

i g〉 = δi,i〈g, g〉 = 〈g, g〉.
Then Λ∗

i is isometric for all i ∈ I. Therefor Λ∗
i (Hi) is a closed subspace of H, for all i ∈ I.

From (2.2), we obtain

〈f, f〉 =
∑

i∈I

〈Λif, Λif〉 =
∑

i∈I

〈Λ∗
i Λif, f〉 =

〈

∑

i∈I

Λ∗
i Λif, f

〉

, f ∈ H.

Hence

f =
∑

i∈I

Λ∗
i Λif, f ∈ H.

By letting gi = Λif, we have f =
∑

i∈I Λ∗
i gi and

∑

i∈I

‖Λ∗
i gi‖2 =

∑

i∈I

‖gi‖2 =
∑

i∈I

‖Λif‖2 = ‖f‖2.

Then H =
⊕

i∈I Λ∗
i (Hi). Conversely, if (1) and (2) are satisfied, then it is clear that (2.1)

holds, since for all i 6= j, Λ∗
iHi ⊥ Λ∗

jHj and Λ∗
i is isometric for all i ∈ I. Let f ∈ H, then

we obtain from (2),

f =
∑

i∈I

Λ∗
i gi, gi ∈ Hi, i ∈ I,

and

‖f‖2 =
∑

i∈I

‖Λ∗
i gi‖2 =

∑

i∈I

‖gi‖2.

Let m ∈ I, then for each h ∈ H, we have

〈Λmf, h〉 =
〈

∑

i∈I

ΛmΛ∗
i gi, h

〉

=
∑

i∈I

〈Λ∗
i gi, Λ

∗
mh〉 = 〈Λ∗

mgm, Λ∗
mh〉 = 〈gm, h〉.

Hence gm = Λmf, for all m ∈ I. Therefore f =
∑

i∈I Λ∗
i Λif, for all f ∈ H. It follows

that

‖f‖2 =
∑

i∈I

‖Λif‖2, f ∈ H.

�

Corollary 2.15. Every g-orthonormal basis for H is a g-Riesz basis for H with bounds
A = B = 1.
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In the following proposition we show that g-frames for H with respect to {Hi : i ∈ I}
are characterized as the families {ΘiV

∗}i∈I , where {Θi ∈ L(H,Hi) : i ∈ I } is a g-
orthonormal basis for H with respect to {Hi : i ∈ I} and V : H → H is bounded and
onto.

Proposition 2.16. Let {Θi ∈ L(H,Hi) : i ∈ I } be a g-orthonormal basis for H with
respect to {Hi : i ∈ I} and {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with respect
to {Hi : i ∈ I}. Then there is a bounded and onto operator V : H −→ H such that
Λi = ΘiV

∗, for all i ∈ I.

Proof. Let

V : H −→ H, V f =
∑

i∈I

Λ∗
i Θif,

then V is well defined, since for any finite J ⊆ I and f ∈ H,

∥

∥

∥

∑

i∈J

Λ∗
i Θif

∥

∥

∥
= sup

‖h‖=1

∣

∣

∣

〈

∑

i∈J

Λ∗
i Θif, h

〉
∣

∣

∣
≤

√
B

(

∑

i∈J

‖Θif‖2
)

1

2

,

where B is an upper g-frame bound for {Λi ∈ L(H,Hi) : i ∈ I }. Since for all f ∈ H,
∑

i∈I ‖Θif‖2 = ‖f‖2, it follows that
∑

i∈I Λ∗
i Θif is weakly unconditionally Cauchy and

hence unconditionally convergent in H (see[6], Page 44, Theorems 6 and 8). Also it is

clear that ‖V ‖ ≤
√

B. Since {Θi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis, then
ΘiΘ

∗
jg = δijg and

V Θ∗
jg =

∑

i∈I

Λ∗
i ΘiΘ

∗
jg = Λ∗

jΘjΘ
∗
jg = Λ∗

jg,

for all g ∈ Hj , j ∈ I. Therefore

ΘjV
∗ = Λj , j ∈ I.

Now we show that V is onto. Let TΛ and TΘ be the synthesis operators for {Λi ∈
L(H,Hi) : i ∈ I } and {Θi ∈ L(H,Hi) : i ∈ I } respectively. Let f ∈ H. Then

there exists {gi}i∈I ∈
(

∑

i∈I

⊕Hi

)

ℓ2
such that

∑

i∈I Λ∗
i gi = f , since TΛ is onto. Let

g = TΘ({gi}i∈I). Then

V g =
∑

i∈I

V Θ∗
i gi =

∑

i∈I

Λ∗
i gi = f.

Therefore V is onto. �

Corollary 2.17. If {Λi ∈ L(H,Hi) : i ∈ I } is a Parseval g-frame for H, then V is
co-isometric.

Corollary 2.18. If {Λi ∈ L(H,Hi) : i ∈ I } is a g-Riesz basis for H, then V is invertible.

Proof. Let f ∈ kerV . Then T ∗
Θf = 0, since V = TΛT ∗

Θ and TΛ is one to one. Therefore
‖f‖2 = ‖T ∗

Θf‖2 = 0, so f = 0. �

Corollary 2.19. If {Λi ∈ L(H,Hi) : i ∈ I } is a g-orthonormal basis for H, then V is
unitary.

Proof. By Corollaries 2.15 and 2.18, V is invertible. For each f ∈ H we have

‖f‖2 =
∑

i∈I

‖Λif‖2 =
∑

i∈I

‖ΘiV
∗f‖2 = ‖V ∗f‖2.

Therefore V V ∗ = IH. It follows that V is unitary. �
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Han and Larson in [10] have proved that for any Parseval frame {fi}i∈I for a Hilbert
space H there is a Hilbert space H ⊆ K and an orthonormal basis {ei}i∈I for K such
that Pei = fi, for all i ∈ I, where P is the orthogonal projection of K onto H. Asgari
and Khosravi in [1] have extended this result for frame of subspaces and the following
theorem is its extension to g-frames.

Theorem 2.20. Let {Λi ∈ L(H,Hi) : i ∈ I } be a Parseval g-frame for H. Then there
exists a Hilbert space K ⊇ H and an orthonormal basis of subspaces {Ki}i∈I for K such
that for each i ∈ I, P (Ki) = Λ∗

i (Hi), where P is the orthogonal projection from K onto H.

Proof. For each i ∈ I, let {eij}j∈Ji
be an orthonormal basis for Hi and for each i ∈ I, j ∈

Ji, let Eij be an element of
(

∑

i∈I

⊕

Hi

)

ℓ2
defined by

(Eij)k =

{

eij if i = k

0 if i 6= k
.

It is clear that {Eij}i∈I,j∈Ji
is an orthonormal basis for

(

∑

i∈I

⊕Hi

)

ℓ2
. For each i ∈ I,

let Ki = span{Eij}j∈Ji
, then

⊕

i∈I

Ki =
(

∑

i∈I

⊕

Hi

)

ℓ2
.

Let K =
⊕

i∈I Ki and let Θ be the analysis operator of {Λi ∈ L(H,Hi) : i ∈ I }. Since
{Λi ∈ L(H,Hi) : i ∈ I } is a Parseval g-frame, then Θ is an isometry. So we can embed
H into K by identifying H with Θ(H). Let P : K −→ Θ(H) be the orthogonal projection.
Then for each i ∈ I, j ∈ Ji and f ∈ H we have

〈Θf, P (Eij)〉 = 〈Θf, Eij〉 =
〈

{Λif}i∈I , Eij

〉

= 〈Λif, eij〉 = 〈f, Λ∗
i eij〉 = 〈Θf, ΘΛ∗

i eij〉.

Thus P (Eij)− ΘΛ∗
i eij ⊥ Θ(H). Since P (Eij)− ΘΛ∗

i eij ∈ Θ(H), then P (Eij) = ΘΛ∗
i eij .

Thus P (Ki) = ΘΛ∗
i (Hi). �

The next result will turn out to be useful for finding a lower bound for
∑

i∈I ‖Λif‖2.

Proposition 2.21. Let {Λi ∈ L(H,Hi) : i ∈ I } and {Θi ∈ L(H,Hi) : i ∈ I } be
two g-Bessel sequences for H with bounds A and B respectively and let TΛ and TΘ be
their analysis operators such that TΘT ∗

Λ = IH. Then both {Λi ∈ L(H,Hi) : i ∈ I } and
{Θi ∈ L(H,Hi) : i ∈ I } are g-frames.

Proof. For any f ∈ H we have

‖f‖4 = 〈f, f〉2 = 〈T ∗
Λf, T ∗

Θf〉2 ≤ ‖T ∗
Λf‖2‖T ∗

Θf‖2 = ‖{Λif}i∈I‖2‖{Θif}i∈I‖2

=
(

∑

i∈I

‖Λif‖2
)(

∑

i∈I

‖Θif‖2
)

≤
(

∑

i∈I

‖Λif‖2
)

B‖f‖2.

So 1
B
‖f‖2 ≤ ∑

i∈I ‖Λif‖2. Therefore {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame. Similarly
{Θi ∈ L(H,Hi) : i ∈ I } is a g-frame. �

The next proposition shows that with a given g-frame, we can produce another g-frame
by using its g-frame operator.

Proposition 2.22. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with frame operator
S and frame bounds A, B. Then for each α ∈ R, {ΛiS

α ∈ L(H,Hi) : i ∈ I } is a g-frame
for H and its frame operator is S2α+1.
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Proof. Since {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H, then

A〈S2αf, f〉 = A‖Sαf‖2 ≤
∑

i

‖ΛiS
αf‖2 ≤ B‖Sαf‖2 = B〈S2αf, f〉.

For α ≥ 0,

A‖Sαf‖2 = A〈S2αf, f〉 ≥ AA2α〈f, f〉 = A2α+1‖f‖2,

B‖Sαf‖2 = B〈S2αf, f〉 ≤ BB2α〈f, f〉 = B2α+1‖f‖2.

Therefore

A2α+1‖f‖2 ≤
∑

i

‖ΛiS
αf‖2 ≤ B2α+1‖f‖2.

Similarly for α < 0,

B2α+1‖f‖2 ≤
∑

i

‖ΛiS
αf‖2 ≤ A2α+1‖f‖2.

Now, let S⋄ be the frame operator of {ΛiS
α ∈ L(H,Hi) : i ∈ I }, then for any f ∈ H,

S⋄(f) =
∑

i

(ΛiS
α)∗(ΛiS

α)f =
∑

i

SαΛ∗
i ΛiS

αf

= Sα
∑

i

Λ∗
i ΛiS

αf = SαSSαf = S2α+1f.

So S⋄ = S2α+1. �

Corollary 2.23. By assumptions of Proposition 2.22, {ΛiS
− 1

2 ∈ L(H,Hi) : i ∈ I } is a
Parseval g-frame.

Proposition 2.24. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with frame operator
S and U : H −→ K be a bounded and onto operator. Then {ΛiU

∗ ∈ L(K,Hi) : i ∈ I } is
a g-frame for K and its frame operator is USU∗.

Proof. Let A, B be the frame bounds for {Λi ∈ L(H,Hi) : i ∈ I }. Since U is bounded
and onto, there exists bounded operator U † : K −→ H such that UU † = IK. Thus
(U †)∗U∗ = IK. Hence for any f ∈ K, we have

A‖(U †)∗‖−2‖f‖2 ≤ A‖U∗f‖2 ≤
∑

i∈I

‖ΛiU
∗f‖2 ≤ B‖U∗f‖2 ≤ B‖U∗‖2‖f‖2.

Therefore {ΛiU
∗ ∈ L(K,Hi) : i ∈ I } is a g-frame for K with frame bounds A‖U †‖−2

and B‖U‖2. Now, let SU be the frame operator for{ΛiU
∗ ∈ L(K,Hi) : i ∈ I }, then for

each f ∈ K,

SUf =
∑

i∈I

(ΛiU
∗)∗(ΛiU

∗)f = U
∑

i∈I

Λ∗
i ΛiU

∗f = USU∗f.

Hence SU = USU∗. �

Corollary 2.25. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H and let U : H −→ K
be a bounded operator with closed range. Then {ΛiU

∗ ∈ L(K,Hi) : i ∈ I } is a g-frame
for RU .

Corollary 2.26. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H and let U : H −→ K
be a bounded and invertible operator. Then {ΛiU

−1 ∈ L(K,Hi) : i ∈ I } is a g-frame
for K.

Corollary 2.27. Every g-Riesz basis for H is a g-frame for H.
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3. Perturbation of g-frames

Perturbation of frames has been discussed in [2]. However there are similar theorems
about perturbation of frames for measurable spaces (see [9], [13]). Stability of g-frames
and their duals has been investigated by W. Sun [16]. In this manuscript we give other
perturbations of g-frames. At first we need the following lemma which is proved in [2].

Lemma 3.1. Let U be a linear operator on a Banach space X and assume that there
exist λ1, λ2 ∈ [0, 1) such that

‖x − Ux‖ ≤ λ1‖x‖ + λ2‖Ux‖
for all x ∈ X. Then U is bounded and invertible. Moreover

1 − λ1

1 + λ2

‖x‖ ≤ ‖Ux‖ ≤ 1 + λ1

1 − λ2

‖x‖

and
1 − λ2

1 + λ1

‖x‖ ≤ ‖U−1x‖ ≤ 1 + λ2

1 − λ1

‖x‖
for all x ∈ X.

Theorem 3.2. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with bounds A, B and
{Θi ∈ L(H,Hi) : i ∈ I } be a sequence of operators such that for any finite subset J ⊆ I
and for each f ∈ H,

(3.1)

∥

∥

∥

∑

i∈J

(Λ∗
i Λif − Θ∗

i Θif)
∥

∥

∥

≤ λ
∥

∥

∥

∑

i∈J

Λ∗
i Λif

∥

∥

∥
+ µ

∥

∥

∥

∑

i∈J

Θ∗
i Θif

∥

∥

∥
+ γ

(

∑

i∈J

‖Λif‖2

)
1

2

,

where 0 ≤ max{λ + γ√
A

, µ} < 1. Then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame for H with

frame bounds

(3.2) A
1 − (λ + γ√

A
)

1 + µ
and B

1 + λ + γ√
B

1 − µ
.

Proof. Assume that J ⊆ I and |J | < +∞. For each f ∈ H, we have
∥

∥

∥

∑

i∈J

Θ∗
i Θif

∥

∥

∥
≤

∥

∥

∥

∑

i∈J

(Λ∗
i Λif − Θ∗

i Θif)
∥

∥

∥
+

∥

∥

∥

∑

i∈J

Λ∗
i Λif

∥

∥

∥

≤ (1 + λ)
∥

∥

∥

∑

i∈J

Λ∗
i Λif

∥

∥

∥
+ µ

∥

∥

∥

∑

i∈J

Θ∗
i Θif

∥

∥

∥
+ γ

(

∑

i∈J

‖Λif‖2

)
1

2

.

Then
∥

∥

∥

∑

i∈J

Θ∗
i Θif

∥

∥

∥
≤ 1 + λ

1 − µ

∥

∥

∥

∑

i∈J

Λ∗
i Λif

∥

∥

∥
+

γ

1 − µ

(

∑

i∈J

‖Λif‖2

)
1

2

.

Also
∥

∥

∥

∑

i∈J

Λ∗
i Λif

∥

∥

∥
= sup

‖g‖=1

∣

∣

∣
〈
∑

i∈J

Λ∗
i Λif, g〉

∣

∣

∣
= sup

‖g‖=1

∣

∣

∣
〈
∑

i∈J

Λif, Λig〉
∣

∣

∣

≤
(

∑

i∈J

‖Λif‖2
)

1

2

sup
‖g‖=1

(

∑

i∈J

‖Λig‖2
)

1

2 ≤
(

∑

i∈J

‖Λif‖2
)

1

2
√

B ≤ B‖f‖.

Therefore for all f ∈ H
∥

∥

∥

∑

i∈J

Θ∗
i Θif

∥

∥

∥
≤ (

1 + λ

1 − µ

√
B +

γ

1 − µ
)

(

∑

i∈J

‖Λif‖2

)
1

2

,
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so
∑

i∈I Θ∗
i Θif is unconditionally convergent. Let

G : H −→ H, G(f) =
∑

i∈I

Θ∗
i Θif, f ∈ H.

Then G is well-defined and bounded operator with

‖G‖ ≤ 1 + λ

1 − µ
B +

γ
√

B

1 − µ

and for each f ∈ H, we have
∑

i∈I

‖Θif‖2 = 〈Gf, f〉 ≤ ‖G‖‖f‖2.

It follows that {Θi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence for H.
Let S be the g-frame operator of {Λi ∈ L(H,Hi) : i ∈ I } then we obtain from (3.1)

‖Sf − Gf‖ ≤ λ‖Sf‖ + µ‖Gf‖ + γ

(

∑

i∈I

‖Λif‖2

)
1

2

, f ∈ H.

Therefore

‖f − GS−1f‖ ≤ λ‖f‖ + µ‖GS−1f‖ + γ

(

∑

i∈I

‖ΛiS
−1f‖2

)
1

2

≤ (λ +
γ√
A

)‖f‖ + µ‖GS−1f‖,

since 0 ≤ max{λ + γ√
A

, µ} < 1, then by Lemma 3.1, GS−1 and consequently G is

invertible and

‖G−1‖ ≤ ‖S−1‖‖SG−1‖ ≤ 1 + µ

A
(

1 − (λ + γ√
A

)
) .

Hence by Proposition 2.7, {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame for H. It is clear that the
optimal lower bound and optimal upper bound of {Θi ∈ L(H,Hi) : i ∈ I } are ‖G−1‖−1

and ‖G‖, respectively. Then we can obtain the required frame bounds in (3.2). �

Corollary 3.3. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with bounds A, B and
let {Θi ∈ L(H,Hi) : i ∈ I } be a family of operators. If there exists a constant 0 < R < A
such that

∑

i∈I

‖Λ∗
i Λif − Θ∗

i Θif‖ ≤ R‖f‖

for all f ∈ H, then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame with g-frame bounds A−R and

min
{

1 + R
√

B
A

, R + B
}

.

Proof. It is clear that
∑

i∈I Θ∗
i Θif is converges for each f ∈ H. So we have

∥

∥

∥

∑

i∈I

Λ∗
i Λif − Θ∗

i Θif
∥

∥

∥
≤ R‖f‖ ≤ R√

A

(

∑

i∈I

‖Λif‖2
)

1

2

, f ∈ H.

By letting, λ = µ = 0 and γ = R/
√

A in Theorem 3.2, {Θi ∈ L(H,Hi) : i ∈ I } will be

a g-frame for H with lower bound A − R and upper bound 1 + R
√

B
A

. Also we have
∥

∥

∥

∑

i∈I

Θ∗
i Θif

∥

∥

∥
≤ R‖f‖ +

∥

∥

∥

∑

i∈I

Λ∗
i Λif

∥

∥

∥
≤ (R + B)‖f‖

for all f ∈ H. Hence the upper g-frame bound for {Θi ∈ L(H,Hi) : i ∈ I } is

min
{

1 + R

√

B

A
, R + B

}

. �
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Corollary 3.4. Let {fi}i∈I be a frame for H with frame bounds A, B and let {gi}i∈I be a
sequence of H. Suppose that there exist constants λ, µ and γ with 0 ≤ max{µ, λ+ γ√

A
} < 1

such that for each f ∈ H and every finite subset J ⊆ I,

(3.3)

∥

∥

∥

∑

i∈J

〈f, fi〉fi − 〈f, gi〉gi

∥

∥

∥

≤ λ
∥

∥

∥

∑

i∈J

〈f, fi〉fi

∥

∥

∥
+ µ

∥

∥

∥

∑

i∈J

〈f, gi〉gi

∥

∥

∥
+ γ

(

∑

i∈J

|〈f, fi〉|
)

1

2

.

Then {gi}i∈I is a frame for H with frame bonds

A
1 − (λ + γ√

A
)

1 + µ
and B

1 + λ + γ√
B

1 − µ
.

Proof. For each i ∈ I, let

Λi : H −→ C, Λi(f) = 〈f, fi〉
and

Θi : H −→ C, Θi(f) = 〈f, gi〉.
Then {Λi ∈ L(H, C) : i ∈ I } is a g-frame for H and (3.3) means (3.1). Therefore the
result follows from Theorem 3.2. �

The following Theorem is another version of perturbation of g-frames.

Theorem 3.5. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with bounds A, B and let
{Θi ∈ L(H,Hi) : i ∈ I } be a family of operators such that for any J ⊆ I with |J | < +∞,

(3.4)

∥

∥

∥

∑

i∈J

(Λ∗
i fi − Θ∗

i fi)
∥

∥

∥

≤ λ
∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥
+ µ

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥
+ γ

(

∑

i∈J

‖fi‖2
)

1

2

, (fi ∈ Hi)

where 0 ≤ max{λ + γ
A

, µ} < 1. Then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame for H with
g-frame bounds

A
(1 − (λ + γ√

A
)

1 + µ

)2

and B
(1 + λ + γ√

B

1 − µ

)2

.

Proof. It is clear that if J ⊆ I with |J | < +∞, then for all i ∈ J and fi ∈ Hi, we have
∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥
≤

∥

∥

∥

∑

i∈J

(Λ∗
i fi − Θ∗

i fi)
∥

∥

∥
+

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

≤ (λ + 1)
∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥
+ µ

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥
+ γ

(

∑

i∈J

‖fi‖2
)

1

2

.

So we have
∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥
≤ λ + 1

1 − µ

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥
+

γ

1 − µ

(

∑

i∈J

‖fi‖2
)

1

2

.

Since
∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥
= sup

‖g‖=1

∣

∣

∣

〈

∑

i∈J

Λ∗
i fi, g

〉
∣

∣

∣

≤
(

∑

i∈J

‖fi‖2
)

1

2

sup
‖g‖=1

(

∑

i∈J

‖Λig‖2
)

1

2 ≤
√

B
(

∑

i∈J

‖fi‖2)
1

2 ,
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then

(3.5)
∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥
≤

(λ + 1

1 − µ

√
B +

γ

1 − µ

)(

∑

i∈J

‖fi‖2
)

1

2

.

Let

T :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H, T

(

{fi}i∈I

)

=
∑

i∈I

Θ∗
i fi.

By (3.5), T is well-defined and bounded with

‖T ‖ ≤ λ + 1

1 − µ

√
B +

γ

1 − µ
.

Then by Proposition 2.4, {Θi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence for H and

T ∗ : H −→
(

∑

i∈I

⊕

Hi

)

ℓ2
, T ∗(f) = {Θif}i∈I .

Let U and S be the synthesis operator and g-frame operator for {Λi ∈ L(H,Hi) : i ∈ I },
respectively. Let G = TU∗S−1. Then we have from (3.4)

∥

∥

∥

∑

i∈I

(Λ∗
i ΛiS

−1f − Θ∗
i ΛiS

−1f)
∥

∥

∥

≤ λ
∥

∥

∥

∑

i∈I

Λ∗
i ΛiS

−1f
∥

∥

∥
+ µ

∥

∥

∥

∑

i∈I

Θ∗
i ΛiS

−1f
∥

∥

∥
+ γ

(

∑

i∈I

‖ΛiS
−1f‖2

)
1

2

, f ∈ H.

Since for all f ∈ H, f =
∑

i∈I Λ∗
i ΛiS

−1f , so we have

‖f − Gf‖ ≤ λ‖f‖ + µ‖Gf‖ + γ
(

∑

i∈I

‖ΛiS
−1f‖2

)
1

2

≤ λ‖f‖ + µ‖Gf‖ +
γ√
A
‖f‖ ≤ (λ +

γ√
A

)‖f‖ + µ‖Gf‖.

Since 0 ≤ max{λ + γ
A

, µ} < 1, by Lemma 3.1, G = TU∗S−1 and consequently TU∗ is
invertible and

‖G−1‖ ≤ 1 + µ

1 − (λ + γ√
A

)
.

Letf ∈ H, then f = GG−1f =
∑

i∈I Θ∗
i ΛiS

−1G−1f. Hence for each f ∈ H, we have

‖f‖4 = |〈f, f〉|2 =
∣

∣

∣

〈

∑

i∈I

Θ∗
i ΛiS

−1G−1f, f
〉
∣

∣

∣

2

≤
∑

i∈I

‖ΛiS
−1G−1f‖2

∑

i∈I

‖Θif‖2

≤ 1

A
‖G−1f‖2

∑

i∈I

‖Θif‖2 ≤ 1

A

( 1 + µ

1 − (λ + γ√
A

)

)2

‖f‖2
∑

i∈I

‖Θif‖2.

Therefore
∑

i∈I

‖Θif‖2 ≥ A
(1 − (λ + γ√

A
)

1 + µ

)2

‖f‖2, f ∈ H.

Then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame for H with the required g-frame bounds. �

The following corollary has been proved in [2].

Corollary 3.6. Let {fi}i∈I be a frame for H with bounds A, B. Let {gi}i∈I be a sequence
in H and assume that there exist non-negative constants λ, µ and γ such that

max

{

µ, λ +
γ√
A

}

< 1
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and

(3.6)
∥

∥

∥

∑

i

cifi − cigi

∥

∥

∥
≤ λ

∥

∥

∥

∑

i

cifi

∥

∥

∥
+ µ

∥

∥

∥

∑

i

cigi

∥

∥

∥
+ γ

(

∑

i

|ci|2
)

1

2

for all finite scalar sequences {ci}i. Then {gi}i∈I is a frame for H with frame bounds

A
(1 − (λ + γ√

A
)

1 + µ

)2

and B
(1 + λ + γ√

B

1 − µ

)2

.

Proof. For each i ∈ I, let

Λi : H −→ C, Λi(f) = 〈f, fi〉

and

Θi : H −→ C, Θi(f) = 〈f, gi〉.
Then {Λi ∈ L(H, C) : i ∈ I } is a g-frame for H and (3.6) means (3.4). Therefore the
result follows from Theorem 3.5. �

Proposition 3.7. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with bounds A, B
and let {Θi ∈ L(H,Hi) : i ∈ I } be a family of operators. If there exists a 0 < R < A
such that

∑

i∈I

‖Λif − Θif‖2 ≤ R‖f‖2

for all f ∈ H. Then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame for H with bounds (
√

A−
√

R)2

and (
√

B +
√

R)2.

Proof. By the triangle inequality in
(

∑

i∈I

⊕Hi

)

ℓ2
, we have

∥

∥

∥
{Θif}i∈I

∥

∥

∥

ℓ2
≤

∥

∥

∥
{Θif − Λif}i∈I

∥

∥

∥

ℓ2
+

∥

∥

∥
{Λif}i∈I

∥

∥

∥

ℓ2
, f ∈ H

therefore
∑

i∈I

‖Θif‖2 ≤ (
√

B +
√

R)2‖f‖2, f ∈ H.

Also for each f ∈ H
∥

∥

∥
{Θif}i∈I

∥

∥

∥

ℓ2
≥

∥

∥

∥
{Λif}i∈I

∥

∥

∥

ℓ2
−

∥

∥

∥
{Θif − Λif}i∈I

∥

∥

∥

ℓ2

thus
∑

i∈I

‖Θif‖2 ≥ (
√

A −
√

R)2‖f‖2, f ∈ H.

�

The following theorem is a generalization of a result in [5].

Theorem 3.8. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H with respect to {Hi : i ∈
I} and {Θi ∈ L(H,Hi) : i ∈ I } be a family of operators. If

K :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H, K

(

{fi}i∈I

)

=
∑

i∈I

(Λ∗
i − Θ∗

i )fi

is a well-defined and compact operator, then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame
sequence.
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Proof. Since {Λi ∈ L(H,Hi) : i ∈ I } is a g-frame for H and the perturbation operator
K is bounded, then the synthesis g-frame operator U for {Θi ∈ L(H,Hi) : i ∈ I } is
well-defined and bounded. Therefore by Proposition 2.4, {Θi ∈ L(H,Hi) : i ∈ I } is a
g-Bessel sequence for H. Let T and S be synthesis operator and g-frame operator for
{Λi ∈ L(H,Hi) : i ∈ I }, respectively. Then U = T − K and

UU∗ = (T − K)(T ∗ − K∗) = S
(

I + S−1(−TK∗ − KT ∗ + KK∗)
)

.

Since K is compact operator, then S−1(−TK∗−KT ∗+KK∗) is a compact operator and
by Theorem 4.23 of [14] the operator I + S−1(−TK∗ − KT ∗ + KK∗) has closed range.
Composing this with S, we see that UU∗ also has closed range. Hence RU is closed. So
RU = span{Θ∗

i (Hi)}i∈I . Therefore the result follows from Proposition 2.6. �

Corollary 3.9. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H. Let J be a finite subset
of I such that for each j ∈ J , dimHj < ∞. Then

{Λi ∈ L(H,Hi) : i ∈ I \ J }
is a g-frame sequence.

Proof. Let {Θi ∈ L(H,Hi) : i ∈ I } be a sequence of operators such that Θi = 0, if i ∈ J
and Θi = Λi, if i 6∈ J . Then the operator

K :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H, K({fi}i∈I) =

∑

i∈I

(Λ∗
i − Θ∗

i )fi =
∑

i∈J

Λ∗
i fi

has finite dimensional range and hence is compact. Then by Theorem 3.10, {Λi ∈
L(H,Hi) : i ∈ I \ J } is a g-frame sequence. �

Theorem 3.10. Let {Λi ∈ L(H,Hi) : i ∈ I } be a g-frame for H and let {Θi ∈
L(H,Hi) : i ∈ I } be a family of operators. If

K : H −→ H, Kf =
∑

i∈I

(Λ∗
i Λif − Θ∗

i Θif)

is a well-defined and compact operator, then {Θi ∈ L(H,Hi) : i ∈ I } is a g-frame
sequence.

Proof. Let S be the g-frame operator of {Λi ∈ L(H,Hi) : i ∈ I }, then S◦ = S − K is a
bounded operator. Therefore for each f ∈ H

∑

i∈I

‖Θif‖2 = 〈S◦f, f〉 ≤ ‖S◦‖‖f‖2.

Then {Θi ∈ L(H,Hi) : i ∈ I } is a g-Bessel sequence. Let

T :
(

∑

i∈I

⊕

Hi

)

ℓ2
−→ H, T ({fi}i∈I) =

∑

i∈I

Θ∗
i fi.

By Proposition 2.4, T is bounded and S◦ = TT ∗. Since S−1K is compact, so S◦ has
closed range. Therefore RS◦ = RT = span{Θ∗

i (Hi)}i∈I . Hence the result follows from
Proposition 2.7. �
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