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G-FRAMES AND STABILITY OF G-FRAMES IN HILBERT SPACES

ABBAS NAJATI, M. H. FAROUGHI, AND ASGHAR RAHIMI

ABSTRACT. Wenchang Sun in his paper [Wenchang Sun, G-frames and g-Riesz bases,
J. Math. Anal. Appl. 322 (2006), 437-452] has introduced g-frames which are
generalized frames and include ordinary frames and many recent generalizations of
frames, e.g., bounded quasi-projectors and frames of subspaces. In this paper we
develop the g-frame theory for separable Hilbert spaces and give characterizations of
g-frames and we show that g-frames share many useful properties with frames. We
present a version of the Paley-Wiener Theorem for g-frames which is in spirit close
to results for frames, due to Ole Christensen.

1. INTRODUCTION

There are some generalizations of frames, for example bounded quasi-projectors [8]
and frames of subspaces [3]. The mean of g-frames has been presented by W. Sun in [15].
This is an extension of frames that include all of the previous extensions of frames.

Through this paper, H and K are Hilbert spaces and { H; : ¢ € I} is a sequence of
Hilbert spaces, where I is a subset of Z. L(H,H,;) is the collection of all bounded linear
operators from H to H;.

Note that for any sequence { H; : ¢ € I}, we can assume that there exists a Hilbert
space KC such that for all i € I,’H; C K (for example K = @,.; H).

Definition 1.1. We call a sequence {A; € L(H,H;) : i € I} a generalized frame, or
simply a g-frame, for H with respect to {H; : ¢ € I'} if there exist two positive constants
A and B such that

(1.1) ANFIE < SIASIR < BIFIE, fen.
iel

We call A and B the lower and upper g-frame bounds, respectively.

We call {A; :i € I'} atight g-frame if A = B and a Parseval g-frame if A = B = 1.

We call {A; : i € I'} an exact g-frame if it ceases to be a g-frame whenever any of its
elements is removed.

We say simply a g-frame for H whenever the space sequence {H; : i € I} is clear.

We say also a g-frame for H with respect to K whenever H; = IC, for each i € I.

We say {A;, € L(H,H;) : i € I} is a g-frame sequence, if it is a g-frame for
W{Af(Hi)}ieL

We say { A; € L(H,H;) :i € I} is a g-Bessel sequence with bound B, if we only have
the upper bound in (1.1).

Notation 1.2. For each sequence {H;}icr, we define the space (Ziel GaHi)z by
2

(1.2) (Z@Hi)b = {{fz}vel cfi€Hy, el and Z | fill? < —|—oo}
i€l

iel
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with the inner product defined by

(L dod) = D (fin90).

iel

It is clear that (Ziel ) Hi)e is a Hilbert space with pointwise operations.
2

2. CHARACTERIZATION OF g-FRAMES

In this section, we will try to characterize g-frames from the point of view of operator
theory. We are starting with the definition of a synthesis operator for a g-frame. For this
mean, we must show that the series appearing in the definition of a synthesis operator
converges unconditionally. So we need the next lemma.

Lemma 2.1. Let {A; € L(H,H;) :i € I} be a g-Bessel sequence for H with bound B.

Then for each sequence {fi}icr € (Zz‘el@Hi) , the series Y, Aj(fi) converges
¢
unconditionally. ’

Proof. Let J C I with |J| < oo, then

[ S8z = swp \ZA* 1,9
ieJ i€

llgll=1
< (1) s (Siaal)’ < vB(X117)’
i€J - e e

It follows that » ., Aj(fi) is weakly unconditionally Cauchy and hence unconditionally
convergent in H (see [6], page 44, Theorems 6 and 8). O

Definition 2.2. Let {A; € L(H,H;) : i € I} be a g-frame for H. Then the synthesis
operator for { A; € L(H,H;) : i € I} is the operator

T : (Z@Hi)& — H

iel
defined by
T({fi}ier) = > Ai(fi).

el
We call the adjoint T™ of the synthesis operator the analysis operator.
The following proposition will provide a concrete formula for the analysis operator.

Proposition 2.3. Let {A; € L(H,H;) : i € I} be a g-frame for H. Then the analysis
operator T* : H — (Ziel @Hi)e s given by
2

T(f) = {Aif }ier-
Proof. For all f € H and {g;}ic1 € (Ziel @’Hi)e we have

<T*f, {gi}iel> = <f7T{gv 7€I> <f ZA* gi >
= (Aif.gi) = <{Aif}ia, {gitier)-

iel
So that T*f = {Azf}zel O

The following proposition characterizes g-Bessel sequences.
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Proposition 2.4. {A; € L(H,H;):i € 1} is a g-Bessel sequence for H with bound B,

if and only if the operator
T: ( i)
2P, —n
el
defined by
{fz zEI ZA* fz
iel
is a well-defined and bounded operator with ||T|| < v/B.

Proof. Let {A; € L(H,H;) : i € I} be a g-Bessel sequence for H with bound B. Then
by Lemma 2.1, T' is well-defined and ||T| < v/B.

Conversely, let T be a well-defined and bounded operator with |T|| < v/B. Let J C T
with |J| < 400, then for each f € H,

Z ||AifH2 = Z<A:Aifv = <T{gi}iela f> < N7NH{gitier 1]

icJ ieJ
where
. Jo ifiel\J
TmNNF dtied
Hence )
3
S < ITH (Y 1A 161
ieJ ieJ
and so
SO IALIP < TP
=
Therefore
SOIALIP < TP
i€l

It follows that { A; € L(H,H;) :i € I} is a g-Bessel sequence for H with bound B. O

Definition 2.5. Let { A; € L(H,H;) : i € I} be a g-frame for H, the operator
S:H—H, S=TT"

is called the g-frame operator of {A; € L(H,H;):i € T}.

For any f € H we have

Sf= AN
iel
and
(SES) = (DM f) = SN Ay = DTN
i€l el el
Therefore
A(F ) <(Sf ) < B(f f),

ie.,

Al <S5 <BI.

Therefore S is a bounded, positive and invertible operator. In this case we have the
reconstruction formula
F=Y_NAST'f feMH
iel
The well-known relation between a frame and the associated synthesis operator also
hold in g-frames.
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Proposition 2.6. A sequence { A; € L(H,H;) :i € I} is a g-frame for H if and only if
T :{fitier — ZAf(fi)

iel
1s a well-defined and bounded mapping from (Ziel @Hi)z onto H.
2

Proof. If { A; € L(H,H;) :i € I} is a g-frame for H, then S = TT* is invertible. So T'
is onto. Conversely, let T" be well-defined, bounded and onto. Then by Proposition 2.4,
{A; € L(H,H;):i € I} is a g-Bessel sequence for H. Therefore T*f = {A; f}icr for all

f € H. Since T is onto, there exists an operator TT : H — (Ziel @Hi)e such that
2
TT' = Iy. Hence (T1)*T* = I5;. Then for all f € H,
LA < D PN 12 = (TP PP = 0T ) A1
iel
It follows that {A; € L(H,H;) : i € I} is a g-frame for H with lower g-frame bound
| T7||=2 and upper g-frame bound || T O

Proposition 2.7. A4 sequence { A; € L(H,H;) : i € I} is a g-frame for H if and only if
S f =Y AN
iel
is a well-defined and bounded mapping from H onto H.
Proof. It {A; € L(H,H;) : i € I} is a g-frame for H, then S is the g-frame operator.
Therefore S is well-defined, bounded and onto. Conversely, let S be a well-defined,
bounded and onto operator. Since S is positive, (i.e., (Sf,f) > 0 for all f € H)
Rs™ = N(S). Then S is injective and therefore it is invertible. So 0 ¢ o(S). Let

C = inf|s=1(Sf, f). By Proposition 70.8 in [11], C' € o(S). Then C > 0. Hence for all
f € H we have

S IAAIP = (SF £ = Cllf]1?

iel
and
D12 = (SE. 1) < ISIIAIP
iel
Then {A; € L(H,H;) : i € I} is a g-frame for H. O

Corollary 2.8. If {A; € L(H,H;) : i € I} be a family of operators, then T is well-
defined, bounded and onto if and only if S is well-defined, bounded and onto.

Similarly to g-frames, we can define g-complete, g-Riesz bases and g-orthonormal
bases.

Definition 2.9. (i) We say that {A;, € L(H,H;) : i € I} is g-complete, if {f : A;f =
0,i€1}=/{0}.

(i1) We say that { A; € L(H,H;) : i € I } is a g-orthonormal basis for H, if it satisfies
the following

(2.1) (Afgi, Njgj) = 6ij(9i,95), 4,7€1, gi€Hi, g5 €H;

(2.2) STINLIP =(IF1% f e

i€l
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(7it) We say that {A; € L(H,H;) : i € I} is a g- Riesz basis for H, if it is g-complete
and there exist constants 0 < A < B < oo, such that for any finite subset J C I and
gi € H@,Z € Ja

2
(2.3) A lgll? < | 3o aia]| < BY il
ied ieJ ieJ
Proposition 2.10. If{ A; € L(H,H;) : i € I } is a g-frame for H, thenspan{A}(H;)}icr =
H.
Proof. Let f € H and f L span{A}(H;)}icr. Then for all i € I and g € H;,

Therefore A;f =0, for all ¢ € I. Since { A; € L(H,H;) : i € I} is a g-frame for H, then
f=0. O

The following proposition gives an equivalent condition for g-completeness of { A; €
L(H,H;):i€l}.
Proposition 2.11. {A; € L(H,H;) :i € I} is g-complete if and only if

span{A; (H;)}icr = H.
Proof. Let {A; € L(H,H;) : i € I} be g-complete. Since span{A}(H;)}icr C H, it is
enough to prove that if f € H and f L span{Af(H;)}icr, then f = 0. Let f € H and
f L span{A¥(H;)}ics. Since for any i € I, f L ATA;(f), then for all i € T,
1A I = (F, AT A () = 0.

Therefore f = 0, by g-completeness of {A; € L(H,H;) : i € I}. Conversely, let
span{A;(H;)}ier = H. Let f € H and suppose that A;f = 0 for all ¢ € I. Then for
each g € H;

(Aif,g9) =(f,Ajg) =0,
hence f L span{A;(H;)}icr. Therefore f L span{A}(H;)}icr = H. It shows that f = 0.
Hence { A; € L(H,H;) : i € [} is g-complete. O

The following proposition shows that we can remove the second equality in 2.9.

Proposition 2.12. Let {A; € L(H,H;) : i € I} be a g-frame for H and suppose that
(2.1) holds. Then {A; € L(H,H;):i €1} is a g-orthogonal basis for H.

Proof. Let S be the g-frame operator of {A;} andlet C={feH:Sf = f}. Itis clear
that K is a nonempty closed subspace of H. We show that K+ = {0}. Let f € H and
J €1, then A7A;f € K since for i # j we have
A;NASAf =0,
ASAGAGA f = NN f
SO
S OATNNGAf = ASA;f.
il
Hence for f € K+ and g € K we have
(AjA;f,9) = (f,AjA;9) =0, jel
Therefore
AN f=0, i€l
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and so ||A;f|| = 0, for each i € I. By definition of g-frame we conclude f = 0 and
therefore H = K. So S = I and hence for every f € H

SN = (SE £ =) =IIFI*

i€l
O

Corollary 2.13. {A; € L(H,H;) : 4 € I} is a g-orthonormal basis for H if and only if
{A;} is a g-frame and for all i,j € I and g; € H;,g; € H;

(A79i, Aigs) = 6ij {9, 95)-
Proposition 2.14. {A; € L(H,H;) : i € I} is a g-orthonormal basis for H if and

only if

(1) Af is isometric for all i € I,

(2) @icr Ai(Hi) = H.
Proof. First assume that {A; € L(H,H;) : i € I} is a g-orthonormal basis for H. Then
for each i € I and g € H;, we obtain from (2.1)

(Afg,Afg) = diilg,9) = (9,9)-

Then A7 is isometric for all ¢ € I. Therefor AF(H;) is a closed subspace of H, for all ¢ € I.
From (2.2), we obtain

o) = SO SAf) = ST ) = (ST AN f), fem,
el el el
Hence

F=Y MNAf feH
iel
By letting g; = A f, we have f =), Afg; and
DAl = llgall® =D IAfI1P = 111>
iel iel iel

Then H = @,; A (H;). Conversely, if (1) and (2) are satisfied, then it is clear that (2.1)
holds, since for all ¢ # j, AfH; L A7H; and A; is isometric for all ¢ € I. Let f € H, then
we obtain from (2),

F=Y Mg, gie€Hi i€l

il

£ =D AT gl = gl

i€l el
Let m € I, then for each h € H, we have
(A foh) = (3 AmAigih) = D (A0 Ajh) = (g i) = (g, ).
i€l i€l

Hence g, = Ay, f, for all m € I. Therefore f = >
that

and

ser M f, for all f € H. It follows

£ =D IAfIP, f e H.

iel
0

Corollary 2.15. Every g-orthonormal basis for H is a g-Riesz basis for H with bounds
A=B=1.
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In the following proposition we show that g-frames for H with respect to {H; : i € I'}
are characterized as the families {©;V*};cr, where {©; € L(H,H;) : i € I} is a g-
orthonormal basis for H with respect to {H; : ¢ € I} and V : H — 'H is bounded and
onto.

Proposition 2.16. Let {©; € L(H,H;) : i € I} be a g-orthonormal basis for H with
respect to {H; : i € I} and {A; € L(H,H;) : i € 1} be a g-frame for H with respect
to {H; : i € I}. Then there is a bounded and onto operator V. : H — H such that
A, =0,V* foralliel.

Proof. Let
ViH—MH, V=Y A6
iel
then V is well defined, since for any finite J C [ and f € H,

| S areif] = sup \<ZA;@if,h>\g\/E(ZHeifII?)%,
= ieJ

Rll=1" Y527
where B is an upper g-frame bound for { A; € L(H,H;) : i € I}. Since for all f € H,
S 10if112 = |1 £1I%, it follows that >, ; A7©;f is weakly unconditionally Cauchy and
hence unconditionally convergent in H (see[6], Page 44, Theorems 6 and 8). Also it is
clear that ||V| < v/B. Since {©; € L(H,H;) : i € I} is a g-orthonormal basis, then
0,079 = d;;9 and

VOig =Y A;©;07g=17;0,07g=A}g,
i€l
for all g € H;,j € I. Therefore
@jV* = AJ‘, J€el.
Now we show that V' is onto. Let Tp and Te be the synthesis operators for {A; €
LH,H;) : i €1} and {©; € L(H,H;) : ¢ € I} respectively. Let f € H. Then
there exists {g;}icr € (Eiel @’Hi)e such that )., Afg; = f, since T} is onto. Let
2

g =To({gi}ier). Then
Vg= ZV@;‘kgi = ZA;‘kgi =f
iel i€l
Therefore V' is onto. .

Corollary 2.17. If {A; € L(H,H;) : i € I} is a Parseval g-frame for H, then V is
co-isometric.

Corollary 2.18. If{A; € L(H,H;) : i € I} is a g-Riesz basis for H, then V is invertible.
Proof. Let f € kerV. Then T§f = 0, since V = TAT§ and T is one to one. Therefore
IfIIP = T&f1I> =0, 50 f=0. O
Corollary 2.19. If {A; € L(H,H;) : i € I} is a g-orthonormal basis for H, then V is

unitary.

Proof. By Corollaries 2.15 and 2.18, V' is invertible. For each f € H we have
AP =D IAaf 12 =D llev=fII* = V= fII*.
il il
Therefore VV* = Iy. It follows that V is unitary. O
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Han and Larson in [10] have proved that for any Parseval frame {f;};c; for a Hilbert
space H there is a Hilbert space H C K and an orthonormal basis {e;};c; for K such
that Pe; = f;, for all ¢ € I, where P is the orthogonal projection of K onto H. Asgari
and Khosravi in [1] have extended this result for frame of subspaces and the following
theorem is its extension to g-frames.

Theorem 2.20. Let {A; € L(H,H;) : i € I} be a Parseval g-frame for H. Then there
exists a Hilbert space K O H and an orthonormal basis of subspaces {K;}icr for K such
that for eachi € I, P(K;) = Af(H;), where P is the orthogonal projection from K onto H.

Proof. For each i € I, let {e;;}jes, be an orthonormal basis for H; and for eachi € I,j €
Ji, let E;j be an element of (Eiel @Hi)e defined by
2

€4 ifi=%
(Eij)e =1 .7 .. :
0 ifi#k
It is clear that {E;; }ier jes, is an orthonormal basis for (Ziel @Hi)e . For each i € I,
let IC; = span{E;;}je,, then ’
Br - (L),
il el

Let K = @,.; Ki and let © be the analysis operator of {A; € L(H,H;) : i € I}. Since
{A; € L(H,H;) : i € I} is a Parseval g-frame, then © is an isometry. So we can embed
H into K by identifying H with ©(H). Let P : K — ©O(H) be the orthogonal projection.
Then for each i € I,j € J; and f € H we have

(Of, P(Eij)) =(Of, Eij) = <{Aif}i617Eij> = (Aif,ei5) = (f, Ajeij) = (O f, OA]ey;).
Thus P(E;;) — ©Afe;; L ©(H). Since P(E;;) — ©OAfe;; € O(H), then P(E;;) = OAfe;;.
The next result will turn out to be useful for finding a lower bound for Y, [|A; f||*.

Proposition 2.21. Let {A; € L(H,H;) : i € I} and {©; € L(H,H;) : ¢ € T} be
two g-Bessel sequences for H with bounds A and B respectively and let Tn and To be
their analysis operators such that ToTX = Iy. Then both {A; € L(H,H;) :i € I} and
{©; € L(H,H;) : i € I} are g-frames.

Proof. For any f € ‘H we have
LIt = (f 1) = (TR LTS < ITRFIPNTS 1 = [{Af Vet P I{Oif Yier |

= (Z1a1?) (X 10uf1?) < (I l?) BIAI

So Z|IfII* < Yicr lIAif]|%. Therefore {A; € L(H,H;) :i € I} is a g-frame. Similarly
{©; € L(H,H;) :i €1} is a g-frame. O

The next proposition shows that with a given g-frame, we can produce another g-frame
by using its g-frame operator.

Proposition 2.22. Let {A; € L(H,H;) :i € I} be a g-frame for H with frame operator
S and frame bounds A, B. Then for each a € R, {A;S* € L(H,H;) :i € 1} is a g-frame
for H and its frame operator is S**+1,
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Proof. Since {A; € L(H,H;):i € I} is a g-frame for H, then
A(SPf, f) = ASYFIIP < Y ASfIP < BIISfI* = B(S™f, f).

For a > 0,
A||S*fIIP = A(Sf, f) = AAP(f, f) = A% || £,
B|[S“f|* = B(S**f, ) < BB**(f, f) = B**!|| f||*.

Therefore

AT FIP < DO IASS)P < BRI,

Similarly for o < 0,

B fIP < IS f? < AR £

Now, let S° be the frame operator of {A;S* € L(H,H;) :i € I}, then for any f € H,
SO() = ST(AST) (M) f = ST SPATA S f

(2

=S8* Y ATASf = 5799 f = SPtf.

So §° = §2afl, O

Corollary 2.23. By assumptions of Proposition 2.22, {AiS_% €ELH,H;):i€1} isa
Parseval g-frame.

Proposition 2.24. Let {A; € L(H,H;) : i € I } be a g-frame for H with frame operator
S and U : H — K be a bounded and onto operator. Then {A;U* € LIK,H;):i €1} is
a g-frame for IC and its frame operator is USU™.

Proof. Let A, B be the frame bounds for { A; € L(H,H;) : i € I}. Since U is bounded
and onto, there exists bounded operator Ut : K — H such that UUT = Ix. Thus
(UT)*U* = Ix. Hence for any f € K, we have

AU 2P < AN FIP < Y IAU*FIP < BIU™fII? < BIUII1F)1%.
iel
Therefore {A;U* € L(K,H;) : i € I} is a g-frame for K with frame bounds A|UT||~2

and B||U||?. Now, let Sy be the frame operator for{A;,U* € L(K,H;) : i € I }, then for
each f € K,

Suf =Y (MU (MU f=UY A NU*f=USUf.
iel iel
Hence Sy = USU™. O
Corollary 2.25. Let {A; € L(H,H;) : i € I} be a g-frame for H and let U : H — K

be a bounded operator with closed range. Then {A;U* € LK, H;) :i € 1} is a g-frame
for Ry.

Corollary 2.26. Let {A; € L(H,H;) :i € I} be a g-frame for H and let U : H — K
be a bounded and invertible operator. Then {A;U~' € L(K,H;) :i € I} is a g-frame
for K.

Corollary 2.27. Fvery g-Riesz basis for H is a g-frame for 'H.
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3. PERTURBATION OF g-FRAMES

Perturbation of frames has been discussed in [2]. However there are similar theorems
about perturbation of frames for measurable spaces (see [9], [13]). Stability of g-frames
and their duals has been investigated by W. Sun [16]. In this manuscript we give other
perturbations of g-frames. At first we need the following lemma which is proved in [2].

Lemma 3.1. Let U be a linear operator on a Banach space X and assume that there
exist A1, A2 € [0,1) such that

[z = Uzl < Mllz| + A U]
for all x € X. Then U is bounded and invertible. Moreover
]

< <
1+A 2]l < U]

and

14+ A
U1||<+2

- I

forallx € X.

Theorem 3.2. Let {A; € L(H,H;) : ¢ € I} be a g-frame for H with bounds A, B and
{©; € LIH,H;):i €I} be a sequence of operators such that for any finite subset J C I
and for each f € H,

IS —erei)|

i€

< <Z||Aif|2>%,
i€ i€J

pt <1. Then {©; € L(H,H;) :i € I} is a g-frame for H with

where 0 < max{\ +
frame bounds

\/Z’

-+ %) L+ A+ =
(3.2) A VA g B— VB
1+ 1—p

Proof. Assume that J C I and |J| < +oo. For each f € H, we have
H < || Doaiai - ei0u)|| + || Yo Aras
ieJ ieJ ieJ

(Z ||A¢f|2>2
1€J

Then
<1“HZA* (Z||Af|2)
Also
HZAf i —SUP‘ZAAf, —sup‘E:Af7 Zg‘
icJ llgll=1" 7 lgll=1
< (TIad)’ e (S1aal?)” < (S Ia1?) VE < 5111
ieJ - 1€J 1€J

Therefore for all f € H

1 A /5 2
LA By 2 >(Z|Aif||2) 7
l—n ieJ
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80 ) _;c; ©70;f is unconditionally convergent. Let

G:H—MH, G(f)=> 0;0:f, fecH.

iel
Then G is well-defined and bounded operator with
1+ A B
o) < 1254 2V
1—u 1—p

and for each f € H, we have
D lOifl1* = (Gf, ) < IGIIfI1P
iel
It follows that {©; € L(H,H;) :i € I } is a g-Bessel sequence for H.
Let S be the g-frame operator of { A; € L(H,H;) : i € I } then we obtain from (3.1)

[Sf—Gfll < MSFI+ ullGfl +7< ) ||Aif|2> , fen.
i€l
Therefore

If = GSTLFI < ALl + ullGS ) +v( 2 1857 llg) 2

iel

< A+ —=)IFIN+ ulGSTHII,

.
VA
since 0 < max{\ + ﬁ,u} < 1, then by Lemma 3.1, GS™! and consequently G is

invertible and
1+p

A(1-0+ )

Hence by Proposition 2.7, { ©; € L(H,H;) : i € I } is a g-frame for H. It is clear that the
optimal lower bound and optimal upper bound of { ©; € L(H,H;) :i € I } are |G|~}
and ||G||, respectively. Then we can obtain the required frame bounds in (3.2). O

Corollary 3.3. Let {A; € L(H,H;) :i € I} be a g-frame for H with bounds A, B and
let {©; € L(H,H;) : i € I} be a family of operators. If there exists a constant0 < R < A
such that

IGTH < ISTHIISGT <

> _IAjAif —©70:f| <RI/

iel
forall f € H, then {©; € L(H,H;) :i € 1} is a g-frame with g-frame bounds A— R and
min{l-i—R %,R—FB}.

Proof. Tt is clear that > ._; 00, f is converges for each f € H. So we have

R :
<< (L IagR)", ren

By letting, A\ = = 0 and v = R/v/A in Theorem 3.2, {©; € L(H,H,;) :i € I} will be
a g-frame for H with lower bound A — R and upper bound 1 + R\/g . Also we have

| S ereur| < rIl+ | 0 A
i€l i€l

for all f € H. Hence the upper g-frame bound for { ©; € L(H,H;):i € I} is

min{l—i—R\/g,R—l-B}. O

iel

| arnir - e0uf
i€l

| <@+ B
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Corollary 3.4. Let {fi}icr be a frame for H with frame bounds A, B and let {g;}ic1 be a
sequence of H. Suppose that there exist constants A, p and v with 0 < max{y, )\—|—ﬁ} <1
such that for each f € H and every finite subset J C I,

Hfoz i = (f.90)9:
<AHfoz

Then {gi}ticr is a frame for H with fmme bonds

1-(A+-5) L+ A+ =
- VA g B— VB

1+p 1—p

(3.3)
gz

(Sirm)’
icJ

Proof. For each i € I, let
A+ H—C, N(f)=(f.1i)

and

0, H—C, Oif)=(fg9)
Then {A; € L(H,C) : i € I} is a g-frame for H and (3.3) means (3.1). Therefore the
result follows from Theorem 3.2. O

The following Theorem is another version of perturbation of g-frames.

Theorem 3.5. Let { A; € L(H, H;) : i € I} be a g-frame for H with bounds A, B and let
{O©; € L(H,H;) : i € I} be a family of operators such that for any J C I with |J| < 400,

(IESECHS

ieJ
| Sais| | e ()L (e
i€J i€J €J

where 0 < max{\ + J,u} < 1. Then {©; € L(H,H;) : i € I} is a g-frame for H with
g-frame bounds

(3.4)

L—(A+5)\2 L+ A+ =12
A(iﬂ) and B(J) .
14+ p 1—p
Proof. It is clear that if J C I with |J| < 400, then for all i € J and f; € H;, we have

1> ein| < Saisi- eiso]| + H S
ieJ i P

(A+1) HZA*f, ”‘HZG fi

(Sl )

So we have

+—(Z|\f7|\)

|Soral <32 S

Since

- o ()

g || 1

| > ain] =
ieJ
1

< (DIAl2)" sup (ZnAng) VB( XI5

icJ lgll=1 *%cy icJ
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then
(35) | e <(15 B+1ju)(;|f¢|2)%-
Let

T:(;@Hi)2—>H T({fv zel) Z@fv

i€l
By (3.5), T is well-defined and bounded with

A+ 1
1T < L\/_+—

Then by Proposition 2.4, {©; € L(H,H;):i €1} is a g—Bessel sequence for ‘H and

H— (DM, () ={Of)er.
i€l
Let U and S be the synthesis operator and g-frame operator for { A; € L(H, H;) :i € I},
respectively. Let G = TU*S~!. Then we have from (3.4)

[ iEZI(A;‘AiS*lf —ornsL)|

5AHZA?AiS‘lfH+ﬂHZ@?AiS‘1fH+v(ZHAiS-1f|\2)%, feM.
i€l il il
Since for all f € H, f = ., ArA;STLf, so we have

1f = GAI < AL+ G+ (3 s~ f12)

iel

gl g
ﬁllfll <A+ ﬁ)l\fH +ulGA-

Since 0 < max{\ + J,u} < 1, by Lemma 3.1, G = TU*S™" and consequently TU* is
invertible and

<A+ plGfl+

| I
1-(A+5)
Letf € H, then f = GG~ f = Y el O7A;S~1G~1f. Hence for each f € H, we have

G~

IFI* =14 ) \<Z@ nsa )| S L
el
_ 1 1+u
< NG00 < 5 () 112 S 01
A ; A(1—(A+ﬁ)) ;
Therefore )
- +T 2
o101 = A(— ) ISP, e

iel
Then {©; € L(H,H;) : i € I } is a g-frame for H with the required g-frame bounds. O
The following corollary has been proved in [2].
Corollary 3.6. Let {f;}icr be a frame for H with bounds A, B. Let {g;}ic1 be a sequence

in H and assume that there exist non-negative constants X\, i and v such that

max{,u,/\—kﬁ} <1



284 ABBAS NAJATI, M. H. FAROUGHI, AND ASGHAR RAHIMI

and

(3.6) H Z cifi — ¢igi

S/\Hzcifi +MHZC¢Q¢ +’Y(Z|Ci|2)2
for all finite scalar sequences {c;}i. Then {g;}icr is a frame for H with frame bounds
L—(A+5)\2 L+ A+ =12
T vaAl __ VB
A( 14+ p ) and B( 1—p ) ’
Proof. For each i € I, let
A H—C, N(f)={f.1i)
and
0i:H—C, O,f)=(f g
Then {A; € L(H,C) : i € I} is a g-frame for H and (3.6) means (3.4). Therefore the

result follows from Theorem 3.5. O

Proposition 3.7. Let {A; € L(H,H;) : i € I} be a g-frame for H with bounds A, B
and let {©; € L(H,H;) : i € I} be a family of operators. If there exists a0 < R < A
such that

ST IAf — 0ufI* < RIIfII?

il

forall f € H. Then {©; € L(H,H;) :i € I} is a g-frame for H with bounds (v A—+/R)?
and (VB +VR)?.

Proof. By the triangle inequality in (Ele 7 @’Hi)e , we have
2

el <o -anal], sl sen

therefore

YolefIP < (VB+VR?IfI? feH.
il
Also for each f € H

H{@if}iel

0 > H{Aif}iel

o H{@if - Aif}ieIHeQ

thus

S leiflI? > (VA-VR?(IfI?, feH.

iel

The following theorem is a generalization of a result in [5].

Theorem 3.8. Let {A; € L(H, H;):i € I} be ag-frame for H with respect to {H; : i €
It and {©; € L(H,H;) :i € I} be a family of operators. If

K: (X @Pn), —H K({(hher) =D (A -6D;
i€l i€l

is a well-defined and compact operator, then {©; € L(H,H;) : i € I} is a g-frame
sequence.
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Proof. Since {A; € L(H,H;) :i € I} is a g-frame for H and the perturbation operator
K is bounded, then the synthesis g-frame operator U for {©; € L(H,H;) : i € 1} is
well-defined and bounded. Therefore by Proposition 2.4, {©; € L(H,H;) :i €I} isa
g-Bessel sequence for H. Let 7" and S be synthesis operator and g-frame operator for
{A; € L(H,H;) : i € I}, respectively. Then U =T — K and

UU* = (T = K)(T* = K*) = $(I+ 57 (-TK" = KT" + KK")).

Since K is compact operator, then S™1(-TK* — KT*+ K K*) is a compact operator and
by Theorem 4.23 of [14] the operator I + S~—}(=TK* — KT* + KK*) has closed range.
Composing this with S, we see that UU™* also has closed range. Hence Ry is closed. So
Ry =span{O;(H;)}icr. Therefore the result follows from Proposition 2.6. O

Corollary 3.9. Let {A; € L(H,H;) :i € I} be a g-frame for H. Let J be a finite subset
of I such that for each j € J, dimH; < co. Then

{Nie L(H,H;) eI\ J}
is a g-frame sequence.

Proof. Let {©; € L(H,H;) :i € I } be a sequence of operators such that ©; =0, if i € J
and ©; = A;, if i € J. Then the operator

K (S @), —H Kdfen) = (A =0)fi = Y AL,

i€l il i€

has finite dimensional range and hence is compact. Then by Theorem 3.10, {A; €
L(H,H;):i €I\ J} is a g-frame sequence. O

Theorem 3.10. Let {A; € L(H,H;) : i € I} be a g-frame for H and let {O; €
L(H,H;):i €1} be a family of operators. If

K:H-—H, Kf=Y) (AjAif -0;6;f)

icl
is a well-defined and compact operator, then {©; € L(H,H;) : i € 1} is a g-frame
sequence.

Proof. Let S be the g-frame operator of {A; € L(H,H;) :i €1}, then S°=5—- K is a
bounded operator. Therefore for each f € H

d_leiflI? = (52, ) < IS 1%
icl
Then {©; € L(H,H;) :i € I} is a g-Bessel sequence. Let

T: (Z@Hl) — H, T{fiticr) =>_ O} fi.
° 123 °
el el
By Proposition 2.4, T is bounded and S° = TT*. Since S~'K is compact, so S° has
closed range. Therefore Rgo = Ry = span{0;(H;)}icr. Hence the result follows from
Proposition 2.7. g
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