ON UNITARY OPERATORS IN WEIGHTED SPACES $A^2_{\omega}(\mathbb{C})$ OF ENTIRE FUNCTIONS

S. G. RAFAYELYAN AND A. M. JERBASHIAN

Dedicated to the memory of M. G. Krein.

ABSTRACT. The paper gives a complete characterization of all unitary operators acting in some wide Hilbert spaces $A^2_{\omega}(\mathbb{C})$ of entire functions possessing weighted square integrable modulus over the whole finite complex plane, which exhaust the set of all entire functions.

1. INTRODUCTION

Investigations on the well-known A^p_{α} spaces of functions holomorphic in the unit disc of the complex plane were initiated by a work of L. Biberbach [1] devoted to approximations in the space of holomorphic functions, the derivatives of which have square integrable modulus over the unit disc of the complex plane. Later, the theory of A^p_{α} spaces was developed by numerous authors, and other connections with different fields of mathematics were found (a detailed reference list can be found in [5] and [7], see also [6]). The new stage in the development of the theory of A^p_{α} spaces was provided by the general analytic apparatus of these spaces, which was created in the works of M. M. Djrbashian [3, 4], where the representations of the spaces A^p_{ω} were obtained as the initial stage to an improvement of a result of R. Nevanlinna [2] related to the density of zeros and poles of similar classes of meromorphic functions. Besides, the work [4] contains an investigation of some particular A^p_{ω} spaces of entire functions.

The general theory of Banach spaces A^p_{ω} of functions holomorphic in |z| < 1 is created in [7]. These spaces are arbitrarily wide in the sense that their sum coincides with the set of all functions holomorphic in |z| < 1. The same work describes also arbitrarily wide in the same sense $A^p_{\omega}(\mathbb{C})$ ($2 \le p < +\infty$) spaces of entire functions. According to [7], the Hilbert space $A^2_{\omega}(\mathbb{C})$ is the set of those entire functions f(z) for which

(1)
$$||f||_{\omega}^{2} = \iint_{\mathbb{C}} |f(z)|^{2} d\mu_{\omega}(z) < +\infty,$$

where $d\mu_{\omega}(re^{i\vartheta}) = -(2\pi)^{-1} d\vartheta d\omega(r^2)$ and $\omega(x)$ is a strictly decreasing function on the whole half-axis $[0, +\infty)$, such that $\omega(0) = 1$ and

$$\Delta_n^{\infty}(\omega) = -\int_0^{+\infty} t^n d\omega(t) < +\infty \quad \text{for any} \quad n = 0, 1, 2 \dots$$

This paper gives a complete description of all unitary operators, which act in arbitrarily wide Hilbert spaces $A^2_{\omega}(\mathbb{C})$ of entire functions, and reveals that these operators are very similar to the projector $L^2_{\omega}(\mathbb{C}) \to A^2_{\omega}(\mathbb{C})$ given by the representation of $A^p_{\omega}(\mathbb{C})$ spaces in [7].

²⁰⁰⁰ Mathematics Subject Classification. Primary 32A35; Secondary 31A05.

Key words and phrases. Unitary operators, weighted spaces of entire functions.

2. Main result

Before coming to our main result, we recall from [7] that the inner product of $A^2_{\omega}(\mathbb{C})$ is defined as

(2)
$$(f,g)_{\omega} = \iint_{\mathbb{C}} f(z)\overline{g(z)} \, d\mu_{\omega}(z), \quad f,g \in A^2_{\omega}(\mathbb{C}),$$

and the representation formula is of the form

(3)
$$f(z) = \iint_{\mathbb{C}} f(\zeta) C_{\omega}(z\overline{\zeta}) \, d\mu_{\omega}(\zeta), \quad f, g \in A^2_{\omega}(\mathbb{C}),$$

where the kernel is the entire function

(4)
$$C_{\omega}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Delta_k^{\infty}(\omega)}.$$

The following theorem is the main result of the present paper.

Theorem 1. Given a unitary operator U in $A^2_{\omega}(\mathbb{C})$, there is a function $K(z, \zeta)$ which is of $A^2_{\omega}(\mathbb{C})$ by the variables z and $\overline{\zeta}$ and satisfies the conditions

(5)
$$K(z,\zeta) = K(\overline{\zeta},\overline{z}), \quad z,\zeta \in \mathbb{C},$$

(6)
$$C_{\omega}(\zeta_1\overline{\zeta}_2) = \iint_{\mathbb{C}} K(z,\zeta_2) \overline{K(z,\zeta_1)} \, d\mu_{\omega}(z), \quad \zeta_1,\zeta_2 \in \mathbb{C}.$$

By this kernel, the equalities g = Uf and $f = U^{-1}g$ $(f, g \in A^2_{\omega})$ are written in the forms

(7)
$$g(z) = \iint_{\mathbb{C}} f(\zeta) \overline{K(\zeta, z)} \, d\mu_{\omega}(\zeta), \quad z \in \mathbb{C},$$

(8)
$$f(z) = \iint_{\mathbb{C}} g(\zeta) K(z,\zeta) \, d\mu_{\omega}(\zeta), \quad z \in \mathbb{C}.$$

Conversely, if a function $K(z,\zeta)$ belongs to $A^2_{\omega}(\mathbb{C})$ by the variables z and $\overline{\zeta}$ and the conditions (5) and (6) are fulfilled, then formulas (7) and (8) respectively represent an unitary operator U and its inversion U^{-1} in $A^2_{\omega}(\mathbb{C})$.

Proof. Assume that U is a unitary operator in $A^2_{\omega}(\mathbb{C})$ and observe that $C_{\omega}(z\overline{\zeta})$ is of $A^2_{\omega}(\mathbb{C})$ by z and $\overline{\zeta}$. Namely, one can easily verify that $\|C_{\omega}(z)\|^2 = C_{\omega}(1) < +\infty$. Now, for any fixed $\zeta \in \mathbb{C}$ denote

(9)
$$UC_{\omega}(z\overline{\zeta}) = H(z,\zeta) \text{ and } U^{-1}C_{\omega}(z\overline{\zeta}) = K(z,\zeta).$$

Then obviously $H(z,\zeta)$ and $K(z,\zeta)$ are of $A^2_{\omega}(\mathbb{C})$ by both variables z and $\overline{\zeta}$ and, in addition,

(10)
$$H(z,\zeta) = H(\overline{\zeta},\overline{z}) \text{ and } K(z,\zeta) = K(\overline{\zeta},\overline{z}).$$

Assuming that g = Uf for some functions $f, g \in A^2_{\omega}(\mathbb{C})$ and using the equality $U^{-1} = U^*$, where U^* is the conjugate operator of U, for any fixed $\zeta \in \mathbb{C}$ we get

$$\begin{split} \left(g(z), C_{\omega}(z\overline{\zeta})\right)_{\omega} &= \left(Uf(z), C_{\omega}(z\overline{\zeta})\right)_{\omega} = \left(f(z), U^*C_{\omega}(z\overline{\zeta})\right)_{\omega} \\ &= \left(f(z), U^{-1}C_{\omega}(z\overline{\zeta})\right) = \left(f(z), K(z,\zeta)\right)_{\omega}, \end{split}$$

i.e.

$$\iint_{\mathbb{C}} g(z) \overline{C_{\omega}(z\overline{\zeta})} \, d\mu_{\omega}(z) = \iint_{\mathbb{C}} f(z) \overline{K(z,\zeta)} \, d\mu_{\omega}(z)$$

Consequently, by (3)

(11)
$$g(\zeta) = \iint_{\mathbb{C}} f(z) \overline{K(z,\zeta)} \, d\mu_{\omega}(z), \quad \zeta \in \mathbb{C}.$$

Thus, formula (7) is true. Further, it is easy to see that for any fixed $\zeta \in \mathbb{C}$

$$(f(z), C_{\omega}(z\overline{\zeta}))_{\omega} = (U^{-1}g(z), C_{\omega}(z\overline{\zeta}))_{\omega} = (g(z), UC_{\omega}(z\overline{\zeta}))_{\omega}$$

= $(g(z), H(z, \zeta))_{\omega}.$

Consequently, by (3)

(12)
$$f(\zeta) = \iint_{\mathbb{C}} g(z) \overline{H(z,\zeta)} \, d\mu_{\omega}(z), \quad \zeta \in \mathbb{C}.$$

Now, taking in (11) $f(z) = C_{\omega}(z\overline{\zeta_1})$, where $\zeta_1 \in \mathbb{C}$ is any fixed point, and observing that in this case $g(\zeta) = Uf(\zeta) = UC_{\omega}(\zeta\overline{\zeta_1}) = H(\zeta,\zeta_1)$, by (3) we conclude that

$$g(\zeta) = H(\zeta, \zeta_1) = \iint_{\mathbb{C}} C_{\omega}(z, \overline{\zeta_1}) \overline{K(z, \zeta)} \, d\mu_{\omega}(z)$$
$$= \iint_{\mathbb{C}} K(z, \zeta) C_{\omega}(\zeta_1 \overline{z}) \, d\mu_{\omega}(z) = \overline{K(\zeta_1, \zeta)}.$$

Thus, $\overline{H(\zeta,\zeta_1)} = K(\zeta_1,\zeta)$, and hence the equality (12) becomes the inversion formula (8). For proving formula (6), we insert $f(z) = K(z,\zeta_1)$ in (7). Then using the equalities

$$g(\zeta) = Uf(\zeta) = UK(\zeta, \zeta_1) = C_{\omega}(\zeta\zeta_1)$$

we come to the formula

$$C_{\omega}(\zeta\overline{\zeta}_1) = \iint_{\mathbb{C}} K(z,\zeta_1) \overline{K(z,\zeta)} \, d\mu_{\omega}(z),$$

which coincides with (6).

For proving the converse statement of our theorem, we define the operators

(13)
$$UK(z,\zeta) = C_{\omega}(z\overline{\zeta}) \text{ and } VC_{\omega}(z\zeta) = K(z,\zeta)$$

on the sets of functions

$$\{K(z,\zeta):\zeta\in\mathbb{C}\}\ \text{and}\ \{C_{\omega}(z\overline{\zeta}):\zeta\in\mathbb{C}\}.$$

Aimed at proving that the operators U and V are unitary on the mentioned sets, one can use (3) and (6) to be convinced that

(14)

$$\begin{aligned}
\left(UK(z,\zeta_1),UK(z,\zeta_2)\right)_{\omega} &= \left(C_{\omega}(z\overline{\zeta}_1),C_{\omega}(z\overline{\zeta}_2)\right)_{\omega} = \iint_{\mathbb{C}} C_{\omega}(z\overline{\zeta}_1)C_{\omega}(\zeta_2\overline{z})\,d\mu_{\omega}(z) \\
&= \omega(\zeta_2\overline{\zeta}_1) = \iint_{\mathbb{C}} K(z,\zeta_1)\overline{K(z,\zeta_2)}\,d\mu_{\omega}(z) \\
&= \left(K(z,\zeta_1),K(z,\zeta_2)\right)_{\omega}.
\end{aligned}$$

Besides, one can similarly prove that

ł

(15)

$$\left(VC_{\omega}(z\overline{\zeta_{1}}), VC_{\omega}(z\overline{\zeta_{2}})\right)_{\omega} = \left(K(z,\zeta_{1}), K(z,\zeta_{2})\right)_{\omega} = \iint_{\mathbb{C}} K(z,\zeta_{1}) \overline{K(z,\zeta_{2})} d\mu_{\omega}(z)$$

$$= C_{\omega}(\overline{\zeta_{1}}\zeta_{2}) = \iint_{\mathbb{C}} C_{\omega}(z\overline{\zeta_{1}}) C_{\omega}(\zeta_{2}\overline{z}) d\mu_{\omega}(z)$$

$$= \left(C_{\omega}(z\overline{\zeta_{1}}), C_{\omega}(z\overline{\zeta_{2}})\right)_{\omega}.$$

382

On the other hand,

(16)

$$\begin{pmatrix} VC_{\omega}(z\zeta_{1}), K(z,\zeta_{2}) \end{pmatrix}_{\omega} = \iint_{\mathbb{C}} K(z,\zeta_{1}) \overline{K(z,\zeta_{2})} d\mu_{\omega}(z) = C_{\omega}(\zeta_{2}\overline{\zeta}_{1}) \\
= \iint_{\mathbb{C}} C_{\omega}(z\overline{\zeta_{1}}) C_{\omega}(\overline{z}\zeta_{2}) d\mu_{\omega}(z) = \left(C_{\omega}(z\overline{\zeta}_{1}), C_{\omega}(z\overline{\zeta}_{2}) \right)_{\omega} \\
= \left(C_{\omega}(z\zeta_{1}), UK(z,\zeta_{2}) \right)_{\omega}.$$

Formulas (14), (15) and (16) show that

(17)
$$(Uf, Ug)_{\omega} = (f, g)_{\omega}, \quad (Vf, Vg)_{\omega} = (f, g)_{\omega} \text{ and } (Vf, g)_{\omega} = (f, Ug)_{\omega}$$

for f and g from the mentioned sets. Further, the following extension of U and V to the linear spans of the mentioned sets generated by the functions $K(z,\zeta)$ and $C_{\omega}(z\overline{\zeta})$ is natural:

$$\text{if} \quad f(z) = \sum_{i=1}^{\infty} a_i K(z,\zeta_i) \quad \text{and} \quad g(z) = \sum_{i=1}^{\infty} b_i C_{\omega}(z\overline{\zeta}_i),$$

then we set

$$Uf(z) = \sum_{i=1}^{\infty} a_i C_{\omega}(z\overline{\zeta}_i)$$
 and $Vg(z) = \sum_{i=1}^{\infty} b_i K(z,\zeta_i).$

By the previous methods, one can easily show that also the extended operators U and V satisfy (17) on the corresponding linear spans.

Suppose now that $\{\zeta_k\} \in \mathbb{C}$ is any sequence such that $\zeta_k \to a \in \mathbb{C}$ as $k \to \infty$ and ℓ is an arbitrary linear functional over the space $A^2_{\omega}(\mathbb{C})$, such that $\ell\left(C_{\omega}(z\overline{\zeta_k})\right) = 0$ for any $k \ge 1$. Then ℓ has the form (2) and hence, using the identity (3) we conclude that there is a function $g(z) \in A^2_{\omega}(\mathbb{C})$ such that

$$\ell\left(C_{\omega}(z\overline{\zeta}_{k})\right) = \iint_{\mathbb{C}} C_{\omega}(z\overline{\zeta}_{k})\overline{g(z)} d\mu_{\omega}(z)$$
$$= \iint_{\mathbb{C}} g(z)C_{\omega}(\overline{z}\zeta_{k}) d\mu_{\omega}(z) = \overline{g(\zeta_{k})} = 0$$

i.e. $g(\zeta_k) = 0$ and hence $g(z) \equiv 0$ by the uniqueness of analytic function. Thus, $\ell \equiv 0$ and hence the set $\{C_{\omega}(z\overline{\zeta}) : \zeta \in \mathbb{C}\}$ is everywhere dense in $A^2_{\omega}(\mathbb{C})$. Similarly, one can show that also the set $\{K(z,\overline{\zeta}) : \zeta \in \mathbb{C}\}$ is everywhere dense in $A^2_{\omega}(\mathbb{C})$. Consequently, the operators U and V can be extended from these sets to the whole space $A^2_{\omega}(\mathbb{C})$, and the equalities (17) are true for any functions $f, g \in A^2_{\omega}(\mathbb{C})$. It is obvious that the equalities (17) are equivalent to the conditions

$$U^*V = V^*U = I$$
 and $V^* = U$

which, in their turn, mean that the operator U has left and right inversions. Consequently, U is invertible and $U^{-1} = V$. Hence, both U and $V = U^{-1}$ are unitary operators in $A^2_{\omega}(\mathbb{C})$ and by the already proved statements of our theorem they are of the forms (7) and (8).

3. Construction of some special $K(z,\zeta)$ kernels

Now we consider the kernel $K(z,\zeta)$ for some special weights ω , for which $K(z,\zeta)$ takes somehow more explicit forms. Namely, we assume that, along with satisfying (6), $K(z,\zeta)$ depends on the product $z\overline{\zeta}$, i.e. $K(z,\zeta) = K(z\overline{\zeta})$. Thus, in addition to (6) we assume that

(18)
$$K(z) = \sum_{k=0}^{\infty} a_k z^k,$$

Then by (6)

$$\iint_{\mathbb{C}} K(z\overline{\zeta}_1) \overline{K(z\overline{\zeta}_2)} \, d\mu_{\omega}(z) = \sum_{m,n=0} a_m \overline{a}_n \overline{\zeta}_1 \zeta_2 \iint_{\mathbb{C}} z^m \overline{z}^n d\mu_{\omega}(z)$$

On the other hand, by (4)

$$C_{\omega}(\overline{\zeta}_1\zeta_2) = \sum_{k=0}^{\infty} \frac{\overline{\zeta}_1^k \zeta_2^k}{\Delta_k^{\infty}(\omega)}.$$

Hence, requiring that the last two sums are equal we obtain

$$a_n \overline{a}_m \iint_{\mathbb{C}} z^m \overline{z}^n d\mu_{\omega}(z) = \begin{cases} 0 & \text{if } m \neq n \\ |a_n|^2 \iint_{\mathbb{C}} |z|^{2n} d\mu_{\omega}(z) = \frac{1}{\Delta_n^{\infty}(\omega)} & \text{if } m = n \end{cases}$$

Consequently,

$$\frac{1}{\Delta_n^{\infty}(\omega)} = |a_n|^2 \iint_{\mathbb{C}} |z|^{2n} d\mu_{\omega}(z) = |a_n|^2 \int_0^{+\infty} x^n d\mu_{\omega}(x) = |a_n|^2 \Delta_n \infty(\omega),$$

and $|a_n| = [\Delta_n^{\infty}(\omega)]^{-1}$ or

(19)
$$a_n = \frac{e^{it_n}}{\Delta_n^{\infty}(\omega)},$$

where $\{t_n\}$ can be any sequence of real numbers. Thus, the considered kernels K, which depend on the product $z\overline{\zeta}$, are of the form

(20)
$$K(z) = \sum_{n=0}^{\infty} \frac{e^{it_n}}{\Delta_n^{\infty}(\omega)} z^n,$$

where $\{t_n\}$ is any sequence of real numbers. For instance, this is true when $\omega(t) = e^{-\sigma t^{\alpha}}$ $(\sigma, \alpha > 0)$, and the class $A^2_{\omega}(\mathbb{C})$ coincides with that considered in [7] as a particular case, where

$$\Delta_n = \sigma \int_0^{+\infty} t^{k+\alpha-1} e^{-\sigma t^{\alpha}} dt = \alpha^{-1} \sigma^{-n/\alpha} \Gamma\left(1 + \frac{n}{\alpha}\right),$$

and

$$K(z) = \alpha \sum_{n=0}^{\infty} e^{it_n} \frac{\sigma^{n/\alpha} z^n}{\Gamma\left(1 + \frac{n}{\alpha}\right)}.$$

References

- 1. L. Biberbach, Zur theorie und praxis der konformen abbildung, Palermo Rendiconti **38** (1914), 98–118.
- 2. R. Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1937.
- M. M. Djrbashian, On canonical representation of functions meromorphic in the unit disc, Dokl. Akad. Nauk. Armenian SSR 3 (1945), no. 1, 3–9.
- 4. M. M. Djrbashian, On the representability problem of analytic functions, Soobsch. Inst. Matem. i Mekh. Akad. Nauk Armenian SSR 2 (1948), 3–40.
- A. E. Djrbashian and F. A. Shamoian, Topics in the theory of A^p_a spaces, Teubner-Texte zur Math., vol. 105, Teubner-Verlag, Leipzig, 1988.
- H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces*, Springer-Verlag, Berlin, 2000.
- A. M. Jerbashian, On the theory of weighted classes of area integrable regular functions, Complex Variables 50 (2005), 155–183.

YEREVAN STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, ERIICTA, 1 ALEX MANOOGIAN, 375049, YEREVAN, ARMENIA

E-mail address: rafayelyansg@mail.ru

Institute of Mathematics, National Academy of Sciences of Armenia, 19
b Marshal Baghramian Avenue, 375019, Yerevan, Armenia

 $E\text{-}mail\ address:\ \texttt{armen_jerbashian@yahoo.com}$

Received 11/01/2007