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FUNCTOR OF SEMIADDITIVE FUNCTIONALS

D. E. DAVLETOV AND G. F. DJABBAROV

Abstract. In the present paper we describe semiadditive functionals and establish
that the construction generated by semiadditive functionals forms a covariant functor.
We show that the functor of semiadditive functionals is a normal functor acting in
category of compact sets.

1. Introduction

The general theory of covariant functors on the category Comp of compact Hausdorff
topological spaces and their continuous mappings originates in the fundamental work by
E. Shchepin [1], where he distinguished some elementary properties of covariant functors
in the category of compacts and defined the concept of normal functor.

The following functors are well investigated among normal functors: the functor P of
probability measures; the functor exp of a hyperspace (see. [2]–[8]).

In [9], T. Radul introduced the functor O of weakly additive order-preserving normed
functionals in the category of compacts. He proved that the functor O is not normal.
The functor O has the following important property: the functors P, exp and λ can be
realized as subfunctors of the functor O. In [10], A. Zaitov extended the functor O up to
the functor O ◦ β and investigated categorical properties of O ◦ β. In [11], R. Beshimov
extended the functor O up to the functor Oβ in the category of Tychonoff spaces and
their continuous mappings. Categorical properties of positively-homogeneous functionals
were studied in [12], [13].

In this paper we will investigate the functor of semiadditive functionals.
A general form of semiadditive functionals will be given in Section 3 (Theorem 3.3).
In Section 4 we investigate categorical properties of the functor of semiadditive func-

tionals OS. We will prove that OS is a normal functor (Theorem 4.10).

2. Preliminaries

Let X be a compactum. By C(X) we denote the set of all continuous functions
f : X → R with the usual (pointwise) operations and sup-norm, i.e., with the norm
‖f‖ = sup{|f(x)| : x ∈ X}. For each c ∈ R, by cX we denote the constant function
defined by the formula cX(x) = c, x ∈ X. Let ϕ, ψ ∈ C(X). The inequality ϕ ≤ ψ means
ϕ(x) ≤ ψ(x) for all x ∈ X.

Definition 2.1. [8]. A functional ν : C(X) → R is called:

1) weakly additive if the equality ν(ϕ+ cX) = ν(ϕ) + c · ν(1X) holds for each c ∈ R

and ϕ ∈ C(X);
2) order-preserving if for all ϕ, ψ ∈ C(X) with ϕ ≤ ψ we have ν(ϕ) ≤ ν(ψ);
3) normed if ν(1X) = 1;
4) positively-homogeneous if ν(tϕ) = tν(ϕ) for all ϕ ∈ C(X), t ∈ R+, where R+ =

[0,+∞);
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5) semiadditive if ν(f + g) ≤ ν(f) + ν(g) for all f, g ∈ C(X).

For a compactumX byO(X) we denote the set of all weakly additive, order-preserving,
normed functionals. By OH(X) we denote the set of all positively-homogeneous func-
tionals from O(X), and by OS(X) we denote the set of semiadditive functionals from
OH(X). For brevity, we’ll call elements of the set OS(X) semiadditive functionals. This
set is endowed with the topology of pointwise convergence. The base of neighborhoods
for the functional ν ∈ OS(X) is formed by the sets

〈ν;ϕ1, ...ϕk; ε〉 =
{

ν′ ∈ OS(X) : |ν′(ϕi) − ν(ϕi)| < ε, i = 1, k
}

,

where ϕi ∈ C(X), i = 1, k, k ∈ N, ε > 0.
By 2 = {0, 1} we denote the two-point set with discrete topology.
Preliminaries.
Let δi (i = 0, 1) be the Dirac functionals on C(2). We define the functionals δ0 ∨ δ1

and δ0 ∧ δ1 by the following rules

(δ0 ∨ δ1)(f) = max{f(0), f(1)}, f ∈ C(2)

and

(δ0 ∧ δ1)(f) = min{f(0), f(1)}, f ∈ C(2).

It is known [12] that OH(2) is affine homeomorphic to the square with the vertices in
points δ0, δ1, δ0 ∨ δ1, δ0 ∧ δ1. Moreover, any element of OH(2) has one of the following
forms

(1) ν = t0δ0 + t1δ1 + t2(δ0 ∨ δ1)

or

(2) ν′ = t0δ0 + t1δ1 + t2(δ0 ∧ δ1),

where ti ≥ 0, i = 0, 2,
2
∑

i=0

ti = 1.

It is clear that a functional ν in the form (1) belongs to OS(2). Let’s show that at
t2 6= 0 the functional ν′ in the form (2) doesn’t belong to OS(2).

Indeed, let ν′ = t0δ0 + t1δ1 + t2(δ0 ∧ δ1), t2 6= 0. Take f, g ∈ C(2) such that f(0) = 1,
f(1) = 0, g(0) = 0, g(1) = 1. Then ν′(f + g) = t0 + t1 + t2 and ν′(f) = t0, ν(g) = t1,
which implies ν′(f + g) > ν′(f) + ν′(g).

Thus, each element of OS(2) has the form (1). Hence, OS(2) is affine homeomorphic
to the triangle with the vertices δ0, δ1, δ0 ∨ δ1.

3. Description of semiadditive functionals

In this paragraph we obtain a general form of semiadditive functionals on C(X).

Proposition 3.1. For any compactum X, the space OS(X) is a convex compactum.

Proof. Since OS(X) ⊂ OH(X) and OH(X) is a convex compact set [12, Theorem 1], it
is sufficient to show that OS(X) is a convex closed set of OH(X). Let ν1, ν2 ∈ OS(X)
and t ∈ [0, 1]. We have

(tν1 + (1 − t)ν2)(ϕ+ ψ) = tν1(ϕ+ ψ) + (1 − t)ν2(ϕ+ ψ)

≤ tν1(ϕ) + tν1(ψ) + (1 − t)ν2(ϕ) + (1 − t)ν2(ψ)

= (tν1 + (1 − t)ν2)(ϕ) + (tν1 + (1 − t)ν2)(ψ),

i.e., the functional tν1+(1−t)ν2 is semiadditive. This implies that tν1+(1−t)ν2 ∈ OS(X).
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Let now (να)α∈I ⊂ OS(X) be an arbitrary convergent net and ν0 ∈ OH(X) be the
limit of this net. We show that ν0 ∈ OS(X). Since να(ϕ + ψ) ≤ να(ϕ) + να(ψ) for each
ϕ, ψ ∈ C(X), α ∈ I, we have

lim να(ϕ+ ψ) ≤ lim(να(ϕ) + να(ψ)) = lim να(ϕ) + lim να(ψ) = ν0(ϕ) + ν0(ψ).

On the other hand,

lim να(ϕ+ ψ) = ν0(ϕ+ ψ).

The last equation shows that ν0(ϕ+ψ) ≤ ν0(ϕ)+ν0(ψ). So, ν0 ∈ OS(X). The proposition
is proved. �

Let P (X) be a space of all positive normed linear functionals on C(X), A be a non-
empty subset of P (X), and f ∈ C(X). Then |µ(f)| ≤ ‖f‖ for each µ ∈ A, and therefore
the set {µ(f) : µ ∈ A} is bounded above. Hence, for each f ∈ C(X) there exists

(3) νA(f) = sup{µ(f) : µ ∈ A}, f ∈ C(X).

Proposition 3.2. Let A be a non-empty set of P (X). Then

a) the functional νA : C(X) → R belongs to OS(X);
b) νA = νco(A) where co(A) is a convex envelope of A;
c) νA = νcl(A) where cl(A) is the closure of A;
d) νA = νcl(co(A)).

Proof. a)

1) Let f ∈ C(X) and c ∈ R. We have νA(f + cX) = sup{µ(f + cX) : µ ∈ A} =
sup{µ(f) + c : µ ∈ A} = sup{µ(f) : µ ∈ A} + c = νA(f) + c.

2) Take f, g ∈ C(X) such that f ≤ g. Then νA(f) = sup{µ(f) : µ ∈ A} ≤ sup{µ(g) :
µ ∈ A} = νA(g).

3) νA(1X) = sup{µ(1X) : µ ∈ A} = sup{1 : µ ∈ A} = 1.
4) Let f ∈ C(X) and t ∈ R+. Then νA(tf) = sup{µ(tf) : µ ∈ A} = sup{tµ(f) : µ ∈

A} = t sup{µ(f) : µ ∈ A} = tνA(f).
5) Let f, g ∈ C(X). Then νA(f + g) = sup{µ(f + g) : µ ∈ A} = sup{µ(f) + µ(g) :

µ ∈ A} ≤ sup{µ(f) : µ ∈ A} + sup{µ(g) : µ ∈ A} = νA(f) + νA(g).

b) Since A ⊂ co(A), νA(f) ≤ νco(A)(f) for each f ∈ C(X). We show that νA(f) ≥
νco(A)(f) for each f ∈ C(X).

Let f ∈ C(X) and ε > 0. Then there is µε ∈ co(A) such that µε(f) ≥ νco(A)(f) − ε.

Since µε ∈ co(A), µε has the form
n
∑

i=1

tkµk where µk ∈ A, tk ≥ 0, k = 1, n,
n
∑

k=1

tk = 1.

Since µk(f) ≤ νA(f),

νco(A)(f) − ε ≤ µε(f) =

n
∑

k=1

tkµk(f) ≤
n

∑

k=1

tkνA(f) = νA(f),

i.e., νco(A)(f)−ε ≤ νA(f). By virtue of arbitrariness of ε > 0, we have νco(A)(f) ≤ νA(f).
c) Take f ∈ C(X) and ε > 0. Then there exists µε ∈ cl(A) such that µε(f) ≥

νcl(A)(f) − ε. Since µε ∈ cl(A), there exists µ0 ∈ A such that

|µε(f) − µ0(f)| < ε.

Hence,

νcl(A)(f) − ε ≤ µε(f) < µ0(f) + ε ≤ νA(f) + ε,

i.e., νcl(A)(f)−2ε < νA(f). By virtue of arbitrariness of ε > 0, we have νcl(A)(f) ≤ νA(f).
d) immediately follows from b) and c).
Proposition is proved. �
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The following result shows that formula (3) gives a general form of functionals from
OS(X).

Theorem 3.3. For each ν ∈ OS(X) there exists a non-empty convex compactum A
in P (X) such that ν = νA where νA is a functional in form (3), in addition, for each
f ∈ C(X) there exists µ ∈ A such that ν(f) = µ(f).

Proof. Let ν be an arbitrary element of OS(X). Put A = {µ ∈ P (X) : µ ≤ ν} where
µ ≤ ν means µ(f) ≤ ν(f) for all f ∈ C(X). Obviously, the set A is a convex closed
subset of P (X). Hence, A is a convex compactum in P (X).

Let us show that A is the set sought for.
It is clear that νA ≤ ν. Hence, to prove the equality νA = ν it is sufficient to show

that for any h ∈ C(X) there is µ ∈ A such that µ(h) = ν(h).
Let h be a fixed element of C(X). By C = {th+ cX : t, c ∈ R} we denote the subspace

of C(X) generated by h and constants.
We show that the following formula

(4) µ(th+ cX) = tν(h) + c, t, c ∈ R,

determines on C a positive linear functional such that

i) µ(h) = ν(h);
ii) µ(g) ≤ ν(g), g ∈ C;
iii) µ(1X) = 1.

At first, let us check the correctness of definition of µ.
Case 1. h = c′ = const . Let g ∈ C and g = t1c

′+c1 = t2c
′+c2. We have t1ν(h)+c1 =

t1ν(c
′

X) + c1 = t1c
′ + c1 = t2c

′ + c2 = t2ν(c
′

X) + c2 = t2ν(h) + c2. Hence, the value of µ
on g doesn’t depend on the decomposition of g.

Case 2. h 6= const . In this case an arbitrary g ∈ C is uniquely decomposed in the
following sum g = th + cX . Indeed, if t1h + c1 ≡ t2h + c2 (ti, ci ∈ R, i = 1, 2), then
(t2 − t1)h ≡ c2 − c1. As h 6= const, t1 = t2, c1 = c2.

It is obvious that µ is linear on C.
It is clear that µ satisfies i), iii).
Let’s show that ii) holds. Let g = th+ c be an element of C.
The case of t = 0 is trivial.
Consider the case of t > 0. In this case µ(g) = tν(h) + c = t(ν(h) + c

t ) = tν(h+ c
t ) =

ν(th+ c) = ν(g).

In the case of t < 0 we have µ(g) = tν(h) + c = t
(

ν(h) + c
t

)

= tν
(

h+ c
t

)

=

−|t|ν
(

h+ c
t

)

= −ν
(

|t|h+ |t|ct

)

= −ν(−th− c) = −ν(−g) = −(ν(−g) + ν(g)) + ν(g) ≤

−ν(−g + g) + ν(g) = −ν(0X) + ν(g) = ν(g).
Thus, we showed that on C there exists a functional µ satisfying the relations i), ii),

iii). By the Hahn-Banach theorem the linear functional µ has a continuation on C(X)
(we denote it by µ, too) such that

µ(h) = ν(h);

µ(g) ≤ ν(g), g ∈ C(X);

µ(1X) = 1.

The inequality µ(g) ≤ ν(g) guarantees that |µ(f)| ≤ 1 for each f ∈ C(X), |f | ≤ 1X .
From here and taking into account that µ(1X) = 1 we obtain µ ∈ P (X). Again, from
the inequality µ(g) ≤ ν(g) (g ∈ C(X)), we obtain µ ∈ A.

The theorem is proved. �



318 D. E. DAVLETOV AND G. F. DJABBAROV

The following result shows that the correspondence A↔ νA, where A is a non-empty
convex compactum in P (X), is a bijective mapping between the set OS(X) and convex
compact subsets of P (X).

Theorem 3.4. If A and B are non-empty convex compacta in P (X), then νA = νB if
and only if A = B.

Proof. First, let A 6= B. We can take that there will be found µ0 ∈ B \ A. As A is a
non-empty convex compactum and µ0 /∈ A, there exists an open neighborhood W of
the functional µ0 such that W ∩ A = ∅. Moreover, we can take W = {µ ∈ P (X) :
|µ(ϕi) − µ0(ϕi)| < ε, i = 1, n} where ϕi ∈ C(X), i = 1, n, n ∈ N, ε > 0.

We define the mapping Φ : P (X) → R
n by the rule

Φ(µ) = (µ(ϕ1), . . . , µ(ϕn)) ∈ R
n, µ ∈ P (X).

It is clear that Φ is a continuous affine mapping. Therefore Φ(A) is a non-empty
convex compactum in R

n. W ∩A = ∅ implies Φ(µ0) /∈ Φ(A). Hence, by the Hahn-Banach
theorem there is (a1, . . . , an) ∈ R

n separating the point Φ(µ0) and the convex compactum
Φ(A), i.e.,

(5) sup

{ n
∑

i=1

aiµ(ϕi) : µ ∈ A

}

<

n
∑

i=1

aiµ0(ϕi).

Put f =
n
∑

i=1

aiϕi. We obtain from (5) that sup{µ(f) : µ ∈ A} < µ0(f). This means

νA(f) < µ0(f). But µ0 ∈ B. Hence µ0(f) ≤ νB(f). Therefore νA(f) < νB(f). The last
inequality shows that νA 6= νB.

Let now νA 6= νB. We can take that there exists f ∈ C(X) such that νA(f) < νB(f).
Let ε = νB(f) − νA(f). Take µ0 ∈ B such that µ0(f) > νB(f) − ε/2. Then µ0(f) >
νB(f) − (νB(f) − νA(f))/2 = (νB(f) + νA(f))/2 > νA(f), i.e., µ0(f) > νA(f). Hence,
µ0(f) > λ(f) for each λ ∈ A, which means µ0 /∈ A, and therefore A 6= B.

The theorem is proved. �

Later, considering an element νA ∈ OS(X), we assume that A is a non-empty convex
compactum in P (X).

Corollary 3.5. A functional νA ∈ OS(X) belongs to P (X) if and only if A is a single-
point set.

Proposition 3.6. Let A and B be convex compacta in P (X), 0 < t < 1, and tA+ (1 −
t)B = {tλ+ (1 − t)µ : λ ∈ A, µ ∈ B}. Then

tνA + (1 − t)νB = νtA+(1−t)B.

Proof. Let ϕ ∈ C(X). Take λ ∈ A and µ ∈ B. We have (tλ+(1− t)µ)(ϕ) = tλ(ϕ)+ (1−
t)µ(ϕ) 6 tνA(ϕ) + (1 − t)νB(ϕ). Hence,

(6) νtA+(1−t)B(ϕ) ≤ (tνA + (1 − t)νB)(ϕ).

On the other hand, by Theorem 3.3 there is λ0 ∈ A and µ0 ∈ B such that λ0(ϕ) =
νA(ϕ), µ0(ϕ) = νB(ϕ). So, νtA+(1−t)B(ϕ) ≥ tλ0(ϕ)+(1− t)µ0(ϕ) = (tνA +(1− t)νB)(ϕ),
i.e.

(7) νtA+(1−t)B(ϕ) ≥ (tνA + (1 − t)νB)(ϕ).

Relations (6) and (7) imply tνA + (1 − t)νB = νtA+(1−t)B.
The proposition is proved. �
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Proposition 3.7. The set P (X) is a face in OS(X), i.e., tν1 + (1 − t)ν2 ∈ P (X),
ν1, ν2 ∈ OS(X), 0 < t < 1, imply ν1, ν2 ∈ P (X).

Proof. Let νA, νB ∈ OS(X), t ∈ (0, 1), be such that tνA + (1− t)νB ∈ P (X). The latter
is possible only when tA+ (1 − t)B is a single-point set.

Let λ ∈ A, µi ∈ B, i = 1, 2. Since tA+ (1 − t)B is a single-point set, tλ+ (1 − t)µ1 =
tλ+(1− t)µ2. Hence, µ1 = µ2, i.e., B consists of one point. Analogously, A also consists
of one point. But then νA = λ, νB = µ belong to P (X). This means that P (X) is a face
in OS(X).

The proposition is proved. �

The convex set P (X) is not a face in OH(X) if |X | ≥ 2. Indeed, take different
x1, x2 ∈ X. Since

δx1
∧ δx2

+ δx1
∨ δx2

2
=
δx1

+ δx2

2
,

we have that
δx1

∧ δx2
+ δx1

∨ δx2

2 belongs to P (X). But δx1
∧ δx2

and δx1
∨ δx2

don’t

belong to P (X).

4. Categorical properties of the functor of semiadditive functionals

In this part we investigate categorical properties of the functor of semiadditive func-
tionals and show that OS : Comp → Comp is a normal functor.

Let F : Comp → Comp be a covariant functor.
Recall [1] that

1) F preserves the weight of compacts if w(F(X)) = w(X) for each infinite com-
pactum X ;

2) F is monomorphic if for any embedding i of a compactum X into a compactum
Y, the mapping F(i) : F(X) → F(Y ) is also an embedding;

3) F is epimorphic if it preserves surjectivity of compacta;
4) F is continuous if for each inverse spectrum P = {Xα πα

β , I}, there is defined an

inverse spectrum F(P) = {F(Xα),F(πα
β ), I}, and the limit

π : F(limP) → limF(P)

of the mappings F(πα) : F(limP) → F(Xα), where πα : limP → Xα are through
projections, is a homeomorphism;

5) F preserves intersections if for each family {Bα : α ∈ I} of closed subsets of an
arbitrary compactum we have

⋂

α∈I

F(Bα) = F(
⋂

α∈I

Bα);

6) F preserves preimages if for each continuous mapping f : X → Y of a compactum
X into a compactum Y and each closed subset B ⊂ Y, we have F(f−1(B)) =
F(f)−1(F(B)).

Definition 4.1. [2]. A functor F : Comp → Comp is called normal if it is continuous,
preserves intersections and preimages, is monomorphic and epimorphic, transfers the
empty set into the empty set and a single-point set into a single-point one.

Recall that for any compact X there is defined a space OH(X) consisting of all
functionals µ : C(X) → R that satisfy the conditions 1), 2), 3) and 4) of Definition 2.1.

Let X and Y be compacts, f : X → Y be a continuous mapping. Then the mapping
OH(f) : OH(X) → OH(Y ) defined by

OH(f)(µ)(ϕ) = µ(ϕ ◦ f)

is also continuous [13]. It is known [13] that the construction OH is a covariant functor
in the category Comp of compacts and their continuous mappings.
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Let nowX and Y be compact spaces and f : X → Y be a continuous mapping between
them. We define a mapping OS(f) : OS(X) → OS(Y ) by the formula

OS(f)(ν)(ϕ) = ν(ϕ ◦ f)

where ν ∈ OS(X) and ϕ ∈ C(Y ).

Proposition 4.2. The operation OS gives a subfunctor of the functor OH : Comp →
Comp .

Proof. It is clear that for each X we have OS(X) ⊂ OH(X).
We show that OH(f)(OS(X)) ⊂ OS(Y ) where f : X → Y is a continuous mapping.

Let µ ∈ OS(X) and ν = OH(f)(µ). We have, for ϕ, ψ ∈ C(Y ),

ν(ϕ + ψ) = OH(f)(µ)(ϕ + ψ) = µ((ϕ+ ψ) ◦ f) ≤ µ(ϕ ◦ f) + µ(ψ ◦ f)

= OH(f)(µ)(ϕ) +OH(f)(µ)(ψ) = ν(ϕ) + ν(ψ).

This means that ν ∈ OS(Y ). Therefore OS is a subfunctor of the functor OH.
The proposition is proved. �

Proposition 4.3. Let X be an infinite compactum. Then

w(X) = w(OS(X)).

Proof. Let X be an infinite compactum. Consider the functional δx : C(X) → R defined
by the formula δx = ϕ(x), ϕ ∈ C(X). It is clear that the mapping δ : X → OS(X),
defined by the formula δ(x) = δx, x ∈ X, is an embedding of the compactum X
into OS(X). That’s why w(X) ≤ w(OS(X)). We obtain from OS(X) ⊂ OH(X) that
w(OS(X)) ≤ w(OH(X)), and we have from [9, Proposition 1] w(X) = w(OH(X)).
Thus, w(X) ≤ w(OS(X)) ≤ w(OH(X)) = w(X), i.e., w(X) = w(OS(X)).

The proposition is proved. �

Recall that P is the functor on probability measures. If f : X → Y is a continuous
mapping, then the mapping P (f) : P (X) → P (Y ) is defined by the rule

P (f)(µ)(ϕ) = µ(ϕ ◦ f),

where µ ∈ P (X) and ϕ ∈ C(Y ).
The following result establishes a connection between OS(f) and P (f). This con-

nection will play a key role in the investigation of categorical properties of the functor
OS.

Proposition 4.4. Let f : X → Y be a continuous mapping, νA ∈ OS(X). Then the
following formula

(8) OS(f)(νA) = νP (f)(A)

is valid.

Proof. For ϕ ∈ C(Y ) we have OS(f)(νA)(ϕ) = νA(ϕ ◦ f) = sup{λ(ϕ ◦ f) : λ ∈ A} =
sup{µ(ϕ) : µ ∈ P (f)(A)} = νP (f)(A)(ϕ). It shows that OS(f)(νA) = νP (f)(A).

The proposition is proved. �

Further, we show using relation (8) that the functor OS is monomorphic, epimorphic,
preserves preimages and intersections.

Proposition 4.5. The functor OS : Comp → Comp is a monomorphic functor.
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Proof. Let j : X → Y be an embedding of a compactum X into a compactum Y. We
show that OS(j) : OS(X) → OS(Y ) is also an embedding. Let νA, νB ∈ OS(X) be such
that νA 6= νB. By Theorem 3.4 we have A 6= B. Since P is monomorphic, P (j) is also
an embedding and therefore P (j)(A) 6= P (j)(B). We have from here and by virtue of
(8) that OS(j)(νA) = νP (j)(A) 6= νP (j)(B) = OS(j)(νB). The last inequality means that
OS(j) is an embedding as well, i.e., OS is monomorphic.

The proposition is proved. �

In works [9], [13], to prove epimorphity of the functors O and OH one has to prove,
first, variants of the Hahn-Banach theorem for weakly additive functionals in the case of
the functor O, and for positively-homogeneous functionals in the case of OH.

In our case we need not any propositions similar to the Hahn-Banach theorem. For-
mula (8) allows to prove epimorphity of the functor OS using epimorphity of the func-
tor P.

Proposition 4.6. The functor OS : Comp → Comp is epimorphic.

Proof. Let f : X → Y be an epimorphism between compact spaces and νB ∈ OS(Y ). As
the functor P is epimorphic, P (f) is an affine epimorphism. Therefore A = P (f)−1(B)
is a non-empty convex compactum in P (X). We obtain using (8) that OS(f)(νA) =
νP (f)(A) = νB, i.e., OS(f) is an epimorphism.

The proposition is proved. �

The following result shows that the functor OS preserves preimages, but at the same
time the functors O and OH don’t possess this property (see [9], [13]).

Proposition 4.7. The functor OS : Comp → Comp preserves preimages.

Proof. Let f : X → Y be a continuous mapping and Z be a closed subset in Y. We
show that OS(f)−1(OS(Z)) = OS(f−1(Z)). Take νA ∈ OS(f−1(Z)) where A is a convex
compactum in P (f−1(Z)). As P is normal, P (f)(A) ⊂ P (f)(P (f−1(Z))) = P (Z). That’s
why OS(f)(νA) = νP (f)(A) ∈ OS(Z). This means that νA ∈ OS(f)−1(OS(Z)).

Now take νB ∈ OS(f)−1(OS(Z)). Let νA ∈ OS(Z) be such that νA = OS(f)(νB).
Again, we obtain from (8) that νA = OS(f)(νB) = νP (f)(B). Hence, P (f)(B) = A ⊂
P (Z). Since P preserves preimages, B ⊂ P (f)−1(A) ⊂ P (f)−1(P (Z)) = P (f−1(Z)),
which means that νB ∈ OS(f−1(Z)).

The proposition is proved. �

Proposition 4.8. The functor OS : Comp → Comp is continuous.

Proof. Let X = limP where P = {Xα, π
β
α, I} is an inverse spectrum of compact spaces

Xα, α ∈ I. Denote Y = limOS(P) where OS(P) = {OS(Xα), OS(πβ
α), I}.

Let π : OS(X) → Y be the limit of the mappings OS(πα) : OS(X) → OS(Xα) where
πα : X → Xα are through projections.

As π is a continuous mapping, it is sufficient to prove that π is a bijection.
First, let ν1, ν2 ∈ OS(X) be two different functionals. Then there exists ϕ ∈ C(X)

such that |ν1(ϕ)− ν2(ϕ)| = ε > 0. Since the set of functions ψα ◦πα, where ψα ∈ C(Xα),
α ∈ I, is dense in C(X) (see, for the example [2]), there is α ∈ I and a function
ψα ∈ C(Xα) such that |ϕ − ψα ◦ πα| < ε/3. Since each weakly additive functional is a
non-expanding mapping [9, Lemma 1], |νi(ϕ) − νi(ψα ◦ πα)| < ε/3. Further,

ε = |ν1(ϕ) − ν2(ϕ)| ≤ |ν1(ϕ) − ν1(ψα ◦ πα)| + |ν1(ψα ◦ πα) − ν2(ψα ◦ πα)|

+ |ν2(ψα ◦ πα) − ν2(ϕ)| ≤ 2ε/3 + |ν1(ψα ◦ πα) − ν2(ψα ◦ πα)|.

Hence, ν1(ψα ◦ πα) 6= ν2(ψα ◦ πα) and therefore

OS(πα)(ν1)(ψα) 6= OS(πα)(ν2)(ψα).
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Thus, OS(πα)(ν1) 6= OS(πα)(ν2). As π is the limit of the mappings OS(πα), we have
π(ν1) 6= π(ν2). Since the functor OS is epimorphic, π is a surjection.

The proposition is proved. �

Proposition 4.9. The functor OS preserves intersections of closed subsets of a com-
pactum.

Proof. It is sufficient to prove the assertion for the intersection of two closed subsets of
the compactum X since OS is a continuous functor. It is clear that OS(X1 ∩ X2) ⊂
OS(X1) ∩OS(X2). Let’s show the inverse inclusion. Let νA ∈ OS(X1) ∩OS(X2). Then
A is a convex compact subset of P (X1) ∩ P (X2). Since P is normal, A ⊂ P (X1 ∩X2).
Therefore νA ∈ OS(X1 ∩X2).

The proposition is proved. �

At last, the functor OS : Comp → Comp preserves a point and the empty set.
Propositions 4.2–4.9 imply the following

Theorem 4.10. The functor OS : Comp → Comp is normal.

Acknowledgments. The authors would like to express their sincere thanks to the
referee for diligent reading of the manuscript and pointing out errors contained in the
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