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VANISHING OF THE FIRST (σ, τ)-COHOMOLOGY GROUP OF

TRIANGULAR BANACH ALGEBRAS

M. KHOSRAVI, M. S. MOSLEHIAN, AND A.N. MOTLAGH

Abstract. In this paper, we define the first topological (σ, τ)-cohomology group
and examine vanishing of the first (σ, τ)-cohomology groups of certain triangular
Banach algebras. We apply our results to study the (σ, τ)-weak amenability and
(σ, τ)-amenability of triangular Banach algebras.

1. Introduction and preliminaries

Suppose that A and B are two unital algebras with units 1A and 1B, respectively.
Recall that a vector space M is a unital A − B-bimodule whenever it is both a left
A-module and a right B-module satisfying

a(mb) = (am)b, 1Am = m1B = m (a, b ∈ A, m ∈ M).

Then Tri(A,M,B) =

[
A M
0 B

]
=

{[
a m
0 b

]
; a ∈ A, m ∈ M, b ∈ B

}
equipped

with the usual 2 × 2 matrix-like addition and matrix-like multiplication is an algebra.
An algebra T is called a triangular algebra if there exist algebras A and B and nonzero

A − B-bimodule M such that T is (algebraically) isomorphic to Tri(A,M,B). For
example, the algebra Tn of n × n upper triangular matrices over the complex field C,
may be viewed as a triangular algebra when n > 1. In fact, if n > k, we have Tn =
Tri(Tn−k, Mn−k,k(C), Tk) in which Mn−k,k(C) is the space of (n−k)×k complex matrices,
cf. [1].

Let T be a triangular algebra. If 1 =

[
u p
0 v

]
, and

[
a 0
0 b

]
is denoted by a ⊕ b,

then it can be easily verified that e = u⊕0 is an idempotent such that (1− e)T e = 0 but
eT (1 − e) 6= 0. Conversely, if there exists an idempotent e ∈ T such that (1 − e)T e = 0

but eT (1− e) 6= 0. Then the mapping x 7→

[
exe ex(1 − e)
0 (1 − e)x(1 − e)

]
is an isomorphism

between T and Tri(eT e, eT (1 − e), (1 − e)T (1 − e)); cf. [1].
By a triangular Banach algebra we mean a Banach algebra A which is also a triangular

algebra. Many algebras such as upper triangular Banach algebras [4], nest algebras [2],
semi-nest algebras [3], and joins [6] are triangular algebras.

Following [1], consider a triangular Banach algebra T with an idempotent e satisfying
eT (1−e) 6= 0 and (1−e)T e = 0. Put A = eT e,B = (1−e)T (1−e) and M = eT (1−e).
Then A and B are closed subalgebras of T , M is a Banach A − B-bimodule, and T =
Tri(A,M,B). Conversely, given Banach algebras (A, ‖.‖A) and (B, ‖.‖B) and an A−B-
bimodule M, then the triangular algebra T = Tri(A,M,B) is a Banach algebra with

respect to the norm given by

∥∥∥∥

[
a m
0 b

]∥∥∥∥
T

= ‖a‖A + ‖m‖M + ‖b‖B. It is not hard
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to show that each norm ‖.‖ making Tri(A,M,B) into a triangular Banach algebra is
equivalent to ‖.‖T , if the natural restrictions of ‖.‖ to A,B and M are equivalent to the
given norms on A,B and M, respectively. See also [12, 16]

The concept of topological cohomology arose from the problems concerning extensions
by H. Kamowitz [11], derivations by R. V. Kadison and J. R. Ringrose [9, 10] and
amenability by B. E. Johnson [8] and has been extensively developed by A. Ya. Helemskii
and his school [7]. The reader is referred to [7, 19] for undefined notation and terminology.

Let A be a Banach algebra and σ, τ be continuous homomorphisms on A. Suppose
that E is a Banach A-bimodule. A linear mapping d : A → E is called a (σ, τ)-derivation
if

d(ab) = d(a)σ(b) + τ(a)d(b) (a, b ∈ A).

We mean by a σ-derivation, a (σ, σ)-derivation. For example (i) Every ordinary derivation
of an algebra A into an A-bimodule is an idA-derivation, where idA is the identity
mapping on the algebra A. (ii) Every point derivation d : A → C at the character θ on
A is a θ-derivation.

A linear mapping d : A −→ E is called (σ, τ)-inner derivation if there exists x ∈ E such
that d(a) = τ(a)x − xσ(a) (a ∈ A). See also [13, 14, 17, 18] and references therein.

We denote the set of continuous (σ, τ)-derivations from A into E by Z1
(σ,τ)(A, E) and

the set of inner (σ, τ)-derivations by B1
(σ,τ)(A, E). we define the space H1

(σ,τ)(A, E) as

the quotient space Z1
(σ,τ)(A, E)/B1

(σ,τ)(A, E). The space H1
(σ,τ)(A, E) is called the first

(σ − τ)-cohomology group of A with coefficients in E .
From now on, A and B denote unital Banach algebras with units 1A and 1B, M denotes

a unital Banach A−B-bimodule and T = Tri(A,M,B) is the triangular matrix algebra.
In addition, X is a unital Banach T -bimodule, XAA = 1AX1A,XBB = 1BX1B,XAB =
1AX1B and XBA = 1BX1A. For instance, with X = T we have XAA = A,XBB =
B,XAB = M and XBA = 0.

In this paper, we examine vanishing of the first (σ, τ)-cohomology groups of certain tri-
angular Banach algebras. We apply our results to investigate the (σ, τ)-weak amenability
and (σ, τ)-amenability of triangular Banach algebras.

2. Vanishing of the first (σ, τ)-cohomology group

In this section, using some ideas of [5], we investigate the relation between the first
(σ, τ)-cohomology of T with coefficients in X and those of A and B with coefficients in
XAA and XBB, respectively, whenever XAB = 0 in a direct method.

We start our work by investigating the structure of bounded (σ, τ)-derivations from a
triangular Banach algebra into bimodules.

Let σ and τ be two homomorphisms on T with the following properties:

τ(1 ⊕ 0) = 1 ⊕ 0, τ(0 ⊕ 1) = 0 ⊕ 1;(2.1)

σ(1 ⊕ 0) = 1 ⊕ 0, σ(0 ⊕ 1) = 0 ⊕ 1.(2.2)

The above relation implies easily that σ(A) ⊆ A and σ(B) ⊆ B if we identify a ∈ A with[
a 0
0 0

]
and b ∈ B with

[
0 0
0 b

]
. So with no ambiguity, we can consider σ and τ as

homomorphisms on A or B, when it is necessary.

Now let m ∈ M. If σ

( [
0 m
0 0

] )
=

[
a′ m′

0 b′

]
, then
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[
a′ m′

0 b′

]
= σ

( [
0 m
0 0

] )
= σ

( [
1 0
0 0

] [
0 m
0 0

] [
0 0
0 1

] )

= σ

( [
1 0
0 0

])
σ

( [
0 m
0 0

] )
σ

( [
0 0
0 1

] )

=

[
1 0
0 0

] [
a′ m′

0 b′

] [
0 0
0 1

]
=

[
0 m′

0 0

]
.

Hence σ

( [
0 M
0 0

] )
⊆

[
0 M
0 0

]
. Thus one can define σM : M → M by m 7→ m′.

To simplify the notation we denote σM by σ. Thus σ

( [
a m
0 b

] )
can be written as

[
σ(a) σ(m)

0 σ(b)

]
.

If σA : A → A and σB : B → B are homomorphisms, then σA ⊕ σB : A ⊕ B →
A⊕B defined by (σA⊕σB)(a, b) = (σA(a), σB(b)) is a homomorphism. Conversely every
homomorphism on A ⊕ B is of the form σA ⊕ σB for some homomorphisms σA and σB

on A and B, respectively.
Applying our notation, let δ : T → X be a bounded (σ, τ)-derivation. Then δA : A →

1AX1A defined by

δA(a) = 1Aδ

( [
a 0
0 0

] )
1A,

and δB : B → 1BX1B defined by

δB(b) = 1Bδ

( [
0 0
0 b

])
1B

are bounded (σ, τ)-derivations.
Moreover, the mapping θ : M → 1AX1B given by

θ(m) = 1Aδ

( [
0 m
0 0

] )
1B

satisfies

θ(am) = 1Aδ

( [
0 am
0 0

] )
1B = 1Aδ

( [
a 0
0 0

] [
0 m
0 0

] )
1B

= 1Aτ(a)δ

( [
0 m
0 0

])
1B + 1Aδ

( [
a 0
0 0

] )
σ

( [
0 m
0 0

] )
1B(2.3)

= τ(a)1Aδ

( [
0 m
0 0

])
1B + 1Aδ

( [
a 0
0 0

] )
1Aσ

( [
0 m
0 0

] )

= τ(a)θ(m) + δA(a)σ(m)

and

θ(mb) = θ(m)σ(b) + τ(m)δB(b).(2.4)

Conversely, if δ1 and δ2 are bounded (σ, τ)-derivations of A and B into XAA and XBB,
respectively, and θ : M → XAB is any continuous linear mapping satisfies (2.3) and

(2.4), then the mapping D

( [
a m
0 b

])
= δ1(a) + δ2(b) + θ(m) defines a bounded
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(σ, τ)-derivation of T into X , since

τ

( [
a m
0 b

] )
D

( [
a′ m′

0 b′

] )
+ D

( [
a m
0 b

] )
σ

( [
a′ m′

0 b′

] )

= τ

( [
a m
0 b

] )(
δ1(a

′) + δ2(b
′) + θ(m′)

)

+
(
δ1(a) + δ2(b) + θ(m)

)
σ

( [
a′ m′

0 b′

] )

= τ

( [
a m
0 b

] )
τ(1A)δ1(a

′) + δ1(a)σ(1A)σ

( [
a′ m′

0 b′

] )

+τ

( [
a m
0 b

])
τ(1B)δ2(b

′) + δ2(b)σ(1B)σ

( [
a′ m′

0 b′

])

+τ

( [
a m
0 b

])
τ(1A)θ(m′) + θ(m)σ(1B)σ

( [
a′ m′

0 b′

])

= τ(a)δ1(a
′) + δ1(a)σ(a′) + δ1(a)σ(m′) + τ(b)δ2(b

′)

+δ2(b)σ(b′) + τ(m)δ2(b
′) + τ(a)θ(m′) + θ(m)σ(b′)

= δ1(aa′) + δ2(bb
′) + θ(am′) + θ(mb′)

= D

( [
aa′ am′ + mb′

0 bb′

] )
= D

( [
a m
0 b

] [
a′ m′

0 b′

])
.

If XAB = 0, then we may assume that the linear mapping θ defined above is zero. Notice
that, in this case, δA(a)σ(m) = τ(m)δB(b) = 0 for every a ∈ A, b ∈ B, m ∈ M.

We are now ready to provide our main theorem.

Theorem 2.1. Let XAB = 1AX1B = 0. Then

H1
(σ,τ)(T ,X ) = H1

(σ,τ)(A,XAA) ⊕ H1
(σ,τ)(B,XBB).

Proof. Suppose that XAB = 0 and consider the linear mapping

ρ : Z1
(σ,τ)(T ,X ) → H1

(σ,τ)(A,XAA) ⊕ H1
(σ,τ)(B,XBB)

defined by

δ 7→
(
δA + N1

(σ,τ)(A,XAA), δB + N1
(σ,τ)(B,XBB)

)
.

If δ1 ∈ Z1
(σ,τ)(A,XAA) and δ2 ∈ Z1

(σ,τ)(B,XBB), then D

( [
a m
0 b

] )
= δ1(a) + δ2(b) is

a (σ, τ)-derivation from T into X and

ρ(D) =
(
DA + N1

(σ,τ)(A,XAA), DB + N1
(σ,τ)(B,XBB)

)

=
(
δ1 + N1

(σ,τ)(A,XAA), δ2 + N1
(σ,τ)(B,XBB)

)
.

The last equation is deduced from the fact that

DA(a) = 1A
(
δ1(a) + δ2(0)

)
1A = δ1(a),

and

δB(b) = 1B
(
δ1(0) + δ2(b)

)
1B = δ2(b).

Thus ρ is surjective.
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If δ ∈ kerρ, then δA ∈ N1
(σ,τ)(A,XAA) and δB ∈ N1

(σ,τ)(B,XBB). Then δA(a) =

τ(a)x − xσ(a) for some x ∈ XAA and δB(b) = τ(b)y − yσ(b) for some y ∈ XBB. Then

D

( [
a m
0 b

] )
= δA(a) + δB(b)

=
(
τ(a)x − xσ(a)

)
+

(
τ(b)y − yσ(b)

)

=
(
τ(a) + τ(m) + τ(b)

)
(x + y) − (x + y)

(
σ(a) + σ(m) + σ(b)

)

= τ

( [
a m
0 b

] )
(x + y) − (x + y)σ

( [
a m
0 b

])
.

Thus D ∈ N1
(σ,τ)(T ,X ).

It is straightforward to show that

δ

( [
a 0
0 0

])
= 1Aδ

( [
a 0
0 0

] )
1A + 1Bδ

( [
a 0
0 0

])
1A + 1Bδ

( [
a 0
0 0

] )
1B

= 1Aδ

( [
a 0
0 0

] )
1A + 1Bδ

( [
1A 0
0 0

])
1Aσ(a).

Similarly,

δ

( [
0 0
0 b

])
= 1Bδ

( [
0 0
0 b

] )
1B − τ(b)1Bδ

( [
1A 0
0 0

] )
1A,

and also

δ

( [
0 m
0 0

] )
= δ

( [
1A 0
0 0

] [
0 m
0 0

])

= 1Bδ

( [
1A 0
0 0

])
1Aσ

( [
0 m
0 b

] )

− τ

( [
a m
0 0

])
1Bδ

( [
1A 0
0 0

] )
1A.

These follow that

(δ − D)

( [
a m
0 b

] )

= δ

( [
a m
0 b

] )
− 1Aδ

( [
a 0
0 0

] )
1A − 1Bδ

( [
0 0
0 b

] )
1B

=

(
δ

( [
a 0
0 0

])
− 1Aδ

( [
a 0
0 0

] )
1A

)
+ δ

( [
0 m
0 0

])

+

(
δ

( [
0 0
0 b

] )
− 1Bδ

( [
0 0
0 b

] )
1B

)

= 1Bδ

( [
1A 0
0 0

] )
1Aσ

( [
a 0
0 0

] )
+ 1Bδ

( [
1A 0
0 0

] )
1Aσ

( [
0 m
0 b

])

− τ

( [
a m
0 0

] )
1Bδ

( [
1A 0
0 0

] )
1A − τ

( [
0 0
0 b

] )
1Bδ

( [
1A 0
0 0

] )
1A

= − δ
1Bδ

(2

4

1A 0
0 0

3

5

)
1A

( [
a m
0 b

] )
.

We therefore have δ − D ∈ N1
(σ,τ)(T ,X ), and so δ ∈ N1

(σ,τ)(T ,X ).
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Conversely, let δ ∈ N1
(σ,τ)(T ,X ). Then there exists x ∈ X such that

δ

( [
a m
0 b

] )
= τ

( [
a m
0 b

])
x − xσ

( [
a m
0 b

] )
.

Hence

δA(a) = 1Aδ

( [
a 0
0 0

] )
1A = 1A

(
τ

( [
a 0
0 0

] )
x − xσ

( [
a 0
0 0

] ))
1A

= τ

( [
a 0
0 0

])
1Ax1A − 1Ax1Aσ

( [
a 0
0 0

] )
= δ1Ax1A

(a).

Similarly, δB(b) = δ1Bx1B
(b). Hence δA and δB are inner and so δ ∈ kerρ.

Thus N1
(σ−τ)(T ,X ) = kerρ.

We conclude that

H1
(σ,τ)(T ,X ) =

Z1
(σ,τ)(T ,X )

N1
(σ,τ)(T ,X )

=
Z1

(σ,τ)(T ,X )

kerρ
= H1

(σ,τ)(A,XAA) ⊕ H1
(σ,τ)(B,XBB).

�

Corollary 2.2. H1
(σ,τ)(Tri(A,M,B),M) = 0.

Proof. With X = M we have

H1
(σ,τ)(Tri(A,M,B),M) = H1

(σ,τ)(A, 0) ⊕ H1
(σ,τ)(B, 0) = 0.

�

Example 2.3. H1
(σ,τ)(Tri(A,A,A),A) = 0.

Example 2.4. Let L be a left Banach A-module. Then H1
(σ,τ)(Tri(A,L, C),L) = 0.

Corollary 2.5. H1
(σ−τ)(Tri(A,M,B),A) = H1

(σ,τ)(A,A).

Proof. With X = A, we have XAB = 0,XAA = A and XBB = 0. It then follows from
Theorem 2.1, H1

(σ,τ)(Tri(A,M,B),A) = H1
(σ,τ)(A,A) ⊕ H1

(σ,τ)(B, 0) = H1
(σ,τ)(A,A). �

Example 2.6. If A is a hyperfinite von Neumann algebra and B is an arbitrary unital
Banach module, then H1

(σ,τ)(Tri(A,M,B),A) = H1
(σ,τ)(A,A) = 0, if σ and τ are ultra-

weak automorphisms (see Corollary 3.4.6 of [20]).

3. (σ, τ)-weak amenability of triangular Banach algebras

With simple calculation we can observe that if X = T ∗ considered as T -bimodule,
then XAA = A∗,XBB = B∗ and XAB = 0. Therefore by Theorem 2.1 we can conclude
the following

Theorem 3.1. Let A,B be unital Banach algebras, M be a unital Banach A−B-bimodule

and T = Tri(A,M,B). Then

H1
(σ,τ)(T , T ∗) = H1

(σ,τ)(A,A∗) ⊕ H1
(σ,τ)(B,B∗).

Corollary 3.2. Let A,B be unital Banach algebras and M be an unital Banach A−B-

bimodule. The triangular Banach algebra T = Tri(A,M,B) is (σ, τ)-weak amenable if

and only if A and B are both (σ, τ)-weak amenable.

By induction one can easily prove the following proposition
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Lemma 3.3. Suppose that A,B are unital Banach algebras and M is a unital Banach

A− B-bimodule. If X = T (2n) then

XAA = A(2n), XBB = B(2n), XAB = M(2n), XBA = 0.

Also if X = T (2n−1) then

XAA = A(2n−1), XBB = B(2n−1), XAB = 0, XBA = M(2n−1).

Now by Lemma 3.3 and Theorem 2.1, we immediately obtain the next result.

Proposition 3.4. Let A,B be unital Banach algebras and M be a unital Banach A−B-

bimodule. Then for all positive integers n ∈ N,

H1
(σ,τ)(T , T (2n−1)) = H1

(σ,τ)(A,A(2n−1)) ⊕ H1
(σ,τ)(B,B(2n−1)).

4. (σ, τ)-amenability of triangular Banach algebras

In this section, by using some ideas of [12] we investigate (σ, τ)-amenability of tri-
angular Banach algebra T = Tri(A,M,B). We shall assume that the homomorphisms
σ, τ on T have properties asserted in (2.1) and (2.2). We need some general observation
concerning (σ, τ)-amenability of Banach algebras. The first is an easy consequence of the
definition of (σ, τ)-amenability.

Proposition 4.1. [15, Proposition 3.3] Let A,B be Banach algebras and σ, σ′ be con-

tinuous endomorphisms of A and τ, τ ′ be continuous homomorphisms of B. If there is a

continuous homomorphism ϕ : A −→ B such that ϕ(A) is a dense subalgebra of B and

τϕ = ϕσ and τ ′ϕ = ϕσ′, then (σ, σ′)-amenability of A implies (τ, τ ′)-amenability of B.

Now, suppose that A is a Banach algebra, τ, σ : A −→ A are two continuous endo-
morphisms, and I is a closed ideal of A such that σ(I) ⊆ I, τ(I) ⊆ I. Then the map
τ̂ , σ̂ : A

I
−→ A

I
can be defined by σ̂(a + I) = σ(a) + I, τ̂ (a + I) = τ(a) + I. It is not

hard to show the following propositions.

Proposition 4.2. [15, Proposition 3.1] Let I, σ, τ be as above. If A is (σ, τ)-amenable

then A

I
is (σ̂, τ̂ )-amenable.

Proposition 4.3. [15, Proposition 3.2] Let I, σ, τ be as above and let σ, τ be idempotent

homomorphisms. If I is (σ, τ)-amenable and A

I
is (σ̂, τ̂ )-amenable, then A is (σ, τ)-

amenable.

We now extend Theorem 4.1 of [12] as follows

Proposition 4.4. Let σ and τ be two continuous idempotent homomorphisms on triangu-

lar Banach algebra T = Tri(A, 0,B). The triangular Banach algebra T is (σ, τ)-amenable

if and only if A and B are (σ, τ)-amenable.

Proof. At first suppose that A,B are (σ, τ)-amenable. It is easy to see that

[
A 0
0 0

]
is

a closed ideal of

[
A 0
0 B

]
and

[
A 0
0 B

]
/

[
A 0
0 0

]
≃

[
0 0
0 B

]
. Since A is (σ, τ)-

amenable therefore

[
A 0
0 0

]
is (σ, τ)-amenable.

Let ϕ :

[
0 0
0 B

]
→

[
A 0
0 B

]
/

[
A 0
0 0

]
be the natural isomorphism. Then ϕτ =

τ̂ϕ and ϕσ = σ̂ϕ. By Proposition 4.1 (σ, τ)-amenability of

[
0 0
0 B

]
implies the (σ̂, τ̂ )-

amenability of

[
A 0
0 B

]
/

[
A 0
0 0

]
. Thus by utilizing Proposition 4.3, we deduce the

(σ, τ)-amenability of the Banach algebra T .
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For the converse, suppose that T is (σ, τ)-amenable. It is obvious that

[
A 0
0 0

]
is a

closed ideal of T . By Proposition 4.2,

[
A 0
0 B

]
/

[
A 0
0 0

]
is (σ̂, τ̂ )-amenable. One can

easily observe that there exists the natural isomorphism ϕ :

[
A 0
0 B

]
/

[
A 0
0 0

]
→

[
0 0
0 B

]
and that ϕσ̂ = σϕ and ϕτ̂ = τϕ. Therefore, by Proposition 4.1,

[
0 0
0 B

]
,

that is B ,is (σ, τ)-amenable. Similarly one can prove the (σ, τ)-amenability of A. �

Theorem 4.5. Let σ and τ be two continuous idempotent homomorphisms on triangular

Banach algebra T = Tri(A,M,B). If the triangular Banach algebra T is (σ, τ)-amenable

then A and B are (σ, τ)- amenable. In particular, σ-amenability of T implies σ(M) = {0}

Proof. Suppose that T =

[
A M
0 B

]
is (σ, τ)-amenable. Clearly,

[
A M
0 0

]
is a closed

ideal of T . Therefore, by Proposition 4.2,

[
A M
0 B

]
/

[
A M
0 0

]
is (σ̂, τ̂ )-amenable.

Also there exists the natural isomorphism ϕ :

[
A M
0 B

]
/

[
A M
0 0

]
→

[
0 0
0 B

]

such that ϕσ̂ = σϕ and ϕτ̂ = τϕ. Hence

[
0 0
0 B

]
is (σ, τ)-amenable. Similarly one can

prove the (σ, τ)-amenability of A.
Now suppose that the triangular Banach algebra T is σ-amenable.

Set X =

[
A∗ M∗

0 B∗

]
. The vector space X is a Banach space under the norm

‖

[
f h
0 g

]
‖ = ‖f‖A∗ + ‖h‖M∗ + ‖g‖B∗. The space X can be regarded as a Banach

T -bimodule under the following T -module actions

[
a m
0 b

]
·

[
f h
0 g

]
=

[
0 bh
0 0

]
,

[
f h
0 g

]
·

[
a m
0 b

]
=

[
0 ha
0 0

]
,

where

[
a m
0 b

]
∈ T and

[
f h
0 g

]
∈ X . Therefore X ∗ =

[
A∗∗ M∗∗

0 B∗∗

]
is a dual

Banach T -bimodule.

Let D : T −→

[
A∗∗ M∗∗

0 B∗∗

]
be defined by D

( [
a m
0 b

] )
=

[
0 σ̂(m)
0 0

]
.

Now we have

D

( [
a1 m1

0 b1

] [
a2 m2

0 b2

] )
= D

( [
a1a2 a1m2 + m1b2

0 b1b2

])

=

[
0 ̂σ(a1m2 + m1b2)
0 0

]
=

[
0 σ(a1)σ̂(m2) + σ̂(m1)σ(b2)
0 0

]

=

[
0 σ(a1)σ̂(m2)
0 0

]
+

[
0 σ̂(m1)σ(b2)
0 0

]
=

[
0 σ̂(m1)
0 0

] [
σ(a2) σ(m2)

0 σ(b2)

]
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+

[
σ(a1) σ(m1)

0 σ(b1)

] [
0 σ̂(m2)
0 0

]
= D

( [
a1 m1

0 b1

] )
σ

( [
a2 m2

0 b2

])

+ σ

( [
a1 m1

0 b1

])
D

( [
a2 m2

0 b2

])
.

Therefore D is a σ-derivation. Hence there exists

[
F H
0 G

]
∈ X ∗ such that

[
0 σ̂(m)
0 0

]
= D

( [
a m
0 b

] )
= σ

( [
a m
0 b

]) [
F H
0 G

]

−

[
F H
0 G

]
σ

( [
a m
0 b

] )
=

[
0 σ(a)H
0 0

]
−

[
0 Hσ(b)
0 0

]
.

Thus

σ̂(m) = σ(a)H − Hσ(b)(4.1)

for all m ∈ M, a ∈ A and b ∈ B. Choosing a = 0, b = 0 in (4.1) we conclude that

σ̂(m) = 0 for all m ∈ M. Thus σ(M) = {0}. �

Corollary 4.6. Let A,B be two unital Banach algebra and σ : A −→ A, τ : B −→ B be

two continuous idempotent homomorphisms. The Banach algebra A⊕B is σ⊕τ-amenable

if and only if A is σ-amenable and B is τ-amenable.

Proof. It is easy to see that

[
A 0
0 B

]
≃ A ⊕ B. Define ϕ :

[
A 0
0 B

]
−→

[
A 0
0 B

]

via ϕ

( [
a 0
0 b

] )
=

[
σ(a) 0

0 τ(b)

]
. Therefore

[
A 0
0 B

]
is ϕ-amenable if and only if

A and B are both ϕ-amenable, and this holds if and only if A is σ-amenable and B is
τ -amenable. �
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