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ON SOLVABILITY OF A PARTIAL INTEGRAL EQUATION IN THE

SPACE L2(Ω × Ω)

YU. KH. ESHKABILOV

Abstract. In this paper we investigate solvability of a partial integral equation in
the space L2(Ω × Ω), where Ω = [a, b]ν . We define a determinant for the partial
integral equation as a continuous function on Ω and for a continuous kernels of the
partial integral equation we give explicit description of the solution.

In the models of solid state physics [1] and also in the lattice field theory [2], there
appear so called discrete Schrodinger operators, which are lattice analogies of usual
Schrodinger operators in continuous space. The study of spectra of lattice Hamiltonians
(that is discrete Schrodinger operators) is an important matter of mathematical physics.
Nevertheless, on studying spectral properties of discrete Schrodinger operators there
appear partial integral equations in a Hilbert space of multi-variable functions [1, 3].
Therefore, on the investigation of spectra of Hamiltionians considered on a lattice, the
study of a solvability problem for partial integral equations in L2 is essential (and even
interesting from the point of view of functional analysis).

A question on the existence of a solution of partial integral equations for functions of
two variables was considered in [4–8] and others. In this paper we consider an integral
equation on the space of functions of two variables L2(Ω × Ω), where Ω = [a, b]ν ⊂ Rν ,
with one partial integral operator. We define a determinant for the partial intergal equa-
tion (PIE) as a continuous function on Ω, which helps to obtain the classical Fredholm
theorems for a PIE, and for a continuous kernels of the PIE we give explicit description
of the solution.

Let H = L2(Ω × Ω) (H0 = L2(Ω)) be a Hilbert space of measurable and quadratic
integrable functions on Ω × Ω (on Ω), where Ω = [a, b]ν . We denote by µ the Lebesgue
measure on Ω and define the measure µ̂ on Ω × Ω by µ̂ = µ ⊗ µ. In the space H, we
consider a partial integral operator (PIO) T1 defined by

T1f =

∫

Ω

k(x, s, y)f(s, y) ds, f ∈ H,

where k(x, s, y) ∈ L2(Ω
3). The function k(x, s, y) is called kernel of the PIO T1.

If there exists a number M such that

(I) b(t) ≤ M for almost all t ∈ Ω,

then the operator T1 is a linear bounded operator on H and it is uniquely defined by its
kernel k(x, s, y), where

b(t) =

∫

Ω

∫

Ω

|k(x, s, t)|2dxds.
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A kernel k(s, x, y) corresponds to the adjoint operator T ∗

1 , i.e.

T ∗

1 f =

∫

Ω

k(s, x, y)f(s, y) ds, f ∈ H.

Consider a family of operators {Kα}α∈Ω in H0 associated with T1 by the following
formula

Kαϕ =

∫

Ω

k(x, s, α)ϕ(s) ds, ϕ ∈ H0,

where k(x, s, y) is the kernel of T1.
Further, if a set of integrability in the integral is absent, then we mean integrability

by the set Ω. First, we consider certain properties of PIO T1 with the kernel k(x, s, y) ∈
L2(Ω

3) satisfying the condition (I ) and then we study solvability of the PIE with the
kernel k(x, s, y) ∈ C(Ω3).

Lemma 1. Let f ∈ H and ϕy(x) = f(x, y), where y ∈ Ω is fixed. Then for an arbitrary
ε > 0, there exists a subset Ωε ⊂ Ω such that µ(Ωε) ≥ µ(Ω) − ε and ϕα ∈ H0, α ∈ Ωε.
Moreover, ‖ϕα‖ ≤ C, α ∈ Ωε for some C > 0.

Proof. Let f ∈ H and d = ‖f‖2 6= 0. Define two sequences of measurable subsets in Ω
by the following equalities:

An =

{
y :

∫
|f(x, y)|2dx < n, y ∈ Ω

}
, n ∈ N,

Bn =

{
y :

∫
|f(x, y)|2dx ≥ n, y ∈ Ω

}
, n ∈ N.

The sequences of subsets {An} and {Bn} hold the following properties:
1o. A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · · and B1 ⊃ B2 ⊃ · · · ⊃ Bn ⊃ · · · ;
2o. limn→∞ An =

⋃
n∈N

An and limn→∞ Bn =
⋂

n∈N
Bn;

3o. Ω = An ∪ Bn and An ∩ Bn = ∅, n ∈ N.
Further, we define two bounded sequences of non-negative numbers an and bn by

an =

∫

An

dy

∫

Ω

|f(x, y)|2dx and bn =

∫

Bn

dy

∫

Ω

|f(x, y)|2dx.

The sequences of numbers an and bn have the properties:
4o. an is increasing and bn is decreasing;
5o. an + bn = d, n ∈ N.

From the boundedness and monotonicity of the sequences an and bn we infer that
both of them have finite limit. By the property 5o and by the construction of the set Bn

we obtain that d−an ≥ 0, n ∈ N and d ≥ an +nµ(Bn), n ∈ N. Then µ(Bn) ≤ (d−an)/n,
n ∈ N. Therefore limn→∞ µ(Bn) = 0. By the property 3o we have µ(An) = µ(Ω)−µ(Bn),
n ∈ N. Hence, limn→∞ µ(An) = µ(Ω), i.e. for an arbitrary small ε > 0 there exists a
number n0 ∈ N such that µ(Ω) − ε ≤ µ(An0

) ≤ µ(Ω) and 0 ≤ µ(Bn0
) < ε. Moreover,

this means that ∫
|ϕα(x)|2dx =

∫
|f(x, α)|2dx < n0, α ∈ An0

.

Then, for the set Ωε = An0
we have ϕα ∈ H0, α ∈ Ωε and ‖ϕα‖ ≤ C, α ∈ Ωε for all

C ≥ n0. �

Corollary 1. Let f ∈ H, ‖f‖ = 1 and ϕy(x) = f(x, y), where y ∈ Ω is fixed. Then
there exists a measurable subset Ω0 ⊂ Ω such that, µ(Ω0) > 0 and the family {ϕα}α∈Ω of
functions on Ω has the following property: ϕα ∈ H0, α ∈ Ω0 and 0 < ‖ϕα‖ ≤ C, α ∈ Ω0

for some C > 0.
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Corollary 2. Let f ∈ H. Then there exists a decreasing sequence {εn}n∈N of positive
numbers such that limn→∞ εn = 0 and

(a) for each n ∈ N there exists a measurable subset Ωn ⊂ Ω with the property µ(Ωn) >
µ(Ω) − εn such that Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωn ⊂ . . . and

⋃
n∈N

Ωn = Ω;

(b) for each n ∈ N, ϕ
(n)
α ∈ H0, α ∈ Ωn and there exists a positive number Cn such

that ‖ϕ
(n)
α ‖ ≤ Cn, ∀α ∈ Ωn, where ϕ

(n)
α (x) = f(x, α), α ∈ Ωn;

(c) for any n ∈ N, the function

fn(x, y) =

{
f(x, y), if (x, y) ∈ Ω × Ωn,

0, otherwise

belongs to H and limn→∞ fn(x, y) = f(x, y).

Proposition 1. The following two conditions are equivalent:
(i) A number λ ∈ C is an eigenvalue for the operator T1;
(ii) A number λ ∈ C is an eigenvalue for operators {Kα}α∈Ω0

, where Ω0 is some
subset of Ω such that µ(Ω0) > 0.

Proof. We start with the implication (i) ⇒ (ii). Let λ ∈ C be an eigenvalue of operator
T1, i.e. T1f0 = λf0 for some f0 ∈ H, ‖f0‖ = 1. We define ϕα = ϕα(x) = f0(x, α), α ∈ Ω.
Therefore, we have a family {ϕα}α∈Ω of functions on Ω. Then, by Corollary 1, there
exists a subset Ω0 ⊂ Ω such that µ(Ω0) > 0 and ϕα ∈ H0, α ∈ Ω0, ‖ϕα‖ 6= 0, ∀α ∈ Ω0.
For an arbitrary α ∈ Ω0 we have

Kαϕα =

∫
k(x, s, α)ϕα(s) ds =

∫
k(x, s, α)f0(s, α) ds = λf0(x, α) = λϕα(x),

i.e. the number λ is an eigenvalue for Kα, α ∈ Ω0.
Now, we prove the implication (ii) ⇒ (i). Suppose that there exists a subset Ω0 in Ω

with µ(Ω0) > 0 and a number λ ∈ C is an eigenvalue for operators Kα, α ∈ Ω0. Since
Kα is a compact operator for all α ∈ Ω, then there exists a function f0 ∈ H, f0 6= 0 [9]
such that T1f0 = λf0. �

Proposition 2. If λ ∈ C is an eigenvalue of the operator T1, then the number λ is an
eigenvalue of the operator T ∗

1 .

Proof. Let λ ∈ C be an eigenvalue of the operator T1. Then there exists a subset Ω0 ⊂ Ω,
µ(Ω0) > 0 such that λ is an eigenvalue of the every compact operator Kα, α ∈ Ω0.
Therefore the number λ is an eigenvalue of every operator K∗

α, α ∈ Ω0

K∗

αϕ =

∫
k(s, x, α)ϕ(s) ds, ϕ ∈ H0.

By Proposition 1, the number λ is an eigenvalue of the adjoint operator T ∗

1 . �

Proposition 3. Every eigenvalue of the operator T1 has infinite multiplicity.

Proof. Let λ ∈ C be an eigenvalue of T1. Hence, there exists an element f0 ∈ H, ‖f0‖ = 1

such that T1f0 = λf0. We consider a subspace L0 ⊂ H : L0 = {f̃ ∈ H : f̃(x, y) =
b(y)f0(x, y), where b = b(y) is an arbitrary bounded measurable function on Ω}. For

every f̃ ∈ L0 we have T1f̃ = λf̃ , i.e. L0 ⊂ Mλ, where Mλ is the eigen-subspace
corresponding to λ. But, the subspace L0 is infinite dimensional, therefore, Mλ is also
infinite dimensional subspace of H. �

Now we consider the equation

(1) f − κT1f = g0

in the space H, where f is an unknown function from H, g0 ∈ H is given (known) function,
κ ∈ C is a parameter of the equation, T1 is PIO with a kernel k(x, s, y) continuous on Ω3.
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It is clear that, if k(x, s, y) ∈ C(Ω3) then for all α ∈ Ω the integral operators Kα on

H0 are compact. For each α ∈ Ω we denote by ∆
(1)
α (κ) and M

(1)
α (x, s; κ), respectively,

the Fredholm determinant and the Fredholm minor of the operator E−κKα, κ ∈ C [10],
where E is the identity operator in H0. According to the continuity of the kernel k(x, s, y)

and uniform convergence of the series for ∆
(1)
α (κ) and M

(1)
α (x, s; κ) for every κ ∈ C we

obtain [10] that the function D1(y) = D1(y; κ) on Ω and the function M1(x, s, y) =
M1(x, s, y; κ) on Ω3, which are given respectively by the equalities

D1(y; κ) = ∆(1)
y (κ), y ∈ Ω and M1(x, s, y; κ) = M (1)

y (x, s; κ), y ∈ Ω,

are continuous functions on Ω and Ω3 for every κ ∈ C.
The continuous function D1(y) = D1(y; κ) (M1(x, s, y) = M1(x, s, y; κ)) is called a

determinant (a minor) of the operator E − κT1, κ ∈ C.

Definition 1. If for a number κ0 ∈ C D1(y; κ0) 6= 0 for all y ∈ Ω, then κ0 is called a
regular number of the PIE (1). A set of all regular numbers of the PIE (1) is denoted
by RT1

.

Definition 2. If for a number κ0 ∈ C there exists a point y0 ∈ Ω such that

D1(y0; κ0) = 0,

then κ0 is called a singular number of the PIE (1). A set of all singular numbers of the
the PIE (1) is denoted by ST1

.

Definition 3. If for a number κ0 ∈ C there exists a measurable subset Ω0 ⊂ Ω with
µ(Ω0) > 0 such that D1(y; κ0) = 0, ∀y ∈ Ω0, then κ0 is called a characteristic number
of the the PIE (1). A set of all characteristic numbers of the PIE (1) is denoted by XT1

.

Definition 4. A number κ0 ∈ C is called an essential number of the PIE (1) if κ0 ∈
ST1

\ XT1
. A set of all essential numbers of the PIE (1) is denoted by ET1

.

Thus, for a parameter κ of the PIE (1), there exist subsets RT1
, ST1

, XT1
, and ET1

in
C, which have the following relations:

(i) RT1
∪ ST1

= C and RT1
∩ ST1

= ∅;
(ii) XT1

∪ ET1
= ST1

and XT1
∩ ET1

= ∅.
From Definitions 1, 2, 3 and 4 one gets that for an arbitrary non-zero PIO T1 sets

RT1
and ET1

are non-empty, but XT1
may be empty. For example, consider a PIE in the

space L2([0, 1]2)

f(x, y) − κ

∫ 1

0

ex−seyf(s, y) ds = g0(x, y),

where f is an unknown function in L2([0, 1]2), g0 ∈ L2([0, 1]2) is an arbitrary given
function. For this PIE, the determinant has a simple form D1(y; κ) = 1−κey, y ∈ [0, 1].
Therefore ST1

=
[
e−1, 1

]
and XT1

= ∅.
From Proposition 1 and Definition 3 it follows

Theorem 1. A number λ ∈ C, λ 6= 0, is an eigenvalue of the operator T1 if and only if
λ−1 ∈ XT1

.

Theorem 2. a) if κ0 ∈ ET1
, then κ0 ∈ ET∗

1
;

b) if κ0 ∈ XT1
, then κ0 ∈ XT∗

1
.

Proof. Let κ0 ∈ ET1
. Then there exists a point y0 ∈ Ω with D1(y0; κ0) = 0 and we have

µ{y ∈ Ω : D1(y; κ0) = 0} = 0. But using a property of the determinant D1(y; κ0) we

obtain that D1(y; κ0) = D̃1(y; κ0), where D̃1(y; κ0) is a determinant of the operator

E − κ0T
∗

1 . Therefore, we have D̃1(y0; κ0) = 0 and µ
{

y ∈ Ω : D̃1(y; κ0) = 0
}

= 0, i.e.

the number κ0 is an essential number of the adjoint equation f − κ0T
∗

1 f = g0, and
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the proof of property a) is complete. The proof of the property b) can be proceeded
analogously. �

Theorem 3. If κ0 ∈ RT1
then for every g0 ∈ H the PIE (1) has a unique solution on

H and it is of the form f = g0 + κ0Bg0, where an operator B = B(κ0) acts in H by the
formula

(2) Bg =

∫
M1(x, s, y; κ0)

D1(y; κ0)
g(s, y) ds, g ∈ H,

but the corresponding homogeneous equation f−κ0T1f = 0 has only trivial solution (zero
solution). Here D1(y; κ0) and M1(x, s, y; κ0) are the determinant and the minor of the
operator E − κ0T1, respectively.

Proof. Let κ0 ∈ RT1
and κ0 6= 0. First, we prove that PIE (1) is solvable in H. By Corol-

lary 2, for the function g0 there exists a decreasing sequence of non-negative numbers εn

and a sequence of increasing measurable subsets Ωn ⊂ Ω, which satisfy the properties (a),

(b) and (c) with limn→∞ εn = 0. For every Ωn we define a subspace L
(n)
2 = L

(n)
2 (Ω × Ω)

as follows: a function f̃ ∈ H belongs to the subspace L
(n)
2 , if it satisfies the following

conditions:
(i) ϕ

(n)
α (x) = f̃(x, α) ∈ H0, ∀α ∈ Ωn;

(ii) there exists a positive number Cn such that ‖ϕ
(n)
α ‖ ≤ Cn, ∀α ∈ Ωn;

(iii) f̃(x, y) = 0 if (x, y) ∈ Ω × (Ω \ Ωn).

For every f ∈ H, there exists a sequence fn ∈ L
(n)
2 , n ∈ N, such that limn→∞ fn = f.

Therefore, first we find a solution of the equation (1) in the space L
(n)
2 and we can find a

solution of the equation (1) in the space H as the limit f(x, y) = limn→∞ f̃n(x, y), where

f̃n are solutions of the equation (1) in the space L
(n)
2 . Thus, the equation (1) in L

(n)
2

reduces to the following one:

(3) f̃n(x, y) − κ0T1f̃n(x, y) = gn(x, y),

where gn is an element of L
(n)
2 corresponding to the function g0(x, y).

Hence, by the property (b) of Corollary 2, for each fixed y ∈ Ω, the equation (3)
reduces to the following second type Fredholm integral equation in H0 :

(3′) ϕ(n)
α (x) − κ0Kαϕ(n)

α (x) = h(n)
α (x), α ∈ Ω,

where ϕ
(n)
α (x) = f̃n(x, α) is an unknown function in H0, h

(n)
α (x) = gn(x, α) is a given

function in H0.
By the first fundamental Fredholm theorem, the equation (3′) for every α ∈ Ωn has

the only solution

ϕ(n)
α = ϕ(n)

α (x) = h(n)
α (x) + κ0Bαh(n)

α (x),

where the operator Bα = Bα(κ0) acts in H0 by the formula

Bαϕ =

∫
M

(1)
α (x, s; κ0)

∆
(1)
α (κ0)

ϕ(s) ds (α ∈ Ωn)

and Bα is compact. Here ∆
(1)
α (κ0) and M

(1)
α (x, s; κ0) are the Fredholm determinant and

the Fredholm minor of the operator E − κ0Kα, respectively.

It is clear, that if α ∈ Ω \ Ωn then the equation (3’) has the solution ϕ
(n)
α (x) = 0.

Hence, the function f̃n(x, y) = ϕ
(n)
y (x) belongs to the subspace L

(n)
2 and it is a solution

of the equation (3), where ϕ
(n)
α (x), ϕ ∈ Ω the solutions of the equation (3’). We define

the function f0 ∈ H by the equality f0(x, y) = (E + κ0B)g0(x, y), where the operator
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B = B(κ0) acts in H by the formula (2) and it is a bounded operator. But, if y ∈ Ωn

then we have

f0(x, y) = g0(x, y) + κ0Bg0(x, y) = gn(x, y) + κ0Bgn(x, y) =

= h(n)
y (x) + κ0Byh(n)

y (x) = ϕ(n)
y (x) = f̃n(x, y)

and for every y ∈ Ω \ Ωn we have f0(x, y) = ϕ
(n)
y (x) = 0. Thus, by the property (c)

of Corollary 2 we obtain f0(x, y) = limn→∞ f̃n(x, y). Therefore the function f(x, y) =
f0(x, y) = (E + κ0B)g0(x, y) is a solution of the equation (1).

Thus, we have proved that the equation (1) is solvable. Now we prove uniqueness of the
solution of the equation (1). Suppose, f1 ∈ H and f2 ∈ H are solutions of the equation

(1), where f1 6= f2. Then, for the function f̂ = f1 − f2 6= 0 we have f̂ − κ0T1f̂ = 0,

i.e. the homogeneous equation f − κ0T1f = 0 has a solution f̂ 6= 0. Hence, the number
κ
−1
0 is an eigenvalue of T1, then by Theorem 1 we obtain that κ0 ∈ XT1

. But this is
impossible since κ0 ∈ RT1

.
Using Proposition 1 we can show that for κ0 ∈ RT1

the homogeneous equation f −
κ0T1f = 0 has only trivial solution. The proof is complete. �

Theorem 4. Let κ0 ∈ ET1
. If the free term g0 of the PIE (1) satisfies the condition

(II)

∫ ∫
|g0(s, y)|2ds

|D1(y; κ0)|2
dy < ∞,

then PIE (1) has a unique solution on H and it has a form f = g0 + κ0Bg0 ∈ H, but
corresponding homogeneous equation f − κ0T1f = 0 has only trivial solution, where the
operator B is given by (2).

Proof. Let κ0 ∈ ET1
. Put Ω′ = {y ∈ Ω : D1(y; κ0) = 0}. It is evident that Ω′ 6= ∅ and

µ(Ω′) = 0. However, for every y ∈ Ω \ Ω′ the function f0(x, y) = g0(x, y) + κ0Bg0(x, y)
satisfies the equation (1). Now it is enough to show that f0 ∈ H. Suppose that g0 satisfies
the condition (II ). We have

∫ ∫
|Bg0(x, y)|2dxdy =

∫ ∫ ∣∣∣∣
∫

M1(x, s, y; κ0)

D1(y; κ0)
g0(s, y) ds

∣∣∣∣
2

dxdy

≤

∫ ∫ (∫
|M1(x, s, y; κ0)| · |g0(s, y)| ds

|D1(y; κ0)|

)2

dxdy

≤ N2
0

∫ ∫ (∫
|g0(s, y)| ds

)2

|D1(y; κ0)|2
dxdy ≤ N2

0 µ(Ω)

∫ (∫
|g0(s, y)| ds

)2

|D1(y; κ0)|2
dy,

where N0 = maxx,s,y∈Ω |M1(x, s, y; κ0)|.
But for the function g0(x, y) from the Cauchy-Schwartz inequality for almost all y ∈ Ω

we have
∫

|g0(s, y)| ds ≤
√

µ(Ω) ·

√∫
|g0(s, y)|2ds.

Hence, we obtain
∫ ∫

|Bg0(x, y)|2dxdy ≤ (N0 · µ(Ω))
2
·

∫ ∫
|g0(s, y)|2ds

|D1(y; κ0)|2
dy < ∞,

i.e. Bg0 ∈ H, therefore f0 = g0 + κ0Bg0 ∈ H and f0 is a solution of the equation (1).
Uniqueness of the solution follows from Theorem 1. Using Proposition 1 one can also

show that the homogeneous equation f − κ0T1f = 0 has only the trivial solution. �
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Remark 1. The condition (II ) in Theorem 4 is natural.
For example, for the equation

(4) f(x, y) − κ

∫ 1

0

ex−syf(s, y) ds = exy1/2

in the space L2([0, 1]2), we have D1(y; κ) = 1−κy, y ∈ [0, 1] and M1(x, s, y; κ) = ex−sy.
Hence, ST1

= ET1
= [1,∞). For each κ 6∈ [1,∞), the equation (4) has the solution

(5) f0(x, y) =
exy1/2

1 − κy
∈ L2([0, 1]2).

If κ0 ∈ [1,∞), then the function (10) is a continuous function on the set Ω′ = [0, 1] ×
([0, 1]\{1/κ0}) with µ̂(Ω′) = µ̂([0, 1]× [0, 1]) and for every y ∈ [0, 1]\{1/κ0} the function
(10) satisfies the equation (4), but f0 6∈ L2([0, 1]2).

Remark 2. Let k(x, s, y) ∈ C(Ω3). Then, in the case of κ0 ∈ ET1
, the set of all functions

g ∈ H (see Theorem 4), which satisfies the inequality
∫ ∫

|g(s, y)|2ds

|D1(y; κ0)|2
dy < ∞,

is infinite dimensional subspace in H.
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