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ON SOME SUBLATTICES OF REGULAR OPERATORS ON BANACH

LATTICES

BELMESNAOUI AQZZOUZ AND REDOUANE NOUIRA

Abstract. We give some sufficient conditions under which the linear span of positive
compact (resp. Dunford-Pettis, weakly compact, AM-compact) operators cannot be
a vector lattice without being a sublattice of the order complete vector lattice of all
regular operators. Also, some interesting consequences are obtained.

1. Introduction and notation

The paper concerns the following natural and interesting problem: find conditions
implying that a subspace F of a vector lattice E is a vector lattice, with respect to the
order induced by E, but F is not a sublattice of E. It is easy to see that such subspaces
F exist (consider the subspace F ⊂ C ([0, 1]) = E consisting of linear functions where
C ([0, 1]) is the vector lattice of continuous functions on [0, 1]).

Recall that in [1], Abramovich and Wickstead constructed two compact operators
S and T from a Banach lattice E into an order complete Banach lattice F such that
± S < T but the modulus |S| is not compact. This means that the linear span of
positive compact operators Kr(E, F ) is not a sublattice of the order complete vector
lattice of all regular operators Lr(E, F ) i.e. the space of operators T : E −→ F such that
T = T1 − T2 where T1 and T2 are positive operators from E into F . Also, in the same
paper, Abramovich and Wickstead proved that Kr(E, F ) is not a vector lattice and they
asked in ([1], p. 325) the following question:

Is it possible to construct Banach lattices E and F such that F is order complete and
Kr(E, F ) is a vector lattice without being a sublattice of Lr(E, F ) ?

First, we observe that the above question has a negative answer whenever E and F
satisfy the necessary and sufficient conditions of Theorem 1 of Wickstead [11] i.e. if the
topological dual E′ is discrete and its norm is order continuous, or the Banach lattice
F is discrete and its norm is order continuous, or the norms of E and of its topological
dual E′ are order continuous.

Second, we remark that the question of Abramovich and Wickstead [1] can be asked
also for the class of Dunford-Pettis (resp. weakly compact, AM-compact) operators
between Banach lattices.

Our objective in this paper is to formulate several sufficient conditions under which
classes of regular and compact (resp. weakly compact, Dunford-Pettis, AM-compact)
operators cannot be a vector lattice without being a sublattice in the space of all regular
operators acting between suitable Banach lattices. More precisely, we will prove that if E
and F are Banach lattices, then the linear span of positive compact (resp. Dunford-Pettis,
weakly compact, AM-compact) operators between E and F cannot be a vector lattice
without being a sublattice of Lr(E, F ) if the Banach lattice E is discrete and its norm is
order continuous, or the vector lattice F is discrete, or the topological dual E′ is discrete
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and F is reflexive. As consequences, we show that the spaces Kr(l1(l2
n

2 ), L2 ([0, 1]))
and Wr(l1(l2

n

2 ), l∞(L2 ([0, 1]))) are not vector lattices. Also, we will establish that the
spaces Dr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) and AMr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) are not vector
lattices.

To state our results we need to fix some notations and recall some definitions. Let E
be a vector lattice, then for any two elements x, y ∈ E with x ≤ y, the set [x, y] = {z ∈
E : x ≤ z ≤ y} is an order interval. A subset of E is said to be order bounded if it is
included in some order interval. An order ideal B is a solid subspace of a vector lattice
E i.e. if x ∈ B and y ∈ E such that |y| ≤ |x|, then y ∈ B. A principal ideal is any order
ideal generated by a subset containing only one element x, this ideal will be denoted by
Ix. A generalized sequence (xα) is order convergent to x ∈ E if there exists a generalized
sequence (yα) such that yα ↓ 0 and |xα − x| ≤ yα for each α, where the notation yα ↓ 0
means that the sequence (yα) is decreasing, its infimum exists and inf(yα) = 0. A band
is an order ideal which is order closed. The band generated by an element x is called a
principal band that we design by Bx.

A Banach lattice (E, ‖.‖) is a Banach space such that E is a vector lattice and its norm
satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖.
Finally, we note that the topological dual E′ of a Banach lattice E, endowing with the
dual norm, is a Banach lattice. For terminology which is not explained, we refer the
reader to the book of Zaanen [12].

2. Main results

Let us recall that an operator T : E −→ F between two Banach lattices is a bounded
linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. An operator
T : E −→ F is regular if T = T1−T2 where T1 and T2 are positive operators from E into
F . It is well known that each positive linear mapping on a Banach lattice is continuous.

A norm ‖.‖ of a Banach lattice E is order continuous if for each generalized sequence
(xα) such that xα ↓ 0 in E, the sequence (xα) converges to 0 for the norm ‖.‖. For
example, the norm of the Banach lattice l1 is order continuous but the norm of the
Banach lattice l∞ is not.

A nonzero element x of a vector lattice E is discrete if the order ideal generated by
x equals the sublattice generated by x. The vector lattice E is discrete, if it admits
a complete disjoint system of discrete elements. For example, the Banach lattice l1 is
discrete but C ([0, 1]) is not.

Recall that Krengel [9] is the first who constructed an operator T : l2 −→ l2 (resp.
S : l2 −→ l2) such that T is compact but T /∈ Lr(l2, l2) (resp. S is regular and compact
but |S| is not compact).

A regular operator T : E −→ F between two Banach lattices is said to be AM-compact
if it carries order bounded subsets of E onto relatively compact subsets of F . Also, an
operator T from a Banach space E into another F is said to be Dunford-Pettis if it
carries weakly compact subsets of E onto compact subsets of F .

If K(E, F ) (resp. W(E, F ), D(E, F ), AM(E, F )) designs the subspace of all compact
(resp. weakly compact, Dunford-Pettis, AM-compact) operators from E into F , we
denote by Kr(E, F ) (resp. Wr(E, F ), Dr(E, F ), AMr(E, F )) the linear span of positive
elements of K(E, F ) (resp. W(E, F ), D(E, F ), AM(E, F )).

If B(E, F ) is any one of the subspaces Kr(E, F ), Wr(E, F ), Dr(E, F ) or AMr(E, F )),
our principal result is the following:

Theorem 2.1. Let E and F be two Banach lattices. Then B(E, F ) cannot be a vector
lattice without being a sublattice of Lr(E, F ) if one of the following conditions holds:

i) The Banach lattice E is discrete and its norm is order continuous.
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ii) The vector lattice F is discrete.
iii) The topological dual E′ is discrete and F is reflexive.

Proof. Let S ∈ B(E, F ) and denote by |S| and T its modulus in Lr(E, F ) and B(E, F )
respectively. It is clear that ± S ≤ |S| ≤ T . Assume that |S| 6= T .

i. There exists some discrete element x0 ∈ E+ = {x ∈ E : 0 ≤ x} such that
|S| (x0) < T (x0). Let R be the operator defined from E into F by the following formula:

R(x) = T (x) − (T − |S|) ◦ Px0
(x),

where Px0
is the principal projection on the band generated by x0. Then |S| ≤ R < T

and R ∈ B(E, F ). This gives a contradiction.
ii. There exists a discrete element y0 of F and there exists an element x0 ∈ E+ such

that
Qy0

(|S| (x0)) < Qy0
(T (x0)) ,

where Qy0
is the principal projection on the band generated by y0. We consider the

operator R defined from E into F by

R(x) = T (x) − Qy0
◦ (T − |S|)(x).

For the same precedent reason, we obtain a contradiction.
iii. Since |S| ≤ T , it follows that |S|′ ≤ T ′ where |S|′ and T ′ are the adjoint operator

of |S| and T respectively. This implies the existence of some f0 in F such that

|S|
′
(g0) < T ′ (g0) .

In the same way as ii, there exists a discrete element g0 in E′ such that

Pg0
◦ |S|

′
(g0) < Pg0

◦ T ′ (g0) ,

where Pg0
is the principal projection on the band generated by g0. Now, we consider the

operator R defined from F ′ into E′ by

R = T ′ − (Pg0
◦ T ′ − Pg0

◦ |S|
′
).

We have |S|
′
≤ R < T ′. In fact, for the first inequality, it is sufficient to composite

with the projections on bands generated by discrete elements of E.
In other hand, the operator (Pg0

◦T ′−Pg0
◦ |S|

′
) is of rank one, and hence there exists

some z ∈ F ′′ = F such that

(Pg0
◦ T ′ − Pg0

◦ |S|
′
)(f) = z(f)g0 = f(z)g0

for each f ∈ F ′, where F ′′ is the topological bidual of F .
It is easy to prove that (Pg0

◦ T ′ − Pg0
◦ |S|

′
) is the operator dual of the operator

K : E −→ F defined by K(x) = g0(x)z. Finally, |S|
′
≤ (T − K)′ < T ′ or again

|S| ≤ (T − K) < T . This is in contradiction with the fact that T − K ∈ B(E, F ). �

An immediate consequence of Theorem 2.1 (i) or (iii), we obtain the following result
of Abramovich and Wickstead ([1], Corollary 3):

Corollary 2.2. The space Kr(l1(l2
n

2 ), L2 ([0, 1])) is not a vector lattice.

Our second consequence, follows from a combination of Theorem 2.1 (i) and Theo-
rem 2.7 of [7].

Corollary 2.3. The space Wr(l1(l2
n

2 ), l∞(L2 ([0, 1]))) is not a vector lattice.

For Dunford-Pettis and AM-compact operators, we obtain the following results:

Theorem 2.4. The spaces Dr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) and AMr(L2 ([0, 1]),
l∞(L2 ([0, 1]))) are not vector lattices.

Proof. The proof follows along the lines of the proof of Theorem 2.1 (ii). In fact, for each
n ∈ IN∗, let Qn be the projection operator from l∞(L2 ([0, 1])) onto L2 ([0, 1]) defined by
the following formula:
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Qn((fk)
k∈IN∗) = fn for each (fk)

k∈IN∗ ∈ l∞(L2 ([0, 1]))

and let in be the operator defined from L2 ([0, 1]) into l∞(L2 ([0, 1])) by

in(f) = (0, 0, 0, . . . , 0, f, 0, 0, . . .).

Now, assume that there exists an element S ∈ F(L2 ([0, 1]) , l∞(L2 ([0, 1]))) such that
its modulus T in F(L2 ([0, 1]) , l∞(L2 ([0, 1]))) exists and is different of its modulus |S| in
Lr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) where

F(L2 ([0, 1]) , l∞(L2 ([0, 1]))) = Dr(L2 ([0, 1]) , l∞(L2 ([0, 1])))

(resp. AMr(L2 ([0, 1]) , l∞(L2 ([0, 1])))).

Then there exists an element x0 ∈
(

L2 ([0, 1])
)+

and there exists some n ∈ IN∗ such
that

Qn ◦ |S| (x0) < Qn ◦ T (x0).

Consider the operator R defined from L2 ([0, 1]) into l∞(L2 ([0, 1])) by

R = T − in ◦ Qn ◦ (T − |S|).

We have
0 < Qn ◦ (T − |S|) < Qn ◦ T

as operators from L2 ([0, 1]) into L2 ([0, 1]). By applying Theorem 4.4 of Kalton-Saab
[8] (resp. Theorem 2.1 of [2]) related to the domination problem for Dunford-Pettis
(resp. AM-compact) operators, we conclude that Qn ◦ (T − |S|) is Dunford-Pettis (resp.
AM-compact). Hence, the operator R is Dunford-Pettis (resp. AM-compact) too. But
|S| ≤ R < T , this presents a contradiction.

On the other hand, it follows from ([5], Theorem 2.1) that the subspaces
Dr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) and AMr(L2 ([0, 1]) , l∞(L2 ([0, 1]))) are not sublattices of
Lr(L2 ([0, 1]) , l∞(L2 ([0, 1]))). This completes the proof. �

As consequence for the linear span of positive compact operators, it follows from
Theorem 1 of [11] and Theorem 2.1:

Corollary 2.5. Let E and F be Banach lattices. Then Kr(E, F ) cannot be a vector
lattice without being a sublattice of Lr(E, F ), if one of the following conditions holds:

1) The Banach lattice E is discrete and its norm is order continuous.
2) The vector lattice F is discrete.
3) The topological dual E′ is discrete and F is reflexive.
4) the Banach lattice E′ is discrete and its norm is order continuous
5) the norms of E′ and F are order continuous.

Recall that a Banach lattice E is reflexive, if and only if the norms of its topological
dual E′ and of its topological bidual E′′ are order continuous ([10], Theorem 5.16).

The following result for the linear span of positive weakly compact operators is a
consequence of Theorem 7 of [3], Theorem 5.16 of [10] and Theorem 2.1:

Corollary 2.6. Let E and F be Banach lattices. Then Wr(E, F ) cannot be a vector
lattice without being a sublattice of Lr(E, F ), if one of the following conditions holds:

1) The Banach lattice E is discrete and its norm is order continuous.
2) The vector lattice F is discrete.
3) the norm of E′ is order continuous
4) the norm of F is order continuous.

To give the following consequence, recall that the lattice operations in a Banach lattice
E are weakly sequentially continuous if the sequence (|xn|) converges to 0 for the weak
topology σ(E, E′) whenever the sequence (xn) converges to 0 for σ(E, E′). For example,
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the lattice operations of a AM-space are weakly sequentially continuous but the lattice
operations of the Banach lattice L2 are not.

Note that in ([6], Corollary 2.2), we have proved that if E is a Banach lattice such that
its topological dual E′ is discrete, then the lattice operations of E are weakly sequentially
continuous.

The following result for the linear span of positive Dunford-Pettis operators is a con-
sequence of Theorem 2 of [11], Corollary 2.2 of [6] and Theorem 2.1:

Corollary 2.7. Let E and F be Banach lattices. Then Dr(E, F ) cannot be a vector
lattice without being a sublattice of Lr(E, F ), if one of the following conditions holds:

1) The vector lattice F is discrete.
2) the lattice operations in E are weakly sequentially continuous.
3) the norm of F is order continuous.

Finally, we have the following result for the linear span of positive AM-compact ope-
rators is a consequence of Corollary 2.14 and Theorem 2.15 of [4], Theorem 1.2 of [2] and
Theorem 2.1:

Corollary 2.8. Let E and F be Banach lattices. Then AMr(E, F ) cannot be a vector
lattice without being a sublattice of Lr(E, F ), if one of the following conditions holds:

1) The Banach lattice E is discrete and its norm is order continuous.
2) The vector lattice F is discrete.
3) The topological dual E′ is discrete.
4) the norm of F is order continuous.
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