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GENERALIZED STOCHASTIC DERIVATIVES ON PARAMETRIZED

SPACES OF REGULAR GENERALIZED FUNCTIONS OF MEIXNER

WHITE NOISE

N. A. KACHANOVSKY

Abstract. We introduce and study Hida-type stochastic derivatives and stochastic
differential operators on the parametrized Kondratiev-type spaces of regular gener-
alized functions of Meixner white noise. In particular, we study the interconnection
between the stochastic integration and differentiation. Our researches are based
on the general approach that covers the Gaussian, Poissonian, Gamma, Pascal and
Meixner cases.

0. Introduction

In the paper [3] Fred E. Benth introduced and studied a generalization of stochastic dif-
ferential operators on the so-called Kondratiev generalized functions space in the Gauss-
ian analysis. This generalization turns out to be useful for applications (for example, for
study of properties of solutions of stochastic equations with Wick-type nonlinearities).
Therefore there exists a motivation to generalize the results of [3] to generalized functions
spaces in a non-Gaussian analysis.

In the papers [10, 11] the author generalized the results of [3] to the Kondratiev-type
spaces of generalized functions in the so-called Gamma white noise analysis ([20, 21]).
Since the Gamma measure has no the Chaotic Representation Property and has some
another peculiarities, the corresponding spaces have a more complicated than in the
Gaussian analysis structure; nevertheless a natural and rich in content analog of the
Gaussian theory is possible.

A next natural step consists in the construction of a theory of stochastic differen-
tiation on the generalized functions spaces in the so-called Meixner analysis. In fact, the
(introduced in [26]) generalized Meixner measure µ on the Schwartz distributions space
D′ (the base measure of the Meixner analysis) is a direct generalization of ”classical”
measures on D′, such as the Gaussian, Poissonian and Gamma measures. This measure
is very general, but still has important ”classical” properties (for example, the orthogonal
polynomials in L2(D′, µ) are Schefer (generalized Appell in another terminology) ones),
therefore a constructive theory is still possible.

In the papers [16, 15] the author constructed and studied generalized stochastic deriv-
atives and differential operators on the ”classical” Kondratiev-type (finite order) spaces
of nonregular and regular generalized functions of Meixner white noise. But in the regu-
lar case one can consider the so-called parametrized Kondratiev-type spaces (see [12] and
Preliminaries for details) that are much more ”flexible” and more convenient for appli-
cations than the ”classical” Kondratiev-type spaces. Therefore it is useful to transfer (so
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far as it is possible) the results of [15] to the case of parametrized spaces. The realization
of this idea is the main aim of the present paper.

The paper is organized in the following manner. In the first section we give a necessary
information about the generalized Meixner measure, the parametrized spaces of test and
generalized functions, a Wick calculus and a stochastic integration. In the second section
we introduce and study Hida-type stochastic derivatives ∂· on the parametrized gene-

ralized functions spaces (L2)−β
−q , (L2)−β (in particular, we consider the interconnection

of ∂· with the stochastic integral). The third section is devoted to study of some another

stochastic differential operators on (L2)−β
−q , (L2)−β that are closely connected with ∂·

and coordinated with the Wick calculus and the extended stochastic integral.

1. Preliminaries

Let σ be a measure on (R+,B(R+)) (here B denotes the Borel σ-algebra) satisfying
the following assumptions:

• σ is absolutely continuous with respect to the Lebesgue measure and the density
is an infinite differentiable function on R+;

• σ is a nondegenerate measure, i.e., for each nonempty open set O ⊂ R+ σ(O) > 0.

Remark 1.1. Note that these assumptions are the ”simplest sufficient ones” for our
considerations; actually it is possible to consider a much more general σ.

By D denote the set of all real-valued infinite differentiable functions on R+ with
compact supports. This set can be naturally endowed with a (projective limit) topology
of a nuclear space (by analogy with, e.g., [6]): D = pr limτ∈T Hτ , where T is the set of
all pairs τ = (τ1, τ2), τ1 ∈ N, τ2 is an infinite differentiable function on R+ such that
τ2(t) ≥ 1 ∀t ∈ R+; Hτ = H(τ1,τ2) is the Sobolev space of order τ1 weighted by the
function τ2 (the integration in the scalar product in Hτ with respect to σ). Hence in
what follows, we understand D as the corresponding topological space.

Let us consider the (nuclear) chain (the rigging of L2(R+, σ)–the space of square
integrable with respect to σ real-valued functions on R+)

D′ = ind lim
τ ′∈T

H−τ ′ ⊃ H−τ ⊃ L2(R+, σ) =: H ⊃ Hτ ⊃ D,

where H−τ , D′ are the dual to Hτ , D with respect to H spaces correspondingly. Let
〈·, ·〉 be the (generated by the scalar product in H) dual pairing between elements of D′

and D (and also H−τ and Hτ ), this notation will be preserved for tensor powers and
complexifications of spaces.

Remark 1.2. Note that all scalar products and pairings in this paper are real.

Let us fix arbitrary functions α, β : R+ → C that are smooth and satisfy

θ := −α − β ∈ R, η := αβ ∈ R+,

θ and η are bounded on R+. Further, let ∀t ∈ R+ υ̃(α(t), β(t), ds) be a probability
measure on R that is defined by its Fourier transform

∫

R

eiusυ̃(α, β, ds)

= exp
{
− iu(α + β) + 2

∞∑

m=1

(αβ)m

m

[ ∞∑

n=2

(−iu)n

n!
(βn−2 + βn−3α + · · · + αn−2)

]m}
,

υ(α, β, ds) := 1
s2 υ̃(α, β, ds).
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Definition 1.1. We say that a probability measure µ on the measurable space (D′,F)
(here F is the generated by cylinder sets σ-algebra on D′) with a Fourier transform

∫

D′

ei〈x,ξ〉µ(dx) = exp
{∫

R+

σ(dt)

∫

R

υ(α(t), β(t), ds)(eisξ(t) − 1 − isξ(t))
}

(here ξ ∈ D) is called the generalized Meixner measure.

Let us denote by a subindex C complexifications of spaces.

Theorem 1.1. ([26]). The generalized Meixner measure µ is a generalized stochastic
process with independent values in the sense of [9]. The Laplace transform of µ is given
in a neighborhood of zero U0 ⊂ DC by the following formula:

lµ(λ) =

∫

D′

e〈x,λ〉µ(dx)

= exp
{∫

R+

∞∑

m=1

(α(t)β(t))m−1

m

×
( ∞∑

n=2

(−λ)n

n!
(β(t)n−2 + β(t)n−3α(t) + · · · + α(t)n−2)

)m

σ(dt)
}

, λ ∈ U0.

Remark 1.3. Accordingly to the classical classification [25] (see also [24, 23, 26]) for
α = β = 0 (here and below we understand all such equalities σ-a.e.) µ is the Gaussian
measure; for α 6= 0 (here and below a(·) 6= b(·) means that a− b 6= 0 on some measurable
set G such that σ(G) > 0), β = 0 µ is the centered Poissonian measure; for α = β 6= 0
µ is the centered Gamma measure; for α 6= β, αβ 6= 0, α, β : R+ → R µ is the centered
Pascal measure; for α = β, Im(α) 6= 0 µ is the centered Meixner measure.

It was established in [17] that there exists τ̃ ∈ T such that the generalized Meixner
measure is concentrated on H−eτ , i.e., µ(H−eτ ) = 1.

Now by (L2) = L2(D′, µ) denote the space of square integrable with respect to µ

complex-valued functions on D′. Let us construct orthogonal polynomials in (L2).

Definition 1.2. We define the so-called Wick exponential (a generating function of the
orthogonal polynomials) by setting

(1.1)

: exp(x; λ) :
def
= exp

{
−

∫

R+

(λ(t)2

2
+

∞∑

n=3

λ(t)n

n
(α(t)n−2

+ α(t)n−3β(t) + · · · + β(t)n−2)
)
σ(dt)

+
〈
x, λ +

∞∑

n=2

λn

n
(αn−1 + αn−2β + · · · + βn−1)

〉}
,

where λ ∈ U0 ⊂ DC, x ∈ D′, U0 is some depending on x neighborhood of 0 ∈ DC.

Remark 1.4. It was proved in [26] that

: exp(x; λ) :=
e〈x,Ψ(λ)〉

lµ(Ψ(λ))

with Ψ(λ) = λ+
∑∞

n=2
λn

n
(αn−1+αn−2β+· · ·+βn−1), therefore : exp(x; ·) : is a generating

function of so-called Schefer polynomials (or generalized Appell polynomials in another
terminology). This fact gives us the possibility to use in our considerations well-known
results of the so-called biorthogonal analysis (see, e.g., [2, 1, 22, 13, 19, 14, 4, 7] and
references therein).
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It is clear (see also [26]) that : exp(x; ·) : is a holomorphic at 0 ∈ DC function for each
x ∈ D′. Therefore using the Cauchy inequality (e.g., [8]) and the kernel theorem (e.g.,
[6]) one can obtain the representation

: exp(x; λ) :=
∞∑

n=0

1

n!
〈Pn(x), λ⊗n〉, Pn(x) ∈ D′

C

b⊗n
, x ∈ D′, λ ∈ DC.

Here (and below) ⊗̂ denotes a symmetric tensor product, λ⊗0 = 1 even for λ ≡ 0.

Remark 1.5. It follows from the recurrence formula for Pn(x) ([26]) that actually Pn(x) ∈

D′b⊗n
for x ∈ D′, and, moreover, if τ ∈ T is such that the Dirac delta-function δ0 ∈ H−τ

then for x ∈ H−τ we have Pn(x) ∈ H
b⊗n
−τ .

Definition 1.3. We say that the polynomials 〈Pn, f (n)〉, f (n) ∈ D
b⊗n
C

, n ∈ Z+ are called
the generalized Meixner polynomials.

Remark 1.6. Depending on α and β in (1.1) the generalized Meixner polynomials can be
the generalized Hermite polynomials (α = β = 0); the generalized Charlier polynomials
(α 6= 0, β = 0); the generalized Laguerre polynomials (α = β 6= 0); the Meixner poly-
nomials (α 6= β, αβ 6= 0, α, β : R+ → R); the Meixner-Pollaczek polynomials (α = β,
Im(α) 6= 0) (see also Remark 1.3).

In order to formulate a statement on an orthogonality of the generalized Meixner
polynomials we need the following

Definition 1.4. We define the scalar product 〈·, ·〉ext on D
b⊗n
C

(n ∈ N) by the formula

〈f (n), g(n)〉ext :=
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!

ls1

1 . . . lsk

k s1! . . . sk!

×

∫

R
s1+···+sk
+

f (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

× g(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)η(t1)
l1−1 . . . η(ts1 )

l1−1

× η(ts1+1)
l2−1 . . . η(ts1+s2)

l2−1 . . . η(ts1+···+sk−1+1)
lk−1 . . . η(ts1+···+sk

)lk−1

× σ(dt1) . . . σ(dts1+···+sk
).

Denote by | · |ext the corresponding norm, i.e., |f (n)|2ext = 〈f (n), f (n)〉ext. For n = 0
〈f (0), g(0)〉ext := f (0)g(0) ∈ C, |f (0)|ext = |f (0)|.

Example 1.1. It is easy to see that for n = 1

〈f (1), g(1)〉ext = 〈f (1), g(1)〉 =

∫

R+

f (1)(t)g(1)(t)σ(dt).

Further, for n = 2

〈f (2), g(2)〉ext = 〈f (2), g(2)〉 +

∫

R+

f (2)(t, t)g(2)(t, t)η(t)σ(dt).

If η = 0 (this means that µ is the Gaussian or Poissonian measure, see Remark 1.3) then
〈f (n), g(n)〉ext = 〈f (n), g(n)〉 for all n ∈ Z+; in general, 〈f (n), g(n)〉ext = 〈f (n), g(n)〉+ · · · .

Theorem 1.2. ([26]). The generalized Meixner polynomials are orthogonal in (L2) in
the sense that

(1.2)

∫

D′

〈Pn(x), f (n)〉〈Pm(x), g(m)〉µ(dx) = δmnn!〈f (n), g(n)〉ext.
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By H
(n)
ext (n ∈ N) denote the closure of D

b⊗n
C

with respect to the norm | · |ext, H
(0)
ext := C.

Of course, H
(n)
ext , n ∈ Z+ are Hilbert spaces; for the scalar products in these spaces it is

natural to preserve the notation 〈·, ·〉ext.

Remark 1.7. It is not difficult to prove by analogy with [5] that the space H
(n)
ext is, generally

speaking, the orthogonal sum of H
b⊗n
C

≡ L2(R+, σ)
b⊗n
C

and some another Hilbert spaces

(as a ”limit case” one can consider η = 0, in this case H
(n)
ext = H

b⊗n
C

). In this sense H
(n)
ext

is an extension of H
b⊗n
C

.

One can give another explanation of the fact that H
(n)
ext is a more wide space than H

b⊗n
C

.

Namely, let F (n) ∈ H
b⊗n
C

(F (n) is an equivalence class in H
b⊗n
C

). We select a representative

(a function) Ḟ (n) ∈ F (n) with the ”zero diagonal”, i.e., Ḟ (n)(t1, . . . , tn) = 0 if there exist
i, j ∈ {1, . . . , n}, i 6= j such that ti = tj . This function generates the equivalence class

F̂ (n) in H
(n)
ext that can be identified with F (n) (see [17] for details).

Definition 1.5. ([17]). For F (n) ∈ H
(n)
ext (n ∈ Z+) we define 〈Pn, F (n)〉 ∈ (L2) as an

(L2)-limit

〈Pn, F (n)〉 := lim
k→∞

〈Pn, f
(n)
k 〉,

where (f
(n)
k ∈ D

b⊗n
C

)∞k=1 is a sequence of ”smooth” functions such that f
(n)
k → F (n) (as

k → ∞) in H
(n)
ext .

The following statement follows from results of [26].

Theorem 1.3. A function F ∈ (L2) if and only if there exists a sequence of kernels

(1.3)
(
F (n) ∈ H

(n)
ext

)∞
n=0

such that F can be presented in the form

(1.4) F =

∞∑

n=0

〈Pn, F (n)〉,

where the series converges in (L2), i.e., the (L2)-norm of F

‖F‖2
(L2) =

∞∑

n=0

n!|F (n)|2ext < ∞.

Furthermore, the system {〈Pn, F (n)〉, F (n) ∈ H
(n)
ext , n ∈ Z+} plays a role of an orthogonal

basis in (L2) in the sense that for F, G ∈ (L2)

(F, G)(L2) =

∞∑

n=0

n!〈F (n), G(n)〉ext,

where F (n), G(n) are the kernels from decompositions (1.4) for F, G (in particular, (1.2)

for f (n) ∈ H
(n)
ext, g(m) ∈ H

(m)
ext holds true).

Now let us describe parametrized Kondratiev-type spaces (see [12] for more details).

Let us consider the set P := {f =
∑Nf

n=0〈Pn, f (n)〉, f (n) ∈ H
(n)
ext , Nf ∈ Z+} ⊂ (L2)

of polynomials and for each q ∈ Z+ and β ∈ [0, 1] introduce on this set a scalar product

(·, ·)q,β by setting for f =
∑Nf

n=0〈Pn, f (n)〉 and g =
∑Ng

n=0〈Pn, g(n)〉

(1.5) (f, g)q,β :=

min(Nf ,Ng)∑

n=0

(n!)1+β2qn〈f (n), g(n)〉ext.
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Let ‖ · ‖q,β be the corresponding norm:

‖f‖q,β :=

√
(f, f)q,β =

√√√√
Nf∑

n=0

(n!)1+β2qn|f (n)|2ext.

Definition 1.6. We define the parametrized Kondratiev-type spaces of test functions
(L2)β

q , q ∈ Z+, β ∈ [0, 1] as the closures of P with respect to the norms ‖ · ‖q,β ; (L2)β :=

pr limq∈Z+
(L2)β

q .

It is not difficult to see that f ∈ (L2)β
q if and only if f can be presented in the form

(1.6) f =

∞∑

n=0

〈Pn, f (n)〉

with

‖f‖2
q,β := ‖f‖2

(L2)β
q

=

∞∑

n=0

(n!)1+β2qn|f (n)|2ext < ∞,

and for f, g ∈ (L2)β
q (f, g)(L2)β

q
=

∑∞
n=0(n!)1+β2qn〈f (n), g(n)〉ext, where f (n), g(n) ∈ H

(n)
ext

are the kernels from decompositions (1.6) for f and g correspondingly. Therefore the
generalized Meixner polynomials play a role of an orthogonal basis in (L2)β

q .

Remark 1.8. Note that the term ”Kondratiev-type spaces” is connected with the fact that
for β = 1 spaces of such a type were first introduced and studied (in the one-dimensional
Gaussian analysis) by Yu. G. Kondratiev in [18].

Proposition 1.1. ([12]). For each q ∈ Z+ and β ∈ [0, 1] (L2)β
q is densely and continu-

ously embedded in (L2).

Using the result of this proposition, one can consider the chain

(1.7) (L2)−β = ind lim
eq∈Z+

(L2)−β
−eq

⊃ (L2)−β
−q ⊃ (L2) ⊃ (L2)β

q ⊃ (L2)β ,

where (L2)−β
−q , (L2)−β are the dual to (L2)β

q , (L2)β with respect to (L2) spaces corres-
pondingly.

Remark 1.9. If β < 0 then (L2)β 6⊂ (L2) and it is impossible to construct chain (1.7). If
β > 1 then (L2)−β will be too wide for construction of a substantive theory. Hence the
choice β ∈ [0, 1] is optimal and (just as q ∈ Z+) will be fixed in this paper.

Note also that in (1.5) one can use Kqn with any K > 1 instead of 2qn (cf. [4]).
Formally this leads to a more general construction; but in fact such a generalization is
formal and not fundamental.

Definition 1.7. The spaces (L2)−β
−q , (L2)−β are called the parametrized Kondratiev-type

spaces of generalized functions.

Remark 1.10. We remind that the ”classical” Kondratiev-type spaces are the paramet-
rized ones with β = 1. It is obvious that (L2)1 ⊂ (L2)β and (L2)−β ⊂ (L2)−1 if β < 1.

Theorem 1.4. ([12]). A generalized function F ∈ (L2)−β
−q if and only if there exists

sequence of kernels (1.3) such that F can be presented in form (1.4), where the series

converges in (L2)−β
−q , i.e., the norm

(1.8) ‖F‖2
−q,−β := ‖F‖2

(L2)−β
−q

=

∞∑

n=0

(n!)1−β2−qn|F (n)|2ext < ∞.
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Furthermore, the system {〈Pn, F (n)〉: F (n) ∈ H
(n)
ext, n ∈ Z+} plays a role of an orthogonal

basis in (L2)−β
−q in the sense that for F, G ∈ (L2)−β

−q

(F, G)(L2)−β
−q

=

∞∑

n=0

(n!)1−β2−qn〈F (n), G(n)〉ext,

where F (n), G(n) ∈ H
(n)
ext are the kernels from decompositions (1.4) for F and G corres-

pondingly.

Remark 1.11. It is easy to see that F ∈ (L2)−β if and only if there exists sequence (1.3)
such that F can be presented in form (1.4) with finite norm (1.8) for some q ∈ Z+.

The (real) dual pairing between elements of (L2)−β
−q and (L2)β

q (just as (L2)−β and

(L2)β) that is generated by the scalar product in (L2) will be denoted by 〈〈·, ·〉〉. It is
easy to see that for a generalized function F of form (1.4) and a test function f of form
(1.6)

(1.9) 〈〈F, f〉〉 =

∞∑

n=0

n!〈F (n), f (n)〉ext.

Now let us remind elements of the Wick calculus on (L2)−β (a more complete and
detailed presentation is given in [12]).

First we recall necessary definitions and statements in the case β = 1.

Definition 1.8. For F ∈ (L2)−1 we define the S-transform SF as a formal series

(SF )(λ) :=

∞∑

n=0

〈F (n), λ⊗n〉ext,

where F (n) ∈ H
(n)
ext , n ∈ Z+ are the kernels from decomposition (1.4) for F . In particular,

(SF )(0) = F (0), S1 ≡ 1.

Definition 1.9. For F, G ∈ (L2)−1 and a holomorphic at (SF )(0) function h : C → C

we define the Wick product F♦G ∈ (L2)−1 and the Wick version of h h♦(F ) ∈ (L2)−1

by setting

F♦G := S−1(SF · SG), h♦(F ) := S−1h(SF ).

The correctness of this definition and, moreover, the fact that the Wick multiplication
is continuous in the topology of (L2)−1 proved in [17].

Remark 1.12. It is easy to see that the Wick multiplication ♦ is commutative, associative
and distributive (over the field C). Further, if h from Definition 1.9 is presented in the
form

(1.10) h(u) =
∞∑

m=0

hm(u − (SF )(0))m

then h♦(F ) =
∑∞

m=0 hm(F − (SF )(0))♦m, where F♦m := F♦ · · ·♦F︸ ︷︷ ︸
m times

.

Let us write out the ”coordinate form” of F♦G and h♦(F ).

Lemma 1.1. ([17]). Let F (n) ∈ H
(n)
ext, G(m) ∈ H

(m)
ext , n, m ∈ Z+. We define the element

F (n) ⋄ G(m) ∈ H
(n+m)
ext as follows. Let Ḟ (n) ∈ F (n), Ġ(m) ∈ G(m) be some representatives
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(functions) from the equivalence classes F (n), G(m). Set

(
˜̇

F (n)G(m))(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
Ḟ (n)(t1, . . . , tn)Ġ(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj

0, in other cases
,

̂̇
F (n)G(m) := Pr

˜̇
F (n)G(m), where Pr is the symmetrization operator. Then F (n) ⋄ G(m)

is the generated by
̂̇

F (n)G(m) equivalence class in H
(n+m)
ext , this class is well-defined and

does not depend on a choice of the representatives Ḟ (n), Ġ(m). Moreover,

(1.11) |F (n) ⋄ G(m)|ext ≤ |F (n)|ext|G
(m)|ext.

Remark 1.13. Note that, nonstrictly speaking, F (n) ⋄ G(m) is the symmetrization of the
”function”

˜F (n)G(m)(t1, . . . , tn; tn+1, . . . , tn+m)

:=

{
F (n)(t1, . . . , tn)G(m)(tn+1, . . . , tn+m), if ∀i∈{1,...,n},

∀j∈{n+1,...,n+m} ti 6=tj

0, in other cases

with respect to n + m ”variables”.

It is obvious that the ”multiplication” ⋄ is commutative, associative and distributive
(over the field C).

Remark 1.14. Note that for η = 0 (the Gaussian and Poissonian cases) F (n) ⋄ G(m) =

F (n)⊗̂G(m) (we recall that in this case H
(n)
ext = H

b⊗n
C

for each n ∈ Z+).

Proposition 1.2. ([17]). For F, G ∈ (L2)−1 and a holomorphic at (SF )(0) function
h : C → C

(1.12) F♦G =

∞∑

n=0

〈
Pn,

n∑

k=0

F (k) ⋄ G(n−k)
〉
,

(1.13) h♦(F ) = h0 +

∞∑

n=1

〈
Pn,

n∑

m=1

hm

∑

k1,...,km∈N:
k1+···+km=n

F (k1) ⋄ · · · ⋄ F (km)
〉
,

where F (k), G(k) ∈ H
(k)
ext are the kernels from decompositions (1.4) for F and G corre-

spondingly, hm ∈ C (m ∈ Z+) are the coefficients from decomposition (1.10) for h.

Remark 1.15. It follows from (1.12) that, in particular,

〈Pn, F (n)〉♦〈Pm, G(m)〉 = 〈Pn+m, F (n) ⋄ G(m)〉,

F♦〈Pm, G(m)〉 =

∞∑

n=0

〈Pn+m, F (n) ⋄ G(m)〉.

The first formula can be used in order to define the Wick product and the Wick version
of a holomorphic function (as a series) without the S-transform. Formulas (1.12) and
(1.13) also can be used as definitions. Finally we note that for F1, . . . , Fm ∈ (L2)−1

F1♦ · · ·♦Fm =

∞∑

n=0

〈
Pn,

∑

k1,...,km∈Z+:k1+···+km=n

F
(k1)
1 ⋄ · · · ⋄ F (km)

m

〉
,

where F
(kj)
j ∈ H

(kj)
ext (j ∈ {1, . . . , m}, kj ∈ Z+) are the kernels from decompositions (1.4)

for Fj .
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Let us pass to the case β < 1. First we consider a key property of the Wick product.

Theorem 1.5. ([12]). Let F, G ∈ (L2)−β. Then the Wick product F♦G ∈ (L2)−β.
Moreover, the Wick multiplication is continuous in the topology of (L2)−β: for F1, . . . , Fm ∈
(L2)−β, m ∈ N there exist q, q′ ∈ N and c > 0 such that

‖F1♦ · · ·♦Fm‖−q,−β ≤ c‖F1‖−q′,−β · · · ‖Fm‖−q′,−β.

Now let us consider the Wick versions of holomorphic functions. As it follows from the
previous theorem, if F ∈ (L2)−β and h : C → C is a polynomial then h♦(F ) ∈ (L2)−β .
But, unfortunately, in contrast to the case β = 1, for F ∈ (L2)−β and a holomorphic at
(SF )(0) not polynomial h : C → C it is possible h♦(F ) 6∈ (L2)−β . More exactly, we have

Theorem 1.6. ([12]). Let h : C → C be a holomorphic at u0 ∈ C not polynomial function
such that all coefficients hm, m ∈ Z+ from the decomposition h(u) =

∑∞
m=0 hm(u − u0)

m

are non-negative. Then for each β ∈ [0, 1) there exists F ∈ (L2)−β such that (SF )(0) =
u0 and h♦(F ) 6∈ (L2)−β.

It follows from this theorem that there are no estimates on the coefficients hm from
decomposition (1.10) for a not polynomial h that could guarantee h♦(F ) ∈ (L2)−β (β <

1) for each F ∈ (L2)−β . Nevertheless, we have

Theorem 1.7. ([12]). Let F =
∑N

k=0〈Pk, F (k)〉 ∈ P and h(u) =
∑∞

m=0 hm(u − F (0))m

be such that ∃K > 0: ∀m ∈ N

|hm| ≤
Km

mmN
1−β
2

.

Then h♦(F ) ∈ (L2)−β.

Now we recall the construction of the extended stochastic integral on (L2)−β ⊗HC.
Let F ∈ (L2)−β ⊗ HC. It follows from Remark 1.11 that F can be presented in the

form

(1.14) F =
∞∑

n=0

〈Pn, F
(n)
· 〉, F

(n)
· ∈ H

(n)
ext ⊗HC

with

‖F‖2
(L2)−β

−q
⊗HC

=

∞∑

n=0

(n!)1−β2−qn|F
(n)
· |2

H
(n)
ext⊗HC

< ∞

for some q ∈ Z+.
Denote by 1A the indicator of a set A.

Lemma 1.2. ([17]). For given F
(n)
· ∈ H

(n)
ext ⊗ HC and t ∈ [0, +∞] we construct the

element F̂
(n)
[0,t) ∈ H

(n+1)
ext by the following way. Let Ḟ

(n)
· ∈ F

(n)
· be some representative

(function) from the equivalence class F
(n)
· . We set

˜̇
F

(n)

[0,t)(u1, . . . , un, u) :=

{
Ḟ

(n)
u (u1, . . . , un)1[0,t)(u), if u 6= u1, . . . , u 6= un,

0, in other cases
,

̂̇
F

(n)

[0,t) := Pr ˜̇
F

(n)

[0,t), where Pr is the symmetrization operator. Let F̂
(n)
[0,t) ∈ H

(n+1)
ext be the

equivalence class in H
(n+1)
ext that is generated by ̂̇

F
(n)

[0,t). This class is well-defined, does

not depend on the representative Ḟ
(n)
· , and the estimate

|F̂
(n)
[0,t)|ext ≤ |F

(n)
· 1[0,t)(·)|H(n)

ext⊗HC

≤ |F
(n)
· |

H
(n)
ext⊗HC

is valid.
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Remark 1.16. Note that in the case η = 0 (i.e., if µ is the Gaussian or Poissonian measure)

F̂
(n)
[0,t) ∈ H

(n+1)
ext = H

b⊗n+1
C

is, roughly speaking, the symmetrization of F
(n)
· 1[0,t)(·) with

respect to n + 1 ”variables”.

Let {Ms := 〈P1, 1[0,s)〉}s≥0 be the Meixner random process (this process is a locally
square integrable normal martingale with independent increments, see [17, 26] for more
details).

Definition 1.10. Let t ∈ [0, +∞] and F ∈ (L2)−β ⊗ HC. We define the extended

stochastic integral with respect to the Meixner process
∫ t

0
F (s) d̂Ms ∈ (L2)−β by setting

(see (1.14) and Lemma 1.2)

(1.15)

∫ t

0

F (s) d̂Ms :=

∞∑

n=0

〈Pn+1, F̂
(n)
[0,t)〉.

It was shown in [12] that the extended stochastic integral
∫ t

0 ◦ d̂M is well-defined as a

linear continuous operator acting from (L2)−β ⊗ HC to (L2)−β ; note also that
∫ t

0 ◦ d̂M

is a direct generalization of the Itô stochastic integral (see [17, 12] for details).
Finally, let us consider the interconnection between the Wick calculus and the extended

stochastic integration. Denote by M ′ the Meixner white noise (the generalized stochastic
process from Theorem 1.1). Formally M ′

· = 〈P1, δ·〉, where δ· is the Dirac delta-function
(see [17] for more details).

Theorem 1.8. ([12]). For all t ∈ [0, +∞] and F ∈ (L2)−β ⊗ HC formally defined∫ t

0 Fs♦M ′
sσ(ds) can be considered as a linear continuous functional on (L2)β that coin-

cides with
∫ t

0 F (s) d̂Ms, i.e.,
∫ t

0

F (s)♦M ′
sσ(ds) =

∫ t

0

F (s) d̂Ms ∈ (L2)−β .

2. Hida-type stochastic derivatives on (L2)−β
−q

We begin from some ”technical preparation”. For F (n) ∈ H
(n)
ext and f (m) ∈ H

(m)
ext

(n > m) we define a ”pairing” 〈F (n), f (m)〉ext ∈ H
(n−m)
ext by the formula

(2.1) 〈〈F (n), f (m)〉ext, g
(n−m)〉ext = 〈F (n), f (m) ⋄ g(n−m)〉ext ∀g(n−m) ∈ H

(n−m)
ext .

Since (see (1.11))

|〈F (n), f (m) ⋄ g(n−m)〉ext| ≤ |F (n)|ext|f
(m) ⋄ g(n−m)|ext ≤ |F (n)|ext|f

(m)|ext|g
(n−m)|ext,

this definition is correct and

(2.2) |〈F (n), f (m)〉ext|ext ≤ |F (n)|ext|f
(m)|ext.

In order to define a Hida-type stochastic derivative on (L2)−β
−q we need the following

statement.

Lemma 2.1. ([17]). For given F (n) ∈ H
(n)
ext (n ∈ N) we construct the element F (n)(·) ∈

H
(n−1)
ext ⊗ HC by the following way. Let Ḟ (n) ∈ F (n) be some representative (function)

from the equivalence class F (n). We consider Ḟ (n)(·) (i.e., separate a one argument

of Ḟ (n)). Let F (n)(·) ∈ H
(n−1)
ext ⊗ HC be the generated by Ḟ (n)(·) equivalence class in

H
(n−1)
ext ⊗HC. This class is well-defined, does not depend on the representative Ḟ (n), and

(2.3) |F (n)(·)|
H

(n−1)
ext ⊗HC

≤ |F (n)|ext.
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Remark 2.1. It was shown in [15] that for each f (1) ∈ HC

∫

R+

F (n)(s)f (1)(s)σ(ds) = 〈F (n), f (1)〉ext ∈ H
(n−1)
ext .

Definition 2.1. Let F ∈ (L2)−β
−q , t ∈ [0, +∞). We define the Hida-type stochastic

derivative 1[0,t)(·)∂·F ∈ (L2)−β
−q−1 ⊗HC by setting

(2.4) 1[0,t)(·)∂·F :=
∞∑

n=1

n〈Pn−1, 1[0,t)(·)F
(n)(·)〉 ≡

∞∑

n=0

(n + 1)〈Pn, 1[0,t)(·)F
(n+1)(·)〉,

where the kernels F (n)(·) ∈ H
(n−1)
ext ⊗ HC are constructed in Lemma 2.1 starting from

the kernels F (n) ∈ H
(n)
ext from decomposition (1.4) for F . In the case t = +∞ denote

1[0,∞)(·)∂· by ∂·.

Since (see (2.3))

‖1[0,t)(·)∂·F‖2
(L2)−β

−q−1⊗HC

=

∞∑

n=0

(n!)1−β2−(q+1)n(n + 1)2|1[0,t)(·)F
(n+1)(·)|2

H
(n)
ext⊗HC

=

∞∑

n=0

((n + 1)!)1−β2−qn[(n + 1)1+β2−n]|1[0,t)(·)F
(n+1)(·)|2

H
(n)
ext⊗HC

≤ 2qc

∞∑

n=0

((n + 1)!)1−β2−q(n+1)|F (n+1)|2ext ≤ 2qc‖F‖2
−q,−β,

where c := maxn∈Z+ [(n + 1)1+β2−n], 1[0,t)(·)∂· is well-defined as a linear continuous

operator acting from (L2)−β
−q to (L2)−β

−q−1 ⊗HC.

Remark 2.2. It is obvious that one can define 1[0,t)(·)∂· by formula (2.4) as a linear

continuous operator acting from (L2)−β to (L2)−β ⊗HC.

Remark 2.3. Note that Definition 2.1 is a direct generalization of the definition of the
stochastic derivative 1[0,t)(·)∂· on (L2), see [17]. In the Gaussian analysis such a sto-
chastic derivative is called the Hida derivative, therefore the term ”Hida-type stochastic
derivative” for defined here 1[0,t)(·)∂· is natural.

Sometimes it can be convenient to consider 1[0,t)(·)∂· as an operator acting from (L2)−β
−q

to (L2)−β
−q ⊗ HC (unfortunately, in this case 1[0,t)(·)∂· is not continuous). Now we give

the corresponding definition.

Definition 2.2. For each t ∈ [0, +∞] we define the Hida-type stochastic derivative

1[0,t)(·)∂· : (L2)−β
−q → (L2)−β

−q ⊗HC with the domain

(2.5)

dom
(
1[0,t)(·)∂·

)

:=

{
F ∈ (L2)−β

−q :

∞∑

n=0

(n!)1−β2−qn(n + 1)2|F (n+1)(·)1[0,t)(·)|
2

H
(n)
ext⊗HC

< ∞

}

by formula (2.4).

Since for β = 0 and q = 0 (L2)−0
−0 = (L2), it is natural to wait that properties of

1[0,t)(·)∂· from Definition 2.2 are similar to the properties of 1[0,t)(·)∂· : (L2) → (L2)⊗HC

(see [17, 15]). In fact, now we will prove the corresponding statements. First we need
the following
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Definition 2.3. For each t ∈ [0, +∞] we define the extended stochastic integral
∫ t

0
◦ d̂M :

(L2)β
q ⊗HC → (L2)β

q with

(2.6) dom

( ∫ t

0

◦ d̂M

)
:=

{
f ∈ (L2)β

q ⊗HC :
∞∑

n=0

((n + 1)!)1+β2q(n+1)|f̂
(n)
[0,t)|

2
ext < ∞

}

by the formula (cf. (1.15))
∫ t

0

f(s) d̂Ms :=

∞∑

n=0

〈Pn+1, f̂
(n)
[0,t)〉,

where f̂
(n)
[0,t) ∈ H

(n+1)
ext , n ∈ Z+ are obtained in Lemma 1.2 from the kernels f

(n)
· ∈

H
(n)
ext ⊗HC from the decomposition (cf. (1.14)) f =

∑∞
n=0〈Pn, f

(n)
· 〉.

Theorem 2.1. For each t ∈ [0, +∞] the Hida-type stochastic derivative 1[0,t)(·)∂· :

(L2)−β
−q → (L2)−β

−q ⊗HC and the extended stochastic integral
∫ t

0
◦ d̂M : (L2)β

q ⊗HC → (L2)β
q

are adjoint one to another, i.e.,

(2.7) 1[0,t)(·)∂· =

∫ t

0

◦ d̂M∗;

∫ t

0

◦ d̂M = ∂∗
· (◦1[0,t)(·)).

In particular,

∂· =

∫ ∞

0

◦ d̂M∗;

∫ ∞

0

◦ d̂M = ∂∗
· .

Equalities (2.7) can be accepted as definitions of the Hida-type stochastic derivative and
the extended stochastic integral.

Proof. First we note that
∫ t

0 ◦ d̂M∗ and ∂∗
· (◦1[0,t)(·)) are well-defined because

dom
( ∫ t

0

◦ d̂M
)

(see (2.6)) and dom
(
1[0,t)(·)∂·

)
(see (2.5)) are dense in (L2)β

q ⊗ HC and (L2)−β
−q corre-

spondingly.
By analogy with the proof of Theorem 3.2 in [17] one can show that for all F ∈

dom
(
1[0,t)(·)∂·

)
and f ∈ dom

( ∫ t

0
◦ d̂M

)

(2.8) 〈〈F,

∫ t

0

f(s) d̂Ms〉〉 =

∫ t

0

〈〈∂sF, f(s)〉〉σ(ds) ≡ (1[0,t)(·)∂·F, f)(L2)⊗HC
.

It remains to prove that a) dom
(
1[0,t)(·)∂·

)
= dom

( ∫ t

0 ◦ d̂M∗
)
, and b) dom

( ∫ t

0 ◦ d̂M
)

=

dom
(
∂∗
· (◦1[0,t)(·))

)
.

a) By definition, F ∈ dom
( ∫ t

0
◦ d̂M∗

)
⊂ (L2)−β

−q if and only if (L2)β
q ⊗ HC ⊃

dom
( ∫ t

0 ◦ d̂M
)
∋ f 7→ 〈〈F,

∫ t

0 f(s) d̂Ms〉〉 is a linear continuous functional. The last

is possible if and only if ∃H ∈ (L2)−β
−q ⊗HC such that 〈〈F,

∫ t

0 f(s) d̂Ms〉〉 = (H, f)(L2)⊗HC
.

But it follows from (2.8) that this condition is fulfilled if and only if F ∈ (L2)−β
−q and

‖1[0,t)(·)∂·F‖(L2)−β
−q

⊗HC

< ∞, i.e., (see (2.5)) dom
(
1[0,t)(·)∂·

)
= dom

( ∫ t

0
◦ d̂M∗

)
.

b) By definition, f ∈ dom
(
∂∗
· (◦1[0,t)(·))

)
⊂ (L2)β

q ⊗ HC if and only if (L2)−β
−q ⊃

dom
(
1[0,t)(·)∂·

)
∋ F 7→ (1[0,t)(·)∂·F, f)(L2)⊗HC

is a linear continuous functional. The

last is possible if and only if ∃h ∈ (L2)β
q such that (1[0,t)(·)∂·F, f)(L2)⊗HC

= 〈〈F, h〉〉. But

it follows from (2.8) that this condition is fulfilled if and only if f ∈ (L2)β
q ⊗ HC and

‖
∫ t

0
f(s) d̂Ms‖q,β < ∞, i.e., (see (2.6)) dom

( ∫ t

0
◦ d̂M

)
= dom

(
∂∗
· (◦1[0,t)(·))

)
. �
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Corollary. The operators 1[0,t)(·)∂· : (L2)−β
−q → (L2)−β

−q ⊗ HC and
∫ t

0
◦ d̂M : (L2)β

q ⊗

HC → (L2)β
q are closed.

Remark 2.4. The results of Theorem 2.1 hold true if we consider 1[0,t)(·)∂· : (L2)−β
−q →

(L2)−β
−q−1 ⊗ HC and

∫ t

0
◦ d̂M : (L2)β

q+1 ⊗ HC → (L2)β
q (so as in the case 1[0,t)(·)∂· :

(L2)−β → (L2)−β ⊗ HC and correspondingly
∫ t

0
◦ d̂M : (L2)β ⊗ HC → (L2)β), now all

these operators are continuous.

Remark 2.5. In [15] elements of the so-called Clark-Ocone theory in the case F ∈ (L2)−1

were considered. One can easily see that all corresponding results from [15] hold true in
the case F ∈ (L2)−β .

3. Stochastic differential operators on (L2)−β
−q

By analogy with [3, 11, 15] we consider in this section stochastic differential operators
that are closely connected with the Hida-type stochastic derivatives (see Proposition 3.3
below) and convenient for construction of an analysis on generalized functions spaces.

Definition 3.1. Let F ∈ (L2)−β
−q , n ∈ Z+, f (n) ∈ H

(n)
ext . We define

(3.1) (DnF )(f (n)) :=
∞∑

m=0

(m + n)!

m!
〈Pm, 〈F (m+n), f (n)〉ext〉 ∈ (L2)−β

−q−1,

where F (m) ∈ H
(m)
ext (m ∈ Z+) are the kernels from decomposition (1.4) for F . Denote

D := D1, this operator is called the generalized stochastic derivative.

Since (see (1.8), (2.2))

‖(DnF )(f (n))‖2
−q−1,−β =

∞∑

m=0

(m!)1−β2−(q+1)m
( (m + n)!

m!

)2

|〈F (m+n), f (n)〉ext|
2
ext

= 2(q+1)n
∞∑

m=0

((m + n)!)1−β2−(q+1)(m+n)
( (m + n)!

m!

)1+β

|〈F (m+n), f (n)〉ext|
2
ext

≤ 2(q+1)n|f (n)|2ext

∞∑

m=0

((m + n)!)1−β2−q(m+n)
[
2−(m+n)

( (m + n)!

m!

)1+β]
|F (m+n)|2ext

≤ 2(q+1)n|f (n)|2extc

∞∑

m=0

((m + n)!)1−β2−q(m+n)|F (m+n)|2ext

≤ 2(q+1)n|f (n)|2extc‖F‖2
−q,−β,

where c := maxm∈Z+ [2−(m+n)( (m+n)!
m! )1+β ], (Dn◦)(f (n)) is well-defined as a linear contin-

uous operator acting from (L2)−β
−q to (L2)−β

−q−1. Moreover, for each F ∈ (L2)−β
−q (DnF )(◦)

is a linear continuous operator acting from H
(n)
ext to (L2)−β

−q−1.

Remark 3.1. It is obvious that for each f (n) ∈ H
(n)
ext (Dn◦)(f (n)) can be defined by (3.1) as

a linear continuous operator acting in (L2)−β ; in this case for each F ∈ (L2)−β (DnF )(◦)

is a linear continuous operator acting from H
(n)
ext to (L2)−β .

Since for β < 1 (L2)−β
−q ⊂ (L2)−1

−q, the following statements directly from the corres-
ponding results of [15] follow.

Proposition 3.1. For g
(1)
1 , g

(1)
2 , . . . , g

(1)
n ∈ HC = H

(1)
ext

(D(. . . (D((D︸ ︷︷ ︸
n times

F )(g
(1)
1 )))(g

(1)
2 ) . . . ))(g(1)

n ) = (DnF )(g
(1)
1 ⋄ g

(1)
2 ⋄ · · · ⋄ g(1)

n ).
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Proposition 3.2. For each F ∈ (L2)−β
−q the kernels F (n) ∈ H

(n)
ext, n ∈ Z+ from decom-

position (1.4) can be presented in the form

F (n) =
1

n!
E(DnF ),

where E◦ := 〈〈◦, 1〉〉 is an expectation.

Proposition 3.3. For all F ∈ (L2)−β
−q , f (1) ∈ HC

∫

R+

∂sF · f (1)(s)σ(ds) = (DF )(f (1)).

Remark 3.2. Note that formally ∂·◦ = (D◦)(δ·), where δ is the Dirac delta-function.

Proposition 3.4. The adjoint to Dn operator has the form

(3.2) (Dng)(f (n))∗ =

∞∑

m=0

〈Pm+n, g(m) ⋄ f (n)〉 = g♦〈Pn, f (n)〉 ∈ (L2)β
q ,

where g ∈ (L2)β
q+1, f (n) ∈ H

(n)
ext, and g(m) ∈ H

(m)
ext (m ∈ Z+) are the kernels from

decomposition (1.6) for g.

Theorem 3.1. (cf. (2.8)). For all F ∈ (L2)−β
−q , g ∈ (L2)β

q+1 and f (1) ∈ HC

〈〈F,

∫ ∞

0

g · f (1)(s) d̂Ms〉〉 = 〈〈F, g♦〈P1, f
(1)〉〉〉 = 〈〈F, (Dg)(f (1))∗〉〉 = 〈〈(DF )(f (1)), g〉〉.

Remark 3.3. The equality
∫ ∞

0 g · f (1)(s) d̂Ms = g♦〈P1, f
(1)〉 = (Dg)(f (1))∗ can be gene-

ralized in the following sense. For a general n ∈ N, f (n) ∈ H
(n)
ext , g ∈ (L2)β

q+1 one can
define a multiple extended stochastic integral∫

Rn
+

g · f (n)(u1, . . . , un) d̂Mu1 . . . d̂Mun
:= g♦〈Pn, f (n)〉 = (Dng)(f (n))∗ ∈ (L2)β

q

(see (3.2)). It is easy to see that for f (n) = f
(1)
1 ⋄· · ·⋄f

(1)
n , f

(1)
1 , . . . , f

(1)
n ∈ HC this integral

is a repeated extended stochastic one: (Dng)(f
(1)
1 ⋄ · · · ⋄ f

(1)
n )∗ =

∫ ∞

0 (· · · (
∫ ∞

0 (
∫ ∞

0 g ·

f
(1)
1 (u1) d̂Mu1)f

(1)
2 (u2) d̂Mu2) . . . )f

(1)
n (un) d̂Mun

(cf. Proposition 3.1).

Theorem 3.2. The generalized stochastic derivative D is a differentiation with respect
to the Wick product, i.e., ∀F, G ∈ (L2)−β we have

D(F♦G) = (DF )♦G + F♦(DG) ∈ (L2)−β .

Corollary. Let n ∈ N, F, F1, . . . , Fn ∈ (L2)−β, and h : C → C be a holomorphic at
(SF )(0) function. Then

D(F1♦ · · ·♦Fn) =
n∑

k=1

F1♦ · · ·♦Fk−1♦(DFk)♦Fk+1♦ · · ·♦Fn ∈ (L2)−β,

D(F♦n) = nF♦(n−1)♦(DF ) ∈ (L2)−β ,

Dh♦(F ) = h′♦(F )♦(DF ) ∈ (L2)−1,

where h′ denotes the usual derivative of h. Under some additional conditions (for exam-
ple, if h is a polynomial, or F ∈ P and h satisfies the conditions of Theorem 1.7)
Dh♦(F ) ∈ (L2)−β.

Theorem 3.3. Let F ∈ (L2)−β ⊗HC. Then ∀t ∈ [0, +∞] and ∀f (n) ∈ H
(n)
ext

(
D

∫ t

0

Fs d̂Ms)(f
(n)

)
=

∫ t

0

(DFs)(f
(n)) d̂Ms +

∫ t

0

Fsf
(n)(s)σ(ds) ∈ (L2)−β .
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Let us define a set of formal series Bβ (a characterization set of (L2)−β in terms of
the S-transform) by setting Bβ := S

(
(L2)−β

)
≡ {K|∃F ∈ (L2)−β : K = SF}.

Definition 3.2. Let g ∈ HC. We define a ”directional derivative” D⋄
g : Bβ → Bβ by

setting for (SF )(·) =
∑∞

m=0〈F
(m), ·⊗m〉ext ∈ Bβ

(D⋄
gSF )(·) :=

∞∑

m=1

m〈F (m), ·⊗(m−1) ⋄ g〉ext ≡

∞∑

m=0

(m + 1)〈〈F (m+1), g〉ext, ·
⊗m〉ext ∈ Bβ .

It is obvious that formally S−1(D⋄
gSF ) = (DF )(g), therefore this definition is correct

and, moreover, we have

Theorem 3.4. The generalized stochastic derivative (D◦)(g) is a pre-image of the ”di-
rectional derivative” D⋄

g of S◦ under the S-transform, i.e., for all F ∈ (L2)−β and
g ∈ HC

(DF )(g) = S−1(D⋄
gSF ) ∈ (L2)−β .

Remark 3.4. Note that if η = 0 (the Gaussian and Poissonian cases) then Bβ consists of
holomorphic at zero functions and D⋄

g is the usual directional derivative.

Sometimes it can be convenient to consider (Dn◦)(f (n)), f (n) ∈ H
(n)
ext as an operator

acting acting in (L2)−β
−q (for example, (L2)−0

−0 = (L2), this very important particular case
was considered in details in [17, 15]). We accept the following

Definition 3.3. Let n ∈ Z+, f (n) ∈ H
(n)
ext . We define (Dn◦)(f (n)) : (L2)−β

−q → (L2)−β
−q

with the domain

(3.3)

dom
(
(Dn◦)(f (n))

)

=

{
F ∈ (L2)−β

−q :
∞∑

m=0

(m!)1−β2−qm
( (m + n)!

m!

)2

|〈F (m+n), f (n)〉ext|
2
ext < ∞

}

(F (m) ∈ H
(m)
ext , m ∈ Z+ are the kernels from decomposition (1.4) for F ) by formula (3.1).

Theorem 3.5. The operator (Dn◦)(f (n)) : (L2)−β
−q → (L2)−β

−q (f (n) ∈ H
(n)
ext) with domain

(3.3) is closed.

Proof. Let us prove that there exists the second adjoint to (Dn◦)(f (n)) operator
(Dn◦)(f (n))∗∗ and (Dn◦)(f (n)) = (Dn◦)(f (n))∗∗ (as is well known, an adjoint operator is
closed).

Since dom
(
(Dn◦)(f (n))

)
is dense in (L2)−β

−q , the operator (Dn◦)(f (n))∗ : (L2)β
q →

(L2)β
q is well-defined and, obviously, is given by (3.2). Therefore dom

(
(Dn◦)(f (n))∗

)
=

{g ∈ (L2)β
q : ‖g♦〈Pn, f (n)〉‖2

q,β =
∑∞

m=0((m + n)!)1+β2q(m+n)|g(m) ⋄ f (n)|2ext < ∞}

is dense in (L2)β
q , hence (Dn◦)(f (n))∗∗ : (L2)−β

−q → (L2)−β
−q is well-defined and it re-

mains to show that dom
(
(Dn◦)(f (n))

)
= dom

(
(Dn◦)(f (n))∗∗

)
. By definition, F ∈

dom
(
(Dn◦)(f (n))∗∗

)
if and only if (L2)β

q ⊃ dom
(
(Dn◦)(f (n))∗

)
∋ g 7→ 〈〈F, (Dng)(f (n))∗〉〉

is a linear continuous functional. The last is possible if and only if ∃H ∈ (L2)−β
−q such that

〈〈F, (Dng)(f (n))∗〉〉 = 〈〈H, g〉〉. Using the definition of (L2)β
q , Theorem 1.4, (1.9), (3.2) and

(2.1) one can show that this H must have the form
∑∞

m=0
(m+n)!

m! 〈Pm, 〈F (m+n), f (n)〉ext〉,

hence (see (3.3) and (1.8)) dom
(
(Dn◦)(f (n))

)
= dom

(
(Dn◦)(f (n))∗∗

)
. �

Remark 3.5. Let Gn := {F ∈ (L2)−β
−q :

∑∞
m=0(m!)1−β2−qm( (m+n)!

m! )2|F (m+n)|2ext < ∞}.

For each f (n) ∈ H
(n)
ext we define the operator (Dn◦)(f (n)) : Gn → (L2)−β

−q by formula (3.1).
It follows from Theorem 3.5 that this operator (as an operator acting in the topological
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space (L2)−β
−q ) is closable. Moreover, for each F ∈ Gn the operator (DnF )(◦) : H

(n)
ext →

(L2)−β
−q is continuous:

‖(DnF )(f (n))‖2
−q,−β =

∞∑

m=0

(m!)1−β2−qm
((m + n)!

m!

)2

|〈F (m+n), f (n)〉ext|
2
ext

≤ |f (n)|2ext

∞∑

m=0

(m!)1−β2−qm
((m + n)!

m!

)2

|F (m+n)|2ext

(see (1.8), (2.2)).

Remark 3.6. In the case β = 1 one can consider the so-called Kondratiev-type spaces of
nonregular test and generalized functions, and introduce and study a stochastic integral,
stochastic differential operators, elements of a Wick calculus etc. on these spaces, see
[17] for details. If β < 1 then formal studying of ”nonregular” spaces and the mentioned
objects on these spaces (by analogy with our considerations here) is possible; but such a
studying is not unreasonable in the Gaussian and Poissonian cases only because if η 6= 0
then the nonregular ”test functions” spaces are not embedded in (L2).

Acknowledgments. I am very grateful to Professor E. W. Lytvynov for helpful advices
and remarks.
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