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ON CERTAIN RESOLVENT CONVERGENCE OF ONE NON-LOCAL
PROBLEM TO A PROBLEM WITH SPECTRAL PARAMETER IN
BOUNDARY CONDITION

E. V. CHEREMNIKH

Dedicated to 100 anniversary of Mark Krein.

ABSTRACT. A family of non-local problems with the same finite point spectrum is
given. The resolvent convergence on a dense linear subspace which gives a problem
with spectral parameter in the boundary condition is considered. The spectral eigen-
value decomposition of the last problem on the half line for Sturm-Liouville operator
with trivial potential is given.

1. INTRODUCTION

There are many works concerned with problems with spectral parameters in the boun-
dary condition. An approach which was developed in [1] and based on the fundamental
notion of a spectral function contains various problems both with a parameter and with-
out it in the boundary condition. Some references to the problems with a spectral
parameter in the boundary condition (discrete spectrum etc.) can be found in [2].

A common approach in [1] to various problems indicates their “nearness”. In this
relation we want to point out one more type of the problem. Namely in this article it
is shown that under the condition of conservation of point spectrum and the poles of
analytic continuation of the resolvents too of some family of operators the family of such
resolvents may be convergent to the resolvent of a problem with spectral parameter in
the boundary condition. Note that resolvent convergence here takes place on a dense
subspace only. Some information about resolvent convergence can be found in [3, ch. 8,
§ 1].

We consider a simple example of the Sturm-Liouville operator on the half line with
trivial potential and a variable non-local boundary condition. The aim of this article is
to prove that the limit problem has now a local boundary condition, but this condition
contains a rational function of the spectral parameter. The poles of the analytical con-
tinuation of the resolvent are essential here, so we recall, for example, the work [4] which
contains the physical meaning of such poles.

2. A NON-LOCAL STURM-LIOUVILLE PROBLEM WITH TRIVIAL POTENTIAL

Let us consider the problem

{ —v"—C(v=u, x>0

21) 0(0) + (0,1) 2(0.00) = O

where u(z), n(x) are given functions from the space L?(0,00). Recall that the Sturm-
Liouville operator L, generated by the expression —v”; v(0) = 0 is diagonalized by the
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transformation F : L*(0,00) — L2(0,00), p(1) = 1/7, namely,

o0 sin(z+/T)
o(1) = Fu(r) = u(r) ——7=—du,
(2.2) /0 VT

u(z) = Flp(x) = %/ODO o(7) sin(zv/7) dr.

The scalar product in L?(0, 00) and L2(0, c0) is denoted by (-,-)2(0,00) and (-, -). The
integration by parts gives
(2.3) F(=v")(r) = 7Fv(r) — v(0).

If v(0) = 0, then (2.3) signifies the equality L = F~1SF where So(1) = 70(7), 7 > 0.
We introduce the operator S : L2(0,00) — L2(0,00) as follows:

oay | DO = (¥ € L2(0.00) [Fo = e(v) : J;¥ [ru() + (W) p(r) dr < o0} |
Su(r) = 7(7) + c()

If v(0) # 0 then (2.3) signifies the equality Lyax = F~LSF where Liax is the corres-
ponding maximal differential operator.
The values ¢ = ¢(¢) defines a linear functional in the space L2(0,00) and due to

(2.2)-(2.3), c(¥)) = —v(0).

Let
(2.5) o= Fu, b=Fv. ~=Fn
We introduce the operator T : L%(O, 00) — L,Q)(O7 o0) as follows:
(2.6) { D(T) = {4 € L2(0,00) : —c()) + (1, ) = 0}
Ty = S, ¥ € D(T).

Then the problem (2.1) takes the form

(2.7) (T =Y =9, ¢eLy0,00).
Taking the derivative of the second equality in (2.2) we obtain formally u'(0) = (¢, 1).
So, we need the operators S, T and the functionals

(2.8) c(¥) =—v(0), (¥,1)=2'(0), o =Fv.
The problem (2.1) due to (2.3), (2.5) takes the form
(1 = Qv(T) + (¥, 7) = p(7), T>0.
Let S¢ = (S =) " Te =(T =), E¢(r) = 1/(7 = (), ¢ £ [0,00). Then
¥+ (1, 7)Ee = Sce.
Multiplying by v we obtain (¢, v)[1 + (E¢,v)] = (Sce, 7).

We denote
(2.9) 50 =1+ (Ben) =1+ [ 2 pirar,
then
(2.10) b= Teo = Scp— —(Sco)Eer C£10,00), 8(C) #0.

5(¢)

The operator T¢ is bounded, so T¢ is the resolvent.
We need some limit values if { — o, Im¢ — +0, ¢ > 0, which we denote by d+(c) =
lime_,, 6(¢) and

(211) (Towyw)i = EEI}T(TCQPa d})a 5i(0) 7& 0.
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These values exists if, for example, @, 1,y € C1[0, 00).

Let
(2 12) { (90; bO’) =0- (10')90(0') - (Sa(p”)/)]i
(aavw) = 5+(0_) (Eo-,’ll))+ - 5 (O') (EO'a d})*

Lemma 2.1. If v € C'[0,00) N L%[O,oo) then the resolvent of the operator T has the
“ump” on the half line (0,00),

(2.13) (Top, )+ — (Top,¥)— = (¥, b5)(ac, ¥),
where ¢,¢ € C*[0,00) N L2[0, 00) and §4(0)d_ (o) # 0.
Proof. As

o) = [ E D sy an v = [T oy,

we have
(214) (Sop, %)+ = (Sop,¥)- = 2mip(0)d(0), (g, )4 — (Eo, ) = 27ith(0)p(0).
We have (see (2.10))

I=(Top,¥)+ — (Top, ) - = (So, )+ — == (So0,7)+ (Eoy )+

3 < )
= [Sr.)- = 55 (Sr0) - (Br)-| = 2mi(o)TEInle)
(2.15) —%@{(&7%7) + 2mip(0)70)0(0)| (B, )+ 5%@<saw,v>_<Emw_
= 2mio(o)p(o) | (o) — W
— 2mipla)o(o) [900) - ()1
1 1
P L
There exists the value A(o) such that
(2 16) W ((UO?) O'ad}) ( )|:5+](-0_) (Eo”w)Jr_ 5_]&0_ (Eovw):|
' 1 27y (o) p(0)
MO 757 01— 5y o+ T 8

Indeed, if A(o) = 257, (((T)) then (2.16) becomes
mip(c

) _ d(0) { 11 }
5:(0)  2mip(o) [34(0)  8-(0)]

i.e., the trivial equality d4 (o) — 0_(0) = 2miy(o)p(o). Substituting (2.16) into (2.15) we
obtain

I = [2mip(0)p(o)A(o) — (Setb,7)-(ac, ¥) = (¢, bs)(ac, V).
Lemma is proved. O
Obviously the function E¢(7) is the Fourier transform of the function

(2.17) ec(z) = eV Tm\/C >0,
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ie., Flec)(r) = TL*C = E. (7). Taking the derivative of the last equality with respect to
¢ we obtain that Fourier transform v = Fn of finite sums

n(z) = Zpk(x)ea”, Re oy <0,

where py(x) are arbitrary polynomials, is a rational function (7), bounded on [0.0c0) and
such that v(7) = O (1), T — 00. Due the elementary identity for the scalar product,

1 1 i
<T—<’T—Zl>:\/6+\/<_1’ Im\/¢ >0, Imy/¢ >0,

the function 6(¢) (see (2.9)), where v = Fn, is a rational function on /¢, Im+/¢ > 0.
Later we consider only such a function §(¢) and also we suppose that the functions
o(1) = Fu(r), ¥(1) = Fo(r) (see (2.1), (2.5)) are rational too.

Theorem 2.2. Suppose that 6(¢) #0, ¢ €[0,00) and §4(0)d_(0) #0, 0 > 0. Then
1"
211 0

(2.18)

(219) (@7¢)L2(O,oo) = ((p?bﬂ)(aﬂaw) do

where ¢(7), ¥(T) are rational functions.

The proof is based on a well-known method of contour integration. Since (T¢(T —
O, ) = (¢, ¥), p € D(T), we have

(2.20) “’%’) — ~(Tep0) + L (TTp.0).

Because (1), ¥(7) are rational functions (see (2.10), (2.19)),
1
/ —(T¢To,9)d¢ — 0, R — oo.
¢l=r S
Integrating (2.20) we obtain

2mi(o, 1)) = / T (@ t)s — (Lo, ) do,

then (2.19) follows from (2.13).
The theorem is proved. |

3. STABLE FINITE POINT SPECTRUM AND THE RESOLVENT CONVERGENCE ON A
DENSE SUBSPACE

According to (2.10), the spectrum of the operator T' (see (2.6)) belongs to the union of
the half line [0, 00) and the set of zeros of the function §(¢), ¢ & [0,00). If 64 (0)d_(0) #0
then, due to (2.13), the continuous spectrum of T' coincides with [0, 00). The set of zeros
of the function 6(¢), ¢ & [0,00) (or d4+(0)d_(0), o € [0,00)) is the set of eigenvalues (or
spectral singularities) of the operator T'.

Let
(e Ceaw)
oy 0= Ve ey MVEED

where 0; # 0;, i # j and Im60; < 0. The numbers a; # 0 are arbitrary. If Imas > 0,
then a? & [0,00) are eigenvalues of 7' and if Imay = 0 then a2 € (0,00) is a spectral
singularity of 7. If ay < 0 then a? is not zero of the function 6(¢), but a is a pole of
the analytic continuation of the resolvent over continuous spectrum.
Further we suppose that ay = const, k = 1,...,n, i.e., the point spectrum is stable.
Let t > 0, t — oo, be some parameter and

(3.2) 0; = at = —iy/7jt, j=1,...,n
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where 7; = const, 7; > 0, 7; # 7, j # k. So,

(VC—a1)...(vC—an)
(VC—ait)...(/C — ant)
and, by analogy, we write v(7,t) instead of v(7). The corresponding operator is denoted
by T(t) and its resolvent by T'(t); = (T(t) — ¢)~*. The spectrum of the operator T'(t)
is stable and we will study the limit values of T'(t)¢¢ if ¢ — co. According to (2.10) it

remains to study the limit lim;_, g((z)f)

(3.3) (¢, 1) =

N

Denote
m(s) =(s—a1)...(s—an)

(3.4) { n(s)=(s—61)...(s—6,)
Then lim; o t"6(¢,t) = Km(y/¢) and

() Z(n) _ =
(3.5) tlggo 5(¢,t)  Km(y/<)’ K= ar..ay
where
(3.6) Z(T) = flirgo t"y (7, ).

We need the following polynomial of degree m — 1:
1

(B.7)  pm—1(t) = —=m(/T) —m(=VT)), T>0, n=2m or n=2m-— 1.
2VT

Lemma 3.1. limy_ o t"y(7,t) = =i Kpm—_1(7).

Proof. Let us consider the decomposition of the rational function (see (3.2))

_mR) A A

(38) h = = e Ve

Then (see (2.9))

- Aq(t) An(t) Aq(t) Ap(t)
. t = ]_ “ .. = ]_ oo .
(3.9) v(:?) +7'—|—7'1t2+ +T+7'nt2 +T—0%+ +T—9%

Indeed, 67 < 0, @ = 67 and the condition Im, /6% > 0 gives /07 = \/—7;12 = i\/Tjt =
—0;. So, according to (2.8),

( L A0 ) _ A A0

T—C 17—0% \/Z"’\/% VE—10;

J

According to (3.8),

. m(6;
(3.10) iA;(t) = n,((0§ =0(t), t— oo.
J
Later,
1 p+1 Tk71
—m=- > 5z T ro(mt), (1)
(3.11) / k=1 7

— P+l ( 1 )
= =0 — t — oo.
2p+2 /2 2p+4 |’
0; (Gj —7) t
The condition

(3.12) t"A;(t)rp(T,t) = 0(1), t— o0
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demands that 2p + 3 > n. So, we choose p=m — 1 if n =2m or n = 2m — 1. We have

n n Pl k-1 p+1 1
ZT_HQ_ ZAJ Z@Qk +O<t2p+3> ZXk k1+0<t2p+3)

J=1

In view of (3.9), (3.11)~(3.12),

p+1
(3.13) Z(r) = lim t”(ZXk(t)T“>,
k=1
where (see (3.10))
- (N ()
(3.14) ztlirgo(t Xi(t)) = _tlggo <t 2 W)

Let (see (3.4))

Then
n gl 2k

Y o ggk
=" J
Since degn’(s) = n—1, we must calculate the hmlt (3.14) under the condition [ —2k > —
only, therefore,

n n l
(0 == 3 (3 2.

1=2k—1 j=1
Here —1 <1 — 2k < n — 2k <n — 2. Note, that

n v

z - zY
= Res,—g;—— =0, 0<v<n—2
jgl n/(z) z=0; Z ’ TL(Z)
and, in the case v = —1 (see (3. 2) (3.4)),
n 1 n 1
— = Res,—p, ——
; zn/(2) =0, ; 7 zn(2)
1 1 -1
= —RGSZ:() = — = — ( 1) = _5
zn(z) n(0) Qa1 ... Qpt™ tn
Therefore, the nonzero limit exists in the case [l — 2k = —1 only, i.e., | =2k — 1,

itlim (tnXk(t)) = Kmop_1.

Substituting in (3.13) we obtain Z(7) = —iKpm_l(T), where

p+1
(3.15) Pm—1( Zka T Z Maks1T"
(recall that p = m — 1). The representation (3.7) follows from the identity
m—1
m(s) —m(—s) = 2s Z Makg152F = 2spm_1(s?).
k=0

The lemma is proved. g
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As a corollary we obtain (see (3.5)) that

(T, t) 1
10 BRFCH T !

Theorem 3.2. On the dense subspace D(S™) C L2(0,00) there exists the strong limit
T(0)cp=s— tlim T(t)cp, ¢ € D(S™),

(7).

and
7
3.17 T — S+ ——(pm_10, B-)Ex.
Proof. Because 67 < 0, if follows from (3.11) that
p+1
lrp(7,1)| < 16,2 p+1l=m.

Therefore if ¢ € D(S™) then from point convergence (3.16) we have the strong conver-
gence

. 7('775) _ 1
(3.18) Jim S 00) = Pt ().

Due to continuity of the scalar product, the identity (3.17) follows from (2.10).
The theorem is proved. O

4. THE PROBLEM WITH SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

Obviously, pm—1 ¢ L2(0,00), but we will denote the scalar product in (3.17) by the
following formal symbol:

(SC@J_jmfl) = (pmflsaEZ)'
We will use this convention in the other cases too.
So, the equality (3.17) becomes
)

(4.1) T(o0)cp = Scp + ——= (8¢, Prm—1) Ec.-

Note that the element T'(co0)c¢ belongs to the direct sum D(S™) + {E.}, ¢ = const.
Every element of such a sum has a unique decomposition,
(4.2) =1y +AE;, o€ D(S™), AeC
where A = —c(v)).
Theorem 4.1. The equation T(c0)¢cp = 9 has a solution ¢ € D(S™™Y) iff the element
¥ has the form (4.2) and the condition

7

(4.3 D) = A
holds. Then

(4.4) o =(S v, o€ DS™)
(4.5) o =(5- Q.

Proof. Let ¢ be a solution of the equation T'(c0)¢¢ = 1. The decomposition (4.2) is
unique, therefore the equation
]
¢ m(\/Z) ¢ 1)E¢ ¢
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is equivalent to the system
Scp = o
m(sggoaﬁm—l) =A
Due to (4.3), this system reduces to one equation S¢¢ = 1o from which we obtain
(4~4) Since (S —(¢)E; = 0 and S|p(g) = S|p(s), we have (S =)y = (S —() (Yo +AE;) =
(S — Qo = (S — )90 = ¢, which proves (4.5). Conversely, the equality T'(co)cp = v

results from (4.3)—(4.4).
The theorem is proved. g

Lemma 4.2. 1) If the element 19 € D(S™) has the presentation

(4.6) Yo =+ c()Ee, e D(S),

then the form (o, P,,_1) has following presentation in terms of the element v = F~11):

3

A7) (@0.Bp1) = ) (=1 mapsv®* TH(0) ~ §(m(\/5) = m(=/())v(0).

0

E
I

2) If the function u(z), where Fu = ¢ = (S—() is such that u®(0) =0, j =0,1,. ..,
then the presentation (4.7) becomes

@8)  WoBne1) = 32 (m(VD) = m—y/OW(0) = 5m(/3) = m(=/D)w(0).

Proof. 1) Let 1o = Fy. Then, due to (2.2),
(49) Y () = 204 [ ()t cos(avTvTdr
0

from which, for z = 0, we obtain (g, 7%) = (=1)*y*+1(0), k= 0,1,...,m — 1. Recall
that E. = F(e¢), ¥ = Fu, and c(¢p) = —v(0) (see (2.8)). So it follows from from (4.6)
that y(z) = v(z) — v(0)e?Ve® Tm\/C > 0, therefore

y2k+1(0) — U?kJrl(O) _ (i\/Z)2k+1U(0).

Finally,
m—1 m—1
(%0, Prn—1) = > maky1 (b0, ™) = > (= 1) mag 1y (0)
k=0 k=0
m—1
=Y (1) marr10®FV(0) — r(¢)0(0)
k=0

r(Q) = D (=1 Fmarga (iv/0)*F
k=0
=i 3 (D maa (VO = & [m(/0) — m(~ V2]
k=0

The statement 1) is proved.
2) If ¢ = Fu, ¢ = Fo then (4.5) signifies that —v” — (v =u, z > 0, i.e.,, v = —Cv—u.
Further, v!V = —(v” — u” = (*v + Cu — " and so on. Due to the condition u)(0) = 0,
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)k2'(0). The first expression in (4.7) becomes

¢
2490) = (225 ma (VOO )0
k=0

m(v/0) = m(=/0)).

—

m

j=0,1,..., we have v2*+1(0) = (
(

(—1)km2k+1v
k=0

Sl=
Y
~/~

Now the relation (4.8) follows from (4.7).
The lemma is proved. O

Theorem 4.3. In the class of the functions ¢ = Fu € D(S™ 1) such that u9)(0) = 0,
j=0,1,..., the equation T(c0)cp =1, 1 = Fuv is equivalent to the system

(4.10) " —Cv=u, >0

1

(4.11) —= (m(/O) = m(=/¢) ) v'(0) + (m(v/C) + m(=+/€)) v(0) = 0.
z\/g_"(

The proof follows from Theorem 4.1. Indeed, the equation (4.5) gives (4.10) and the
condition (4.3) where A = —c(¢)) = v(0) (see (2.8)) gives (Yo, P,,_1) = m(v/)v(0).
Substituting here (4.8) we obtain (4.11).

The theorem is proved. g

5. EXAMPLE: THE EIGENFUNCTION EXPANSION OF THE PROBLEM ON THE HALF LINE
WITH SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

As an example, we consider the operators T'(t) (see (2.6)) without point spectrum. It
signifies that in (2.9), (3.3) we have Ima, <0, k=1,...,n.

At the beginning, in order to ensure the convergence of the corresponding integrals,
we suppose that the functions u(x), v(x) have rational Fourier transforms, ¢ € D(S™),
Y e L2(0,00).

Due to Lemma 3.1

flim t"y(1,t) = —iKpm—1(7).
According to (3.3),
Jlim £"5(¢, 1) = Km(:/<).

Therefore,
tliglo(@a bn) (a‘(Tv w)

= lim {[t” (p(0)d-(0) = (So0,7)-)] Fn ( ) - 5—1@(&”1@_) H

t—o0o

= (¢, b0) (G0, ),
where
(0.00) = @(@)m(=/@) +i(Se0, 1) -

A i 1 .
(aavw) - m(\/g)(Etﬂw)er(_\/E)(and})*

(5.1)

The equality (2.19) becomes

1 © A
2 = — b ) (g, ) do.
(52) (o) = 3= | (obo)(ar 0o
Let us introduce the rational function

L mlyE) +m(—ya)
©:3) o) = N Vo) = m(—ya)
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Then the system (4.10)—(4.11) takes the form

—v" —(v=u
(5.4) { o(0) = R(C)o(0) -

mye)
Let s(o) = Vo) Th
_ Us(o)—i—l (o) = Blo) +iva (U)—I—Z\/_
R(o) = \/_s(a) -1 () R(o) —iy/o
In view of (3.7),
pmarlo) _ 1 (1N _ i
(> mevoRb v e o) R e

Let di(o), k =1,...,m — 2, be polynomials defined by the identity

4o () = (P-1(7) = P—1(0))/ (1 — o) Z di(o

Then
(8o, Pn—1)- = (0,T5) + Pm—1(0)(¢; E )+
Because of (4.9) we have (@, 7) = (=1)*u?**1(0), ¢ = Fu, therefore

M

m—

(S0, Pm_1) W (0)di (o) + pm-1(0) (¢, Es) 4
k:()

If u9)(0) =0, =0,...,n, then
(5'6) (Saw’pm—l)f = pm,l(a)(gp, Eo)Jr'

Theorem 5.1. Suppose that the polynomial m(z) has zeros in the half plane Imz < 0.
Then the eigenfunction expansion of the problem

(57) {—v”—av:O,x>0

v'(0) = R(o)v(0)

(see (5.3)) is given by the relations

®(o) = [, u(x) [cos Vor + R\(;) sin 0’3;‘:| dx

u(z) = % fooo (o) [cos Vor + % sin \/Ex} ﬁ do
ifu?(0)=0,j=0....,n

Proof. The relations (5.1)—(5.2) and the problem (5.4) have been obtained by passing
to the limit. Therefore, we must prove that the function a(z) satisfies the equation and
boundary condition in (5.7) and that (5.2) coincides with (5.8).

Note that the function

e(x, /o) = cosox + \ﬁ_) sin vox

(5.8)

satisfies the equation and the condition (5.7).
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In view of (5.1), (5.6) and (5.5),
(¢, bo) (@0))

= [Qp(o)m(—\/g) +ipm—1(0)(<P,Ea)+] {m

- |:sp(0') + ﬁ <$ - 1) (ap,E[,)+} [s(0) (B, )+ — (Egy 1) -]

= (v, B)(4,9).
Further, (see (5.5))
B2 = sin/ox i —2iy/o o—ivET _ 1 (x5
Ble) = — = Y 5 F R +ive Ry +iva Vo),

Ar) = —me Vor e = m@(m, Vo).

(9.5)(00) = T (0, V), 0)

from which it follows (see (5.2)) that

Finally,

(00 =+ [ i el VR VE) ) do

i.e., the relations (5.8).
The theorem is proved. g
Let n = 1 and Ima; < 0, for example a; = —if, § > 0. Let m(s) = s —a; = s+ 10,
then (see (5.3)) R(c) = 6 = const. So, there is not a spectral parameter in the condition
v'(0) = 6v(0). The expansion, in this case,

D(N) = /000 f(x) (cos vV + % sin \/Xx) dx

f(z) = %/ODO d(N) (cos vV + % sin \/Xx) T\/Xm dX

is well known (see [5, p. 283]).

Let n = 2, m(s) = (s +i61)(s + i62), 01,02 > 0, 61 # 03, then R(o) = 991927_0, it

+0
is a real valued function, the boundary condition is (61 4 02)v'(0) = (6162 — }J')U(OQ) If
u(0) = w/(0) = 0 then (5.8) defines a corresponding eigenfunction expansion. In other
words, we have a simple decomposition (5.8) if the function u(z) satisfies the boundary
condition for all values of the spectral parameter o.

6. CONCLUSION

The non-local Sturm-Liouville problem
{ —v" —C(v=u, x>0
v(0) + (v,1(t)) L2(0,00) = 0

where 7(t) is some variable element from the space L?(0,00), after passing to the limit
for t — 0o, becomes the problem

{ " —C(v=u, x>0
v'(0) = R(C)v(0)

with a spectral parameter in the boundary condition.
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The point spectrum of the Sturm-Liouville operator must be stable and this spectrum
defines the rational function R(¢). The expansion on eigenfunctions of second problem
is generated by the expansion of the first one.

The calculus uses the language of Friedrichs’ model. The maximal operator S was
introduced in Friedrichs’ model in [6]. Some applications of this notion and non-local
problems in Friedrichs’ model one be found in [7].

REFERENCES

1. I. S. Kac, M. G. Krein, R-functions — analytic functions mapping the upper half plane into
itself, in: F. V. Atkinson, Discrete and Continuous Boundary Problems, Mir, Moscow, 1968,
pp. 629-642 (Appendix). (Russian)

2. P. A. Binding, P. J. Browne, B. A. Watson, Sturm-Liouville problems with boundary conditions
rationally dependent on the eigenparameter. I, Proc. Edinb. Math. Soc., (2) 45 (2002), no. 3,
pp. 631-645.

3. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

4. B. S. Pavlov, Non-physical sheet for Friedrichs’ model, Algebrai Analiz 4 (1992), no. 6, 220-233.
(Russian)

5. M. A. Naimark, Linear Differential Operators, Nauka, Moscow, 1969. (Russian)

6. E. V. Cheremnikh, On the limit values of the resolvent on continuous spectrum, Visnyk “Lviv
Polytechnic” Appl. Math. 4 (1997), no. 320, 196-203. (Ukrainian)

7. E. V. Cheremnikh, Non-selfadjoint Friedrichs’ model and Weyl function, Reports Nation. Acad.
Sci. Ukraine (2001), no. 8, 22-29. (Ukrainian)

Lviv POLYTECHNIC NATIONAL UNIVERSITY, Lviv, UKRAINE
E-mail address: echeremn@polynet.lviv.ua

Received 17/01/2007



