VANISHING OF THE FIRST (σ, τ)-COHOMOLOGY GROUP OF TRIANGULAR BANACH ALGEBRAS

M. KHOSRAVI, M. S. MOSLEHIAN, AND A.N. MOTLAGH

Abstract

In this paper, we define the first topological (σ, τ)-cohomology group and examine vanishing of the first (σ, τ)-cohomology groups of certain triangular Banach algebras. We apply our results to study the (σ, τ)-weak amenability and (σ, τ)-amenability of triangular Banach algebras.

1. Introduction and preliminaries

Suppose that \mathcal{A} and \mathcal{B} are two unital algebras with units $1_{\mathcal{A}}$ and $1_{\mathcal{B}}$, respectively. Recall that a vector space \mathcal{M} is a unital $\mathcal{A}-\mathcal{B}$-bimodule whenever it is both a left \mathcal{A}-module and a right \mathcal{B}-module satisfying

$$
a(m b)=(a m) b, \quad 1_{\mathcal{A}} m=m 1_{\mathcal{B}}=m \quad(a, b \in \mathcal{A}, m \in \mathcal{M})
$$

Then $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]=\left\{\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right] ; a \in \mathcal{A}, m \in \mathcal{M}, b \in \mathcal{B}\right\}$ equipped with the usual 2×2 matrix-like addition and matrix-like multiplication is an algebra.

An algebra \mathcal{T} is called a triangular algebra if there exist algebras \mathcal{A} and \mathcal{B} and nonzero $\mathcal{A}-\mathcal{B}$-bimodule \mathcal{M} such that \mathcal{T} is (algebraically) isomorphic to $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. For example, the algebra \mathcal{T}_{n} of $n \times n$ upper triangular matrices over the complex field \mathbb{C}, may be viewed as a triangular algebra when $n>1$. In fact, if $n>k$, we have $\mathcal{T}_{n}=$ $\operatorname{Tri}\left(\mathcal{T}_{n-k}, M_{n-k, k}(\mathbb{C}), \mathcal{T}_{k}\right)$ in which $M_{n-k, k}(\mathbb{C})$ is the space of $(n-k) \times k$ complex matrices, cf. [1].

Let \mathcal{T} be a triangular algebra. If $1=\left[\begin{array}{cc}u & p \\ 0 & v\end{array}\right]$, and $\left[\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right]$ is denoted by $a \oplus b$, then it can be easily verified that $e=u \oplus 0$ is an idempotent such that $(1-e) \mathcal{T} e=0$ but $e \mathcal{T}(1-e) \neq 0$. Conversely, if there exists an idempotent $e \in \mathcal{T}$ such that $(1-e) \mathcal{T} e=0$ but $e \mathcal{T}(1-e) \neq 0$. Then the mapping $x \mapsto\left[\begin{array}{cc}e x e & e x(1-e) \\ 0 & (1-e) x(1-e)\end{array}\right]$ is an isomorphism between \mathcal{T} and $\operatorname{Tri}(e \mathcal{T} e, e \mathcal{T}(1-e),(1-e) \mathcal{T}(1-e))$; cf. [1].

By a triangular Banach algebra we mean a Banach algebra A which is also a triangular algebra. Many algebras such as upper triangular Banach algebras [4], nest algebras [2], semi-nest algebras [3], and joins [6] are triangular algebras.

Following [1], consider a triangular Banach algebra \mathcal{T} with an idempotent e satisfying $e \mathcal{T}(1-e) \neq 0$ and $(1-e) \mathcal{T} e=0$. Put $\mathcal{A}=e \mathcal{T} e, \mathcal{B}=(1-e) \mathcal{T}(1-e)$ and $\mathcal{M}=e \mathcal{T}(1-e)$. Then \mathcal{A} and \mathcal{B} are closed subalgebras of \mathcal{T}, \mathcal{M} is a Banach $\mathcal{A}-\mathcal{B}$-bimodule, and $\mathcal{T}=$ $\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. Conversely, given Banach algebras $\left(\mathcal{A},\|\cdot\|_{\mathcal{A}}\right)$ and $\left(\mathcal{B},\|\cdot\|_{\mathcal{B}}\right)$ and an $\mathcal{A}-\mathcal{B}$ bimodule \mathcal{M}, then the triangular algebra $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is a Banach algebra with respect to the norm given by $\left\|\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right\|_{\mathcal{T}}=\|a\|_{\mathcal{A}}+\|m\|_{\mathcal{M}}+\|b\|_{\mathcal{B}}$. It is not hard

[^0]to show that each norm $\|$.$\| making \operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ into a triangular Banach algebra is equivalent to $\|\cdot\|_{\mathcal{T}}$, if the natural restrictions of $\|\cdot\|$ to \mathcal{A}, \mathcal{B} and \mathcal{M} are equivalent to the given norms on \mathcal{A}, \mathcal{B} and \mathcal{M}, respectively. See also $[12,16]$

The concept of topological cohomology arose from the problems concerning extensions by H. Kamowitz [11], derivations by R. V. Kadison and J. R. Ringrose [9, 10] and amenability by B. E. Johnson [8] and has been extensively developed by A. Ya. Helemskii and his school [7]. The reader is referred to $[7,19]$ for undefined notation and terminology.

Let \mathcal{A} be a Banach algebra and σ, τ be continuous homomorphisms on \mathcal{A}. Suppose that \mathcal{E} is a Banach \mathcal{A}-bimodule. A linear mapping $d: \mathcal{A} \rightarrow \mathcal{E}$ is called a (σ, τ)-derivation if

$$
d(a b)=d(a) \sigma(b)+\tau(a) d(b) \quad(a, b \in \mathcal{A})
$$

We mean by a σ-derivation, a (σ, σ)-derivation. For example (i) Every ordinary derivation of an algebra \mathcal{A} into an \mathcal{A}-bimodule is an $i d_{\mathcal{A}}$-derivation, where $i d_{\mathcal{A}}$ is the identity mapping on the algebra \mathcal{A}. (ii) Every point derivation $d: \mathcal{A} \rightarrow \mathbb{C}$ at the character θ on \mathcal{A} is a θ-derivation.

A linear mapping $d: \mathcal{A} \longrightarrow \mathcal{E}$ is called (σ, τ)-inner derivation if there exists $x \in \mathcal{E}$ such that $d(a)=\tau(a) x-x \sigma(a) \quad(a \in \mathcal{A})$. See also [13, 14, 17, 18] and references therein.

We denote the set of continuous (σ, τ)-derivations from \mathcal{A} into \mathcal{E} by $Z_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E})$ and the set of inner (σ, τ)-derivations by $B_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E})$. we define the space $H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E})$ as the quotient space $Z_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E}) / B_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E})$. The space $H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{E})$ is called the first $(\sigma-\tau)$-cohomology group of \mathcal{A} with coefficients in \mathcal{E}.

From now on, \mathcal{A} and \mathcal{B} denote unital Banach algebras with units $1_{\mathcal{A}}$ and $1_{\mathcal{B}}, \mathcal{M}$ denotes a unital Banach $\mathcal{A}-\mathcal{B}$-bimodule and $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is the triangular matrix algebra. In addition, \mathcal{X} is a unital Banach \mathcal{T}-bimodule, $\mathcal{X}_{\mathcal{A A}}=1_{\mathcal{A}} \mathcal{X} 1_{\mathcal{A}}, \mathcal{X}_{\mathcal{B B}}=1_{\mathcal{B}} \mathcal{X} 1_{\mathcal{B}}, \mathcal{X}_{\mathcal{A B}}=$ $1_{\mathcal{A}} \mathcal{X} 1_{\mathcal{B}}$ and $\mathcal{X}_{\mathcal{B A}}=1_{\mathcal{B}} \mathcal{X} 1_{\mathcal{A}}$. For instance, with $\mathcal{X}=\mathcal{T}$ we have $\mathcal{X}_{\mathcal{A A}}=\mathcal{A}, \mathcal{X}_{\mathcal{B B}}=$ $\mathcal{B}, \mathcal{X}_{\mathcal{A B}}=\mathcal{M}$ and $\mathcal{X}_{\mathcal{B A}}=0$.

In this paper, we examine vanishing of the first (σ, τ)-cohomology groups of certain triangular Banach algebras. We apply our results to investigate the (σ, τ)-weak amenability and (σ, τ)-amenability of triangular Banach algebras.

2. VAnishing of the first (σ, τ)-COHOMOLOGY GROUP

In this section, using some ideas of [5], we investigate the relation between the first (σ, τ)-cohomology of \mathcal{T} with coefficients in \mathcal{X} and those of \mathcal{A} and \mathcal{B} with coefficients in $\mathcal{X}_{\mathcal{A A}}$ and $\mathcal{X}_{\mathcal{B B}}$, respectively, whenever $\mathcal{X}_{\mathcal{A B}}=0$ in a direct method.

We start our work by investigating the structure of bounded (σ, τ)-derivations from a triangular Banach algebra into bimodules.

Let σ and τ be two homomorphisms on \mathcal{T} with the following properties:

$$
\begin{array}{ll}
\tau(1 \oplus 0)=1 \oplus 0, & \tau(0 \oplus 1)=0 \oplus 1 \\
\sigma(1 \oplus 0)=1 \oplus 0, & \sigma(0 \oplus 1)=0 \oplus 1 \tag{2.2}
\end{array}
$$

The above relation implies easily that $\sigma(\mathcal{A}) \subseteq \mathcal{A}$ and $\sigma(\mathcal{B}) \subseteq \mathcal{B}$ if we identify $a \in \mathcal{A}$ with $\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$ and $b \in \mathcal{B}$ with $\left[\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right]$. So with no ambiguity, we can consider σ and τ as homomorphisms on \mathcal{A} or \mathcal{B}, when it is necessary.

Now let $m \in \mathcal{M}$. If $\sigma\left(\left[\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}a^{\prime} & m^{\prime} \\ 0 & b^{\prime}\end{array}\right]$, then

$$
\begin{aligned}
{\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right] } & =\sigma\left(\left[\begin{array}{ll}
0 & m \\
0 & 0
\end{array}\right]\right)=\sigma\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & m \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\sigma\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right) \sigma\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) \sigma\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & m^{\prime} \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence $\sigma\left(\left[\begin{array}{cc}0 & \mathcal{M} \\ 0 & 0\end{array}\right]\right) \subseteq\left[\begin{array}{cc}0 & \mathcal{M} \\ 0 & 0\end{array}\right]$. Thus one can define $\sigma_{\mathcal{M}}: \mathcal{M} \rightarrow \mathcal{M}$ by $m \mapsto m^{\prime}$. To simplify the notation we denote $\sigma_{\mathcal{M}}$ by σ. Thus $\sigma\left(\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right)$ can be written as $\left[\begin{array}{cc}\sigma(a) & \sigma(m) \\ 0 & \sigma(b)\end{array}\right]$.

If $\sigma_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A}$ and $\sigma_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{B}$ are homomorphisms, then $\sigma_{\mathcal{A}} \oplus \sigma_{\mathcal{B}}: \mathcal{A} \oplus \mathcal{B} \rightarrow$ $\mathcal{A} \oplus \mathcal{B}$ defined by $\left(\sigma_{\mathcal{A}} \oplus \sigma_{\mathcal{B}}\right)(a, b)=\left(\sigma_{\mathcal{A}}(a), \sigma_{\mathcal{B}}(b)\right)$ is a homomorphism. Conversely every homomorphism on $\mathcal{A} \oplus \mathcal{B}$ is of the form $\sigma_{\mathcal{A}} \oplus \sigma_{\mathcal{B}}$ for some homomorphisms $\sigma_{\mathcal{A}}$ and $\sigma_{\mathcal{B}}$ on \mathcal{A} and \mathcal{B}, respectively.

Applying our notation, let $\delta: \mathcal{T} \rightarrow \mathcal{X}$ be a bounded (σ, τ)-derivation. Then $\delta_{\mathcal{A}}: \mathcal{A} \rightarrow$ $1_{\mathcal{A}} \mathcal{X} 1_{\mathcal{A}}$ defined by

$$
\delta_{\mathcal{A}}(a)=1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}
$$

and $\delta_{\mathcal{B}}: \mathcal{B} \rightarrow 1_{\mathcal{B}} \mathcal{X} 1_{\mathcal{B}}$ defined by

$$
\delta \mathcal{B}(b)=1_{\mathcal{B}} \delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right) 1_{\mathcal{B}}
$$

are bounded (σ, τ)-derivations.
Moreover, the mapping $\theta: \mathcal{M} \rightarrow 1_{\mathcal{A}} \mathcal{X} 1_{\mathcal{B}}$ given by

$$
\theta(m)=1_{\mathcal{A}} \delta\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}}
$$

satisfies

$$
\begin{align*}
\theta(a m) & =1_{\mathcal{A}} \delta\left(\left[\begin{array}{cc}
0 & a m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}}=1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}} \\
& =1_{\mathcal{A}} \tau(a) \delta\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}}+1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) \sigma\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}} \tag{2.3}\\
& =\tau(a) 1_{\mathcal{A}} \delta\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}}+1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \sigma\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) \\
& =\tau(a) \theta(m)+\delta_{\mathcal{A}}(a) \sigma(m)
\end{align*}
$$

and

$$
\begin{equation*}
\theta(m b)=\theta(m) \sigma(b)+\tau(m) \delta_{\mathcal{B}}(b) \tag{2.4}
\end{equation*}
$$

Conversely, if δ_{1} and δ_{2} are bounded (σ, τ)-derivations of \mathcal{A} and \mathcal{B} into $\mathcal{X}_{\mathcal{A} \mathcal{A}}$ and $\mathcal{X}_{\mathcal{B B}}$, respectively, and $\theta: \mathcal{M} \rightarrow \mathcal{X}_{\mathcal{A B}}$ is any continuous linear mapping satisfies (2.3) and (2.4), then the mapping $D\left(\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right)=\delta_{1}(a)+\delta_{2}(b)+\theta(m)$ defines a bounded
(σ, τ)-derivation of \mathcal{T} into X, since

$$
\begin{aligned}
& \tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) D\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right)+D\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) \sigma\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right) \\
&=\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)\left(\delta_{1}\left(a^{\prime}\right)+\delta_{2}\left(b^{\prime}\right)+\theta\left(m^{\prime}\right)\right) \\
&+\left(\delta_{1}(a)+\delta_{2}(b)+\theta(m)\right) \sigma\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right) \\
& \quad=\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) \tau\left(1_{\mathcal{A}}\right) \delta_{1}\left(a^{\prime}\right)+\delta_{1}(a) \sigma\left(1_{\mathcal{A}}\right) \sigma\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right) \\
&+\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) \tau\left(1_{\mathcal{B}}\right) \delta_{2}\left(b^{\prime}\right)+\delta_{2}(b) \sigma\left(1_{\mathcal{B}}\right) \sigma\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right) \\
&+\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) \tau\left(1_{\mathcal{A}}\right) \theta\left(m^{\prime}\right)+\theta(m) \sigma\left(1_{\mathcal{B}}\right) \sigma\left(\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right) \\
& \quad=\tau(a) \delta_{1}\left(a^{\prime}\right)+\delta_{1}(a) \sigma\left(a^{\prime}\right)+\delta_{1}(a) \sigma\left(m^{\prime}\right)+\tau(b) \delta_{2}\left(b^{\prime}\right) \\
& \quad+\delta_{2}(b) \sigma\left(b^{\prime}\right)+\tau(m) \delta_{2}\left(b^{\prime}\right)+\tau(a) \theta\left(m^{\prime}\right)+\theta(m) \sigma\left(b^{\prime}\right) \\
& \quad=\delta_{1}\left(a a^{\prime}\right)+\delta_{2}\left(b b^{\prime}\right)+\theta\left(a m^{\prime}\right)+\theta\left(m b^{\prime}\right) \\
& \quad=D\left(\left[\begin{array}{cc}
a a^{\prime} & a m^{\prime}+m b^{\prime} \\
0 & b b^{\prime}
\end{array}\right]\right)=D\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\left[\begin{array}{cc}
a^{\prime} & m^{\prime} \\
0 & b^{\prime}
\end{array}\right]\right)
\end{aligned}
$$

If $\mathcal{X}_{\mathcal{A B}}=0$, then we may assume that the linear mapping θ defined above is zero. Notice that, in this case, $\delta_{\mathcal{A}}(a) \sigma(m)=\tau(m) \delta_{\mathcal{B}}(b)=0$ for every $a \in \mathcal{A}, b \in \mathcal{B}, m \in \mathcal{M}$.

We are now ready to provide our main theorem.
Theorem 2.1. Let $\mathcal{X}_{\mathcal{A B}}=1_{\mathcal{A}} \mathcal{X} 1_{\mathcal{B}}=0$. Then

$$
H_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})=H_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right) \oplus H_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)
$$

Proof. Suppose that $\mathcal{X}_{\mathcal{A B}}=0$ and consider the linear mapping

$$
\rho: Z_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X}) \rightarrow H_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right) \oplus H_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)
$$

defined by

$$
\delta \mapsto\left(\delta_{\mathcal{A}}+N_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right), \delta_{\mathcal{B}}+N_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)\right)
$$

If $\delta_{1} \in Z_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right)$ and $\delta_{2} \in Z_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)$, then $D\left(\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right)=\delta_{1}(a)+\delta_{2}(b)$ is a (σ, τ)-derivation from \mathcal{T} into \mathcal{X} and

$$
\begin{aligned}
\rho(D) & =\left(D_{A}+N_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right), D_{\mathcal{B}}+N_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)\right) \\
& =\left(\delta_{1}+N_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right), \delta_{2}+N_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)\right)
\end{aligned}
$$

The last equation is deduced from the fact that

$$
D_{\mathcal{A}}(a)=1_{\mathcal{A}}\left(\delta_{1}(a)+\delta_{2}(0)\right) 1_{\mathcal{A}}=\delta_{1}(a)
$$

and

$$
\delta_{\mathcal{B}}(b)=1_{\mathcal{B}}\left(\delta_{1}(0)+\delta_{2}(b)\right) 1_{\mathcal{B}}=\delta_{2}(b)
$$

Thus ρ is surjective.

If $\delta \in \operatorname{ker} \rho$, then $\delta_{\mathcal{A}} \in N_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right)$ and $\delta_{\mathcal{B}} \in N_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)$. Then $\delta_{\mathcal{A}}(a)=$ $\tau(a) x-x \sigma(a)$ for some $x \in \mathcal{X}_{\mathcal{A A}}$ and $\delta_{\mathcal{B}}(b)=\tau(b) y-y \sigma(b)$ for some $y \in \mathcal{X}_{\mathcal{B B}}$. Then

$$
\begin{aligned}
D\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) & =\delta_{\mathcal{A}}(a)+\delta_{\mathcal{B}}(b) \\
& =(\tau(a) x-x \sigma(a))+(\tau(b) y-y \sigma(b)) \\
& =(\tau(a)+\tau(m)+\tau(b))(x+y)-(x+y)(\sigma(a)+\sigma(m)+\sigma(b)) \\
& =\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)(x+y)-(x+y) \sigma\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)
\end{aligned}
$$

Thus $D \in N_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})$.
It is straightforward to show that

$$
\begin{aligned}
\delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) & =1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}+1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}+1_{\mathcal{B}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}} \\
& =1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}+1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \sigma(a)
\end{aligned}
$$

Similarly,

$$
\delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right)=1_{\mathcal{B}} \delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right) 1_{\mathcal{B}}-\tau(b) 1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}
$$

and also

$$
\begin{aligned}
\delta\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) & =\delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) \\
& =1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \sigma\left(\left[\begin{array}{cc}
0 & m \\
0 & b
\end{array}\right]\right) \\
& -\tau\left(\left[\begin{array}{cc}
a & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}
\end{aligned}
$$

These follow that

$$
\begin{aligned}
&(\delta-D)\left(\left[\begin{array}{ll}
a & m \\
0 & b
\end{array}\right]\right) \\
&=\delta\left(\left[\begin{array}{ll}
a & m \\
0 & b
\end{array}\right]\right)-1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}-1_{\mathcal{B}} \delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right) 1_{\mathcal{B}} \\
&=\left(\delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)-1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}\right)+\delta\left(\left[\begin{array}{cc}
0 & m \\
0 & 0
\end{array}\right]\right) \\
&+\left(\delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right)-1_{\mathcal{B}} \delta\left(\left[\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right]\right) 1_{\mathcal{B}}\right) \\
&=1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \sigma\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)+1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \sigma\left(\left[\begin{array}{ll}
0 & m \\
0 & b
\end{array}\right]\right) \\
&-\tau\left(\left[\begin{array}{cc}
a & m \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}-\tau\left(\left[\begin{array}{cc}
0 & 0 \\
0 & b
\end{array}\right]\right) 1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} \\
&=-\delta \\
& 1_{\mathcal{B}} \delta\left(\left[\begin{array}{cc}
1_{\mathcal{A}} & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) .
\end{aligned}
$$

We therefore have $\delta-D \in N_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})$, and so $\delta \in N_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})$.

Conversely, let $\delta \in N_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})$. Then there exists $x \in \mathcal{X}$ such that

$$
\delta\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)=\tau\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right) x-x \sigma\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)
$$

Hence

$$
\begin{aligned}
\delta_{\mathcal{A}}(a) & =1_{\mathcal{A}} \delta\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}}=1_{\mathcal{A}}\left(\tau\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) x-x \sigma\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)\right) 1_{\mathcal{A}} \\
& =\tau\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right) 1_{\mathcal{A}} x 1_{\mathcal{A}}-1_{\mathcal{A}} x 1_{\mathcal{A}} \sigma\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)=\delta_{1_{\mathcal{A}} x 1_{\mathcal{A}}}(a)
\end{aligned}
$$

Similarly, $\delta_{\mathcal{B}}(b)=\delta_{1_{\mathcal{B}} x 1_{\mathcal{B}}}(b)$. Hence $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ are inner and so $\delta \in \operatorname{ker} \rho$.
Thus $N_{(\sigma-\tau)}^{1}(\mathcal{T}, \mathcal{X})=\operatorname{ker} \rho$.
We conclude that

$$
H_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})=\frac{Z_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})}{N_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})}=\frac{Z_{(\sigma, \tau)}^{1}(\mathcal{T}, \mathcal{X})}{\operatorname{ker} \rho}=H_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{X}_{\mathcal{A A}}\right) \oplus H_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{X}_{\mathcal{B B}}\right)
$$

Corollary 2.2. $H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}), \mathcal{M})=0$.
Proof. With $\mathcal{X}=\mathcal{M}$ we have

$$
H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}), \mathcal{M})=H_{(\sigma, \tau)}^{1}(\mathcal{A}, 0) \oplus H_{(\sigma, \tau)}^{1}(\mathcal{B}, 0)=0
$$

Example 2.3. $H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{A}, \mathcal{A}), \mathcal{A})=0$.
Example 2.4. Let \mathcal{L} be a left Banach \mathcal{A}-module. Then $H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{L}, \mathbb{C}), \mathcal{L})=0$.
Corollary 2.5. $H_{(\sigma-\tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}), \mathcal{A})=H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{A})$.
Proof. With $\mathcal{X}=\mathcal{A}$, we have $\mathcal{X}_{\mathcal{A B}}=0, \mathcal{X}_{\mathcal{A A}}=\mathcal{A}$ and $\mathcal{X}_{\mathcal{B B}}=0$. It then follows from Theorem 2.1, $H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}), \mathcal{A})=H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{A}) \oplus H_{(\sigma, \tau)}^{1}(\mathcal{B}, 0)=H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{A})$.

Example 2.6. If \mathcal{A} is a hyperfinite von Neumann algebra and \mathcal{B} is an arbitrary unital Banach module, then $H_{(\sigma, \tau)}^{1}(\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B}), \mathcal{A})=H_{(\sigma, \tau)}^{1}(\mathcal{A}, \mathcal{A})=0$, if σ and τ are ultraweak automorphisms (see Corollary 3.4.6 of [20]).

3. (σ, τ)-WEAK AMENABILITY OF TRIANGULAR BANACH ALGEBRAS

With simple calculation we can observe that if $\mathcal{X}=\mathcal{T}^{*}$ considered as \mathcal{T}-bimodule, then $\mathcal{X}_{\mathcal{A A}}=\mathcal{A}^{*}, \mathcal{X}_{\mathcal{B B}}=\mathcal{B}^{*}$ and $\mathcal{X}_{\mathcal{A B}}=0$. Therefore by Theorem 2.1 we can conclude the following

Theorem 3.1. Let \mathcal{A}, \mathcal{B} be unital Banach algebras, \mathcal{M} be a unital Banach \mathcal{A} - \mathcal{B}-bimodule and $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. Then

$$
H_{(\sigma, \tau)}^{1}\left(\mathcal{T}, \mathcal{T}^{*}\right)=H_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{A}^{*}\right) \oplus H_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{B}^{*}\right)
$$

Corollary 3.2. Let \mathcal{A}, \mathcal{B} be unital Banach algebras and \mathcal{M} be an unital Banach $\mathcal{A}-\mathcal{B}$ bimodule. The triangular Banach algebra $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ is (σ, τ)-weak amenable if and only if \mathcal{A} and \mathcal{B} are both (σ, τ)-weak amenable.

By induction one can easily prove the following proposition

Lemma 3.3. Suppose that \mathcal{A}, \mathcal{B} are unital Banach algebras and \mathcal{M} is a unital Banach $\mathcal{A}-\mathcal{B}$-bimodule. If $\mathcal{X}=\mathcal{T}^{(2 n)}$ then

$$
\mathcal{X}_{\mathcal{A A}}=\mathcal{A}^{(2 n)}, \quad \mathcal{X}_{\mathcal{B B}}=\mathcal{B}^{(2 n)}, \quad \mathcal{X}_{\mathcal{A B}}=\mathcal{M}^{(2 n)}, \quad \mathcal{X}_{\mathcal{B A}}=0
$$

Also if $\mathcal{X}=\mathcal{T}^{(2 n-1)}$ then

$$
\mathcal{X}_{\mathcal{A A}}=\mathcal{A}^{(2 n-1)}, \quad \mathcal{X}_{\mathcal{B B}}=\mathcal{B}^{(2 n-1)}, \quad \mathcal{X}_{\mathcal{A B}}=0, \quad \mathcal{X}_{\mathcal{B A}}=\mathcal{M}^{(2 n-1)}
$$

Now by Lemma 3.3 and Theorem 2.1, we immediately obtain the next result.
Proposition 3.4. Let \mathcal{A}, \mathcal{B} be unital Banach algebras and \mathcal{M} be a unital Banach $\mathcal{A}-\mathcal{B}$ bimodule. Then for all positive integers $n \in \mathbb{N}$,

$$
H_{(\sigma, \tau)}^{1}\left(\mathcal{T}, \mathcal{T}^{(2 n-1)}\right)=H_{(\sigma, \tau)}^{1}\left(\mathcal{A}, \mathcal{A}^{(2 n-1)}\right) \oplus H_{(\sigma, \tau)}^{1}\left(\mathcal{B}, \mathcal{B}^{(2 n-1)}\right)
$$

4. (σ, τ)-AmEnability of triangular Banach algebras

In this section, by using some ideas of [12] we investigate (σ, τ)-amenability of triangular Banach algebra $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. We shall assume that the homomorphisms σ, τ on \mathcal{T} have properties asserted in (2.1) and (2.2). We need some general observation concerning (σ, τ)-amenability of Banach algebras. The first is an easy consequence of the definition of (σ, τ)-amenability.
Proposition 4.1. [15, Proposition 3.3] Let \mathcal{A}, \mathcal{B} be Banach algebras and σ, σ^{\prime} be continuous endomorphisms of \mathcal{A} and τ, τ^{\prime} be continuous homomorphisms of \mathcal{B}. If there is a continuous homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ such that $\varphi(\mathcal{A})$ is a dense subalgebra of \mathcal{B} and $\tau \varphi=\varphi \sigma$ and $\tau^{\prime} \varphi=\varphi \sigma^{\prime}$, then $\left(\sigma, \sigma^{\prime}\right)$-amenability of \mathcal{A} implies $\left(\tau, \tau^{\prime}\right)$-amenability of \mathcal{B}.

Now, suppose that \mathcal{A} is a Banach algebra, $\tau, \sigma: \mathcal{A} \longrightarrow \mathcal{A}$ are two continuous endomorphisms, and \mathcal{I} is a closed ideal of \mathcal{A} such that $\sigma(\mathcal{I}) \subseteq \mathcal{I}, \tau(\mathcal{I}) \subseteq \mathcal{I}$. Then the map $\widehat{\tau}, \widehat{\sigma}: \frac{\mathcal{A}}{\mathcal{I}} \longrightarrow \frac{\mathcal{A}}{\mathcal{I}}$ can be defined by $\widehat{\sigma}(a+\mathcal{I})=\sigma(a)+\mathcal{I}, \widehat{\tau}(a+\mathcal{I})=\tau(a)+\mathcal{I}$. It is not hard to show the following propositions.
Proposition 4.2. [15, Proposition 3.1] Let $\mathcal{I}, \sigma, \tau$ be as above. If \mathcal{A} is (σ, τ)-amenable then $\frac{\mathcal{A}}{\mathcal{I}}$ is $(\widehat{\sigma}, \widehat{\tau})$-amenable.
Proposition 4.3. [15, Proposition 3.2] Let $\mathcal{I}, \sigma, \tau$ be as above and let σ, τ be idempotent homomorphisms. If \mathcal{I} is (σ, τ)-amenable and $\frac{\mathcal{A}}{\mathcal{I}}$ is $(\widehat{\sigma}, \widehat{\tau})$-amenable, then \mathcal{A} is (σ, τ) amenable.

We now extend Theorem 4.1 of [12] as follows
Proposition 4.4. Let σ and τ be two continuous idempotent homomorphisms on triangular Banach algebra $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, 0, \mathcal{B})$. The triangular Banach algebra \mathcal{T} is (σ, τ)-amenable if and only if \mathcal{A} and \mathcal{B} are (σ, τ)-amenable.

Proof. At first suppose that \mathcal{A}, \mathcal{B} are (σ, τ)-amenable. It is easy to see that $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$ is a closed ideal of $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right]$ and $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right] \simeq\left[\begin{array}{cc}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$. Since \mathcal{A} is (σ, τ) amenable therefore $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$ is (σ, τ)-amenable.

Let $\varphi:\left[\begin{array}{ll}0 & 0 \\ 0 & \mathcal{B}\end{array}\right] \rightarrow\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$ be the natural isomorphism. Then $\varphi \tau=$ $\widehat{\tau} \varphi$ and $\varphi \sigma=\widehat{\sigma} \varphi$. By Proposition $4.1(\sigma, \tau)$-amenability of $\left[\begin{array}{cc}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$ implies the $(\widehat{\sigma}, \widehat{\tau})$ amenability of $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$. Thus by utilizing Proposition 4.3, we deduce the (σ, τ)-amenability of the Banach algebra \mathcal{T}.

For the converse, suppose that \mathcal{T} is (σ, τ)-amenable. It is obvious that $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$ is a closed ideal of \mathcal{T}. By Proposition 4.2, $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right]$ is $(\widehat{\sigma}, \widehat{\tau})$-amenable. One can easily observe that there exists the natural isomorphism $\varphi:\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & 0\end{array}\right] \rightarrow$ $\left[\begin{array}{cc}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$ and that $\varphi \widehat{\sigma}=\sigma \varphi$ and $\varphi \widehat{\tau}=\tau \varphi$. Therefore, by Proposition 4.1, $\left[\begin{array}{ll}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$, that is \mathcal{B}, is (σ, τ)-amenable. Similarly one can prove the (σ, τ)-amenability of \mathcal{A}.

Theorem 4.5. Let σ and τ be two continuous idempotent homomorphisms on triangular Banach algebra $\mathcal{T}=\operatorname{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$. If the triangular Banach algebra \mathcal{T} is (σ, τ)-amenable then \mathcal{A} and \mathcal{B} are (σ, τ) - amenable. In particular, σ-amenability of \mathcal{T} implies $\sigma(\mathcal{M})=\{0\}$

Proof. Suppose that $\mathcal{T}=\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right]$ is (σ, τ)-amenable. Clearly, $\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & 0\end{array}\right]$ is a closed ideal of \mathcal{T}. Therefore, by Proposition 4.2, $\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & 0\end{array}\right]$ is $(\widehat{\sigma}, \widehat{\tau})$-amenable Also there exists the natural isomorphism $\varphi:\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & \mathcal{B}\end{array}\right] /\left[\begin{array}{cc}\mathcal{A} & \mathcal{M} \\ 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$ such that $\varphi \widehat{\sigma}=\sigma \varphi$ and $\varphi \widehat{\tau}=\tau \varphi$. Hence $\left[\begin{array}{ll}0 & 0 \\ 0 & \mathcal{B}\end{array}\right]$ is (σ, τ)-amenable. Similarly one can prove the (σ, τ)-amenability of \mathcal{A}.

Now suppose that the triangular Banach algebra \mathcal{T} is σ-amenable.
Set $\mathcal{X}=\left[\begin{array}{cc}\mathcal{A}^{*} & \mathcal{M}^{*} \\ 0 & \mathcal{B}^{*}\end{array}\right]$. The vector space \mathcal{X} is a Banach space under the norm $\left\|\left[\begin{array}{cc}f & h \\ 0 & g\end{array}\right]\right\|=\|f\|_{\mathcal{A}^{*}}+\|h\|_{\mathcal{M}^{*}}+\|g\|_{\mathcal{B}^{*}}$. The space \mathcal{X} can be regarded as a Banach \mathcal{T}-bimodule under the following \mathcal{T}-module actions

$$
\begin{aligned}
& {\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right] \cdot\left[\begin{array}{cc}
f & h \\
0 & g
\end{array}\right]=\left[\begin{array}{cc}
0 & b h \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
f & h \\
0 & g
\end{array}\right] \cdot\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
0 & h a \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

where $\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right] \in \mathcal{T}$ and $\left[\begin{array}{ll}f & h \\ 0 & g\end{array}\right] \in \mathcal{X}$. Therefore $\mathcal{X}^{*}=\left[\begin{array}{cc}\mathcal{A}^{* *} & M^{* *} \\ 0 & B^{* *}\end{array}\right]$ is a dual Banach \mathcal{T}-bimodule.

Let $D: \mathcal{T} \longrightarrow\left[\begin{array}{cc}\mathcal{A}^{* *} & M^{* *} \\ 0 & B^{* *}\end{array}\right]$ be defined by $D\left(\left[\begin{array}{cc}a & m \\ 0 & b\end{array}\right]\right)=\left[\begin{array}{cc}0 & \widehat{\sigma(m)} \\ 0 & 0\end{array}\right]$.
Now we have

$$
\begin{aligned}
& D\left(\left[\begin{array}{cc}
a_{1} & m_{1} \\
0 & b_{1}
\end{array}\right]\left[\begin{array}{cc}
a_{2} & m_{2} \\
0 & b_{2}
\end{array}\right]\right)=D\left(\left[\begin{array}{cc}
a_{1} a_{2} & a_{1} m_{2}+m_{1} b_{2} \\
0 & b_{1} b_{2}
\end{array}\right]\right) \\
& \quad=\left[\begin{array}{cc}
0 & \sigma\left(a_{1} \widehat{\left.m_{2}+m_{1} b_{2}\right)}\right. \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & \sigma\left(a_{1}\right) \widehat{\sigma\left(m_{2}\right)}+\widehat{\sigma\left(m_{1}\right)} \sigma\left(b_{2}\right) \\
0 & 0
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
0 & \sigma\left(a_{1}\right) \widehat{\sigma\left(m_{2}\right)} \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & \widehat{\sigma\left(m_{1}\right)} \sigma\left(b_{2}\right) \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & \widehat{\sigma\left(m_{1}\right)} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\sigma\left(a_{2}\right) & \sigma\left(m_{2}\right) \\
0 & \sigma\left(b_{2}\right)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\begin{array}{cc}
\sigma\left(a_{1}\right) & \sigma\left(m_{1}\right) \\
0 & \sigma\left(b_{1}\right)
\end{array}\right]\left[\begin{array}{cc}
0 & \widehat{\sigma\left(m_{2}\right)} \\
0 & 0
\end{array}\right]=D\left(\left[\begin{array}{cc}
a_{1} & m_{1} \\
0 & b_{1}
\end{array}\right]\right) \sigma\left(\left[\begin{array}{cc}
a_{2} & m_{2} \\
0 & b_{2}
\end{array}\right]\right) \\
& +\sigma\left(\left[\begin{array}{cc}
a_{1} & m_{1} \\
0 & b_{1}
\end{array}\right]\right) D\left(\left[\begin{array}{cc}
a_{2} & m_{2} \\
0 & b_{2}
\end{array}\right]\right)
\end{aligned}
$$

Therefore D is a σ-derivation. Hence there exists $\left[\begin{array}{cc}F & H \\ 0 & G\end{array}\right] \in \mathcal{X}^{*}$ such that

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & \widehat{\sigma(m)} \\
0 & 0
\end{array}\right] } & =D\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)=\sigma\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)\left[\begin{array}{cc}
F & H \\
0 & G
\end{array}\right] \\
& -\left[\begin{array}{cc}
F & H \\
0 & G
\end{array}\right] \sigma\left(\left[\begin{array}{cc}
a & m \\
0 & b
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & \sigma(a) H \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & H \sigma(b) \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\widehat{\sigma(m)}=\sigma(a) H-H \sigma(b) \tag{4.1}
\end{equation*}
$$

for all $m \in \mathcal{M}, a \in \mathcal{A}$ and $b \in \mathcal{B}$. Choosing $a=0, b=0$ in (4.1) we conclude that $\widehat{\sigma(m)}=0$ for all $m \in \mathcal{M}$. Thus $\sigma(\mathcal{M})=\{0\}$.
Corollary 4.6. Let \mathcal{A}, \mathcal{B} be two unital Banach algebra and $\sigma: \mathcal{A} \longrightarrow \mathcal{A}, \tau: \mathcal{B} \longrightarrow \mathcal{B}$ be two continuous idempotent homomorphisms. The Banach algebra $\mathcal{A} \oplus \mathcal{B}$ is $\sigma \oplus \tau$-amenable if and only if \mathcal{A} is σ-amenable and \mathcal{B} is τ-amenable.
Proof. It is easy to see that $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] \simeq \mathcal{A} \oplus \mathcal{B}$. Define $\varphi:\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right] \longrightarrow\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right]$ via $\varphi\left(\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\right)=\left[\begin{array}{cc}\sigma(a) & 0 \\ 0 & \tau(b)\end{array}\right]$. Therefore $\left[\begin{array}{cc}\mathcal{A} & 0 \\ 0 & \mathcal{B}\end{array}\right]$ is φ-amenable if and only if \mathcal{A} and \mathcal{B} are both φ-amenable, and this holds if and only if \mathcal{A} is σ-amenable and \mathcal{B} is τ-amenable.

References

1. W.-S. Cheung, Mappings on triangular algebras, Ph. D. Dissertation, University of Victoria, 2000.
2. K. R. Davidson, Nest Algebras, Pitman Research Notes in Mathematical Sciences, Vol. 191, Longman Scientific and Technical, Harlow, 1988.
3. A. Donsig, B. E. Forrest, and L. W. Marcoux, On derivations of semi-nest algebras, Houston J. Math. 22 (1996), no. 2, 375-398.
4. B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441-462.
5. B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 4, 1435-1452.
6. F. L. Gilfeather and R. R. Smith, Cohomology for operator algebras: joins, Amer. J. Math. 116 (1994), 541-561.
7. A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.
8. B. E. Johnson, Cohomology of Banach Algebras, Mem. Amer. Math. Soc., Vol. 127, 1972.
9. R. V. Kadison and J. R. Ringrose, Cohomology of operator algebras I: Type I von Neumann algebras, Acta Math. 126 (1971), 227-243.
10. R. V. Kadison and J. R. Ringrose, Cohomology of operator algebras II: Extending cobounding and the hyperfinite case, Ark. Mat. 9 (1971), 55-63.
11. H. M. Kamowitz, Cohomology groups of commutative Banach algebras, Trans. Amer. Math. Soc. 102 (1962), 352-372.
12. A. R. Medghalchi, M. H. Sattari, and T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iranian Math. Soc. 31 (2005), no. 2, 57-69.
13. M. Mirzavaziri and M. S. Moslehian, σ-amenability of Banach algebras, Southeast Asian Bull. Math. (to appear).
14. M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ-derivations in C^{*}-algebras, Proc. Amer. Math. Soc. 11 (2006), no. 5, 805-813.
15. M. S. Moslehian and A. N. Motlagh, (σ, τ)-amenability of Banach algebras, in preparation.
16. M. S. Moslehian, On (co)homology of triangular Banach algbras, Topological algebras and its application, Banach Center Publ., Polish Acad. Sci., Warsaw, Vol. 67, 2005.
17. M. S. Moslehian, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl. 318 (2006), 758-771.
18. M. S. Moslehian, Approximate $(\sigma-\tau)$-contractibility, Nonlinear Funct. Anal. Appl. 11 (2006), no. 5, 805-813.
19. V. Runde, Lectures on Amenability, Nonlinear Funct. Anal. Appl., 1774, Springer-Verlag, Berlin, 2002.
20. A. M. Sinclair and R. R. Smith, Hochschild Cohomology of von Neumann Algebras, Cambridge Univ. Press, Cambridge, 1995.
21. M. S. Moslehian and A. N. Motlagh, Some notes on (σ, τ)-amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. (to appear).

Department of Mathematics, Teacher Training University, Tehran, Iran; Banach Mathematical Research Group (BMRG), Mashhad, Iran

E-mail address: khosravi_m@saba.tmu.ac.ir
Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran; Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University, IRAN

E-mail address: moslehian@ferdowsi.um.ac.ir
Department of Mathematics, Ferdowsi University, P. O. Box 1159, Mashhad 91775, Iran
E-mail address: ab_ni40@stu-mail.um.ac.ir; niazimotlagh@gmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 46H25; Secondary 46L57, 16E40.
 Key words and phrases. Banach algebra, triangular Banach algebra, Banach bimodule, (σ, τ)derivation, first (σ, τ)-cohomology group, (σ, τ)-amenability, (σ, τ)-weak amenability.

