Methods of Functional Analysis and Topology
Vol. 14 (2008), no. 4, pp. 372-379

THE CRITERIA OF MAXIMAL DISSIPATIVITY AND
SELF-ADJOINTNESS FOR A CLASS OF
DIFFERENTIAL-BOUNDARY OPERATORS WITH BOUNDED
OPERATOR COEFFICIENTS

H. M. PIPA AND O. G. STOROZH

This paper is dedicated to 100 anniversary of Mark Krein.

ABSTRACT. A class of the second order differential-boundary operators acting in the
Hilbert space of infinite-dimensional vector-functions is investigated. The domains of
considered operators are defined by nonstandard (e.g., multipoint-integral) boundary
conditions.

The criteria of maximal dissipativity and the criteria of self-adjointness for inves-
tigated operators are established.

1. INTRODUCTION

This paper is devoted to studying of some differential-boundary operators acting in
the space of functions taking values in a Hilbert space. It should be noted that the
mentioned operators and their abstract models were investigated by many authors (see
[4], [6] and references therein) and that our interest in the subject indicated in the
headline is motivated in [13], [14], where similar problems were considered.

As in [13], [14] we use the following notation:D(T"), R(T"), ker T are, respectively, the
domain, range and kernel of a (linear) operator T'; B(X,Y) is the set of linear bounded
operators A : X — Y such that D(A) = X; B(X) = B(X, X); C(X) is the class of closed
densely defined linear operators acting in X; A|F is the restriction of a mapping A onto
a set E; E is the closure of E; sp E is the linear manifold generated by a set E; 1y is
the identity in X; A* is the adjoint of operator A; @ is the symbol of orthogonal sum.
If A, : X - Y;, (i=1,...,n) are linear operators then the notation A = A; ®---® A,
means that Ve € X Az = (Ax, ..., Apz).

Under Hj we understand a separable Hilbert space, suppose that for every x € [a, ]
(—oo <a<b<+400) p(z) =p(x)" € B(Hy) is a positively definite operator and suppose
that p(.) is strongly continuous on [a, b] (these assumptions may be weakened). Put

(1) Iyl = —y"(x) + p(x)y
and denote by L and L, respectively, maximal and minimal operators generated in the
Hilbert space H def Ly(Hoy; (a, b)) equipped with the inner product
b
Ve H (o) = [ (o(e)le@)mda

a

by the expression (1) (see [11], [16], [20] for details).
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Further, suppose that a < ¢1 < ¢z < b, G are closed linear subspaces of Hy, PV are
the orthoprojections Hy — G and Q) def 1g, — P (i = 1,2). Define the operators
Lin, Limax as follows:

D(Lnin) = {y € D(Lo) : PDy(e;) =0, i= 1,2}, Luin C Lo,

D(Lpax) = {y € H : y is absolutely continuous on [a, ],
y’ is absolutely continuous on [a,c¢; — 0] U [¢1 + 0,¢2 — 0] U [c2 + 0, b],
QU (i = 0) = QU (e +0) (i=1.2), laly] € H},

Vy S D(Lmax) Lmaxy = lCl [y]
(here and below lq[y] means the expression (1), in which all derivatives are interpreted
in the classical sense).

Furthermore, assume that there are given the operators ®(1), &) ¢ B(H, Hpy) and
aij € B(Ho) (i,j = 1,...,4) such that the operator matrix (a;;)j,—; is invertible in
B(H§). Put

ui(y) = any'(a) — aiy'(b) + aisy(a) + auay(b) (i=1,...,4)

and define the main object of our investigation, operator T', by the relations
D(T) = {y € D(Lar) : wily) = POy(es) + 2y,

2) .
POuis(y) = y/ (i +0) =y (e = 0), i = 1,2,

(3) Yy e D(T) Ty=laly] + (V) us(y) + (@) us(y).

The purpose of this paper is to establish the criterion of maximal dissipativity and
the criterion of self-adjointness for the operator (2)—(3) which (criteria) were established
earlier in some special cases (see [10], [19]).

Recall that according to [2], [17] a linear operator T': H — H is called dissipative (ac-
cumulative) if for each y € D(T') Im(Tyly) > 0(< 0) and maximal dissipative (maximal
accumulative) if, in addition, it has no proper dissipative (accumulative) extensions.

2. PRELIMINARIES

Introduce the necessary notations by setting H = Hy & Hy,
Vy € D(L) Tiy=(y'(a),~y'(0), T2y = (y(a),y(b)),

H! = {y € H : y is absolutely continuous on [a,b], y' € H},

H. = {y e H': y(a) = y(v) = 0}.
It is well known [3], [9] that H, with the inner product
b

Vu,v € He  (ulv)e = / [(u' (@) () 1o + (p(2)u(@)]0(2)) 1, | dev

a

is the energetic space of Ly, and L def L|kerT'y is the Friedrichs, or according to M.

Krein [7] hard, extension of Ly.

Further, assume that H is an (auxiliary) Hilbert space, A : H' — H is a linear
operator such that A|H. € B(H.,H) and W € B(D[L],H) (under D[L] we understand
the variety D(L) interpreted as a Hilbert space with the inner product

Vy,z€ D(L) (ylz)L = (y|z) + (Ly|Lz)).
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Define the operators A® € B(H, H.) and W’ € B(H, D[L]) as follows:
Yu € H., YheH (Aulh)g = (u|A°h).,
Vy € D(L), VheH (Wylh)a = (y|W'h)L.
Furthermore, put
vue H' 00y =POy(e;), xPDu=00y+00y (i=1,2);
d=0Mpa® T=0Dgr® = \xOgy® (=o401),
G=60Waa®, p;=pPYgp3,
¥ € D(Lnax) Ty = (y/'(a),—y'(®), THy = (y(a),y(d),
Ty = (PO (e140) = y/(e1 = 0)), POy (e2 +0) = ' (e = 0)))
(evidently, in the latter relation the operators PW P2 may be omitted),
Iy = (PUy(er), POy(e2)) (e TV = WID (L))

a1 g2 a3 ooy

A = , A= ;
Q21 Qo2 Q23 (24
a3 Q32 Q33 (34

Ay = , Agp = ;
041 Oy 043 Oy

Uy = ATy + Aple, U = Aoy + Agol'y, U = Uy @ Us;
0 il
(4) J =
—ily 0

Define the operator A = (aij) (0u; € B(Ho); i,j =1,...,4) from the equation
(5) AJA* =J
and introduce the following notations:

_ ajp Qi B a1z Qg
A11 5 A12 -
Qo1 Q22

Q23 Q24

)

Qg1 Qg2 Qg3 044

_ azr Qa2 ~ Qg3 Q34
Ag1 = Agp =
U= Ay + Apls (i=1,2), U="U; & Us;
UM = 4nrl" + 4Tl (i=1,2), vM =vM e Ul
oM = A rt 4 AT (i=1,2), 0W =0Me Ul".
Using the introduced notations one can readily check that
D(T) = {y € D(Lmax) : Uy Ty = 0y, PoUL"y =Ty},
Yy € D(T) Ty = Luaxy + @ ULy,

In other words,

D(T) = {y € D(L)+ R(x*) : y + x"Us" 'y e D(L), UMMy = Xl/},

Vy e D(T) Ty=L(y+x"Ui"y).
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Moreover, T' € C(H) and

(6) D(T*) = {z € D(Lmax) : U2 — T2 = @2, PUMY: = r[;’]z},
7 Vz € D(T*) T*z= Liaxz + @ U2
2
or equivalently
8 D(T*)=43z€ D(L —|—Rx°:z—i—x'ﬁ[\p]zEDL,ﬁ[‘p]z:Xz,
2 1
(9) Vze D(T) T*z=L(z+x"U"%).

The proof of (6)—(9) is analogous to that of Theorem 2 in [13].

Remark 1. It should be noted that x®* = ¥*® + Ll?1<I>* and that operator U® has been
constructed in [15].

3. THE CRITERION OF ACCUMULATIVITY OF OPERATOR T

Since operator T' € C(H) is maximal dissipative iff 7% is maximal accumulative (see
[12], [17]), we are going to establish the conditions which are necessary and sufficient for
the accumulativity of operator (6)—(7), or equivalently of operator (8)—(9), at first. For
this purpose denote by P the ortoprojection H®H — H @ R(x) and recall that operator
J has been defined by (4).

Lemma 1. The set {JUMz: 2z € D(T*)} is dense in H & R(x).
Lemma 2. For each z € D(T*)

2Im(T*z|z) = —(PEULU’ + J|Phlh)namn,
where h = JUWz.

Corollary 1. T* is an accumulative operator iff

(10) PLULU’ + J)P > 0.
Put
(11) L1 ¥ L kerUy.

Corollary 2. If T* is an accumulative operator, then L} is an accumulative operator.
In particular, the mazximal dissipativity of T implies the mazimal dissipativity of Ly .
Lemma 3. Suppose that

i) the condition (10) is fulfilled;
ii) L1 is a maximal dissipative operator;
iil) dimR(y) < +oo.

Then T is a maximal dissipative operator.

The proofs of Lemmas 1-3 and Corollaries 1-2 are analogous to the proofs of corres-
ponding statements in [14], [19].
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4. OPERATORS T,

Let {éx;} be (at most countable) orthonormal basis in G(. Put
G =sp{€14,...,Eni} Qo =1, — Py,
(n)

min?

where P is the ortoprojection Ho — GS) (i = 1,2), and define the operators L.,
L](JI'QX by the relations

D(LEL) = {y e D(Lo): Puoyle) =0, i=1,2}, LG € Lo,

min min

D(Ln?gx) = {y € H : y is absolutely continuous on [a, ],
y’ is absolutely continuous on [a,c; — 0] U [e1 + 0,¢o — 0] U [e2 + 0, b,
Quy/ (e —0) = Quuy/(ci +0) (i=1,2), lalyl € H},
Vy € D(LG) Lty = laly)-

Introduce the following notations:

G, = Ggll) D GSZQ), Pe, = a® (&) PG(Q), v, =P, V.

In accordance with the results of paper [15] we obtain that A AN C(H) and

(Ll(’:lll)n)* = Ll(’rTlLa)x~ Moreover,

L™ = Lolker¥,, D(L™.) = D(L)+ R(¥ )d_efDn,

min max

Vo e D(L), Vhe R(¥,) LW (z+U%h)=

Further, let {€x;} be (at most countable) orthonormal basis in R(X(i)) 6G® and P
be the ortoprojection Hy — Ggf) ®spl{eii,.-.,eni} (i =1,2). Put

Pn:PT(I,l)@PT(I,2)’ o, =FP,®, xn=Fyx.
Clearly, P,V = Pg, ¥, hence x, = ¥,, + ®,,. Define operator 7,, by the relations
D(T,) = {y €D,y + XUy e D(L), UMy = Xny}
= {y eD,: F:[}n]y = PGWUQ[n]y, Ul[n]y — F[ln]y = @ny},

Vy € D(T,) Toy = Liy + X3U3") = Lithy + 305"y,

where UM = U= v!"D,) (i = 1,2), I} = r{"(= r{"D,), T = (=
U,|Dy,).
Taking into account (6)—(9) we see that

{z €Dy :z+ X;ﬁz[n}z € D(L), Ul[n]z = Xn? }
= {z :I‘[3"]z:PG U["] z, ﬁl["]z—f‘in}z:@nz},
Vze D(T)) Tpz=L(z+ X:L@["]z) LM 2+ @Z@"]z,
where U™ = 0" (= 0!"|D,) (i =1,2).
Remark 2. Assume that yo € D(T). Put Qg, = 1y — Pg, and consider the following
system of equations:
Uy = Xt P, Uy, = Pe, Ty,
(12) Q. Uy = Qe U Myo, Ty = Po, T8 o,

PELW] Yn = \Ilny()v (I)nyn = (I)ny0~
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The arguments analogous to ones applied under the proving of [8], Lemma 4.8.7 show
that (12) has a solution y,, € D,,. Besides, it is easily to verify by calculations that the
latter system is equivalent to the following one:

Ul[n] Yn = Xn¥Yn, U[n] Yn = P;[gn] Yn,
PELW] Yn = l:[Jny07 (I)nyn = (I)ny0~

It follows from (13) that Vn € N y,, € D(T},).
Remark 3. Clearly,
i) Vh e R(x) lim P,h=h;
ii) Vge G Pn,g:jggng, therefore nlin;o P.g=g.

Lemma 4. Suppose that yo € D(T'), and y, € D(T},) (n € N) satisfy the equalities (12).

Then
(14) { nhj{}o Ui[ = U[ o hm I‘[ ]2yn = F£+]2yo (i=1,2),

lim ®,y, = Pyo.
n—oo

Proof. Taking into account (12) and Remark 3, we obtain
i) lim Uy = Jim xnyo = lim Paxyo = xyo = U1 yo;
ii)
Uy = Po, Uy + Qc, U yn = Pa, T5 g0 + Qa, U o
= Pa, T3 yo + USyo — P, Uy = UL yo + Pg, ((P[;/]yo
— PyU" o) — (U yo — PoUL"0)) = Uy

iii) lim Fg ]yn = hm Pg, Fé\myo = F[f]yo;

n—oo

iv) lim FL ]yn = hm U, yg = hm Pg, Vyo = I‘El’]yo;

n—oo

v) lim ®,y, = lim &,y = lim P,Pyo = Dyo.
n—oo n—o0 n—o0
The lemma is proved. g

Corollary 3. In the assumptions of Lemma 4

lim UH —U[ ]yo, 1=1,2.

n—oo

Proof. Put UM = ﬁl[n] @[72["]. Since both (H@®H,U) and (H&H, U) are boundary pairs
for (L, Lo), there exists a bijection B € B(H @ H) such that U = BU (see [8], p. 156
for details), therefore UY] = BUMY], UM = BUM. Taking into account Lemma 4, we
obtain

lim U 1y, = B hm Ulrly, = BUMly = U[\P]yo.

n—oo
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5. MAIN RESULTS

Proposition 1. Operator T is mazimal dissipative iff (10) is fulfilled and operator L,
defined by (11) is mazimal dissipative.

Proof. Sufficiency. Suppose that (10) is fulfilled and L; is maximal dissipative operator.
Multiplying (10) from left and from right by (14 @ P,,) and taking into account following
from the inclusion R(x,) C R(x) equalities

(IH@Pn)P:P(lH@Pn) =1y D P,,
we derive
(19 ® P,)[iULU' + J)(15y ® P,) >0 (n € N).
Whence using Lemma 3 we conclude that T, is a (maximal) dissipative operator.
Assume that yo € D(T), and y, € D(T,) is a solution of the system (12). Applying
Theorem 5 from [15] (its proof is analogous to that of Theorem 1 from [13]) we have
0 < 2Im(Thynlyn) = —il(Taynlyn) — (Yn|Tnyn)] = —i{[(L maxyn|yn)
= (il (LG2m)) 4 (U gl @) — (@ U )]}
= —i{ Uyl U5y )re = (U gl O )+ (05 T )2

— Oy Ty )5+ (O ) @nyn)ae — (@nyn U yn)2 )

Taking the limit as n — oo and applying the mentioned theorem again we derive
< —i{ (U0l UL o) — (U3 0101 o) + (05 o D5 Vo) ¢
— (0l P50 ) + (U ol @y0) 20 — (Pl US o)}
= —i{[(Lmaxyoly0) — (Yol(Lmaxyo)] + [(‘I’*Uz[‘p]ydyo)ﬁ
— (50| ®* U o)} = ~il(Tyolyo) — (w0l Tyo)] = 2Tm(Tyioyo)-
);

Since yo is an arbitrary element from D(T), T is dissipative operator. In view of

Corollary 1 it is maximal dissipative operator (see e.g. [3], [12], [17] for details). The
sufficiency is proved.
Necessity follows from Corollaries 1, 2. g

Remark 4. Similar arguments convince that 7' is maximal accumulative operator iff
PLULU' + JJP <0

and L, is maximal accumulative operator.
Since operator T' € C(H) is self-adjoint iff it is maximal dissipative and maximal
accumulative simultaneously (see, e.g., [3], [12], [17]) we conclude that T' = T* iff

PliULU' + JJP =0, L;=L}.

Theorem 1. Operator T is maximal dissipative (mazimal accumulative) iff
P[AJA* — J]P <0, ker(A11 + ’iAlz) = {0},
(P[AJA* — J]P Z 0, ker(A11 — iAlg) = {0})

Proof. In order to prove the theorem it is sufficient to take into account established in
[8] the equality iULU’ = —AJA* and to apply the criterion of maximal dissipativity
(maximal accumulativity) for the extension of symmetric operator in the form, indicated
n [18], see also [1], [3], [5]. O

Corollary 4. T =T* iff P[AJA* — J|P =0, ker(Ai1 £i412) = {0}.
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