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SUFFICIENT CONDITIONS FOR SUPERSTABILITY OF

MANY-BODY INTERACTIONS

M. V. TERTYCHNYI

Abstract. A detailed analysis of sufficient conditions on a family of many-body po-
tentials, which ensure stability, superstability or strong superstability of a statistical
system is given in present work.There has been given also an example of superstable
many-body interaction.

1. Introduction

From the second half of the previous century different sufficient conditions and re-
strictions on 2-body potential, which imply superstable or strong superstable interaction
have been studied (see [8] for survey of the results). It is obvious, that the research of
systems with respect to many-body interaction requires the same conditions on potential
energy of interaction of any finite number of particles to be fulfilled. In accordance with
this fact, one has a similar problem to describe the sufficient conditions on a sequence of
p-body (p ≥ 3) potentials, which ensure stability, superstability or strong superstability
of an infinite statistical system. We have to mention, that such conditions (which ensure
an existence of correlation function in the thermodynamic limit) have been written in
rather abstract form in works [2], [3] and more implicitly in works [4], [5], [6], [7], [10],
[11]. There is another interesting work in this field (see [1]), in which authors consider
a finite sequence of finite range many-body potentials, one of which is stabilizing, and
ensures stability of a whole system. In the present paper we consider an infinite system
of infinite range many-body potentials taking into account the traditional concept, i.e.
in some sense p-body potential plays less important role in the total energy of interaction
than p−1-one. p-body potential is a symmetric function of p variables which has positive
and negative parts. The conditions on a sequence of p-body (p > 2) potentials, which
ensure stability, superstability or strong superstability of a system, if such a behavior is
enabled by 2-body (pair) potential of interaction are formulated in this article. In the
next section we give necessary definitions and formulate main result. In section 4 we give
an example of a many-body interaction, which yields above mentioned conditions.

2. Definitions and main result

Let R
d be a d-dimensional Euclidean space. Following [9] for each r ∈ Z

d and λ ∈ R+

we define an elementary cube with a rib λ and center r

(2.1) ∆λ(r) =
{
x ∈ R

d | λ
(
ri − 1/2

)
≤ xi < λ

(
ri + 1/2

)}
.

We will sometimes write ∆ instead of ∆λ(r), if a cube ∆ is considered to be arbitrary
and there is no reason to emphasize that it is centered in the particular point r ∈ Z

d. We
denote by ∆λ the corresponding partition of R

d into cubes ∆. Let us consider a general

2000 Mathematics Subject Classification. 82B05, 82B21.
Key words and phrases. Continuous classical system, many-body interaction, criteria of superstabi-

lity.

386



SUFFICIENT CONDITIONS FOR SUPERSTABILITY OF MANY-BODY INTERACTIONS 387

type of many-body interaction specified by a family of p-body potentials Vp :
(
R

d
)p → R,

p ≥ 2 and define also positive and negative parts of interaction potential

V +
p (x1, . . . , xp) := max {0; Vp (x1, . . . , xp)} ,

V −
p (x1, . . . , xp) := min {0; Vp (x1, . . . , xp)} .

We assume for the family of potentials V := {Vp}p≥2 the following conditions:

A1. Symmetry. For any p ≥ 2, any (x1, . . . , xp) ∈
(
R

d
)p

and any permutation π of
the numbers {1, . . . , p}

Vp (x1, . . . , xp) = Vp

(
xπ(1), . . . , xπ(p)

)
.

A2. Translation invariance. For any p ≥ 2, any (x1, . . . , xp) ∈
(
R

d
)p

and a ∈ R
d

Vp (x1, . . . , xp) = Vp (x1 + a, . . . , xp + a) .

A3. Repulsion for small distances. There exists a partition of R
d into cubes ∆λ

(see (2.1)) such that for any (x1, . . . , xp) ⊂ ∆, p ≥ 2

Vp (x1, . . . , xp) ≥ 0.

A4. Integrability.

(2.2) sup
{x1,...,xk}∈(Rd)k

∫

(Rd)p−k

∣
∣V −

p (x1, . . . , xp)
∣
∣ dxk+1 · · · dxp < +∞, 1 ≤ k ≤ p − 1.

Under the assumptions A1-A4 we introduce the energy U (γ) : Γ0 → R ∪ {+∞},
which corresponds to the family of potentials Vp :

(
R

d
)p → R, p ≥ 2 and which is defined

by

(2.3) U(γ) =
∑

p≥2

∑

{x1,...,xp}⊂γ

Vp(x1, . . . , xp), γ ∈ Γ0, |γ| ≥ 2,

where Γ0 is the space of finite configurations

(2.4) Γ0 =
⊔

n∈N0

Γ(n), Γ(n) :=
{
γ ⊂ R

d||γ| = n
}

, N0 = N ∪ {0}, Γ(0) = {∅}.

Let us consider also the part of a total energy, defined only by p-body potential:

(2.5) U (p)(γ) =
∑

{x1,...,xp}⊂γ

Vp(x1, . . . , xp), γ ∈ Γ0, |γ| ≥ 2.

We introduce 3 kinds of interactions, defined by the family of potentials V := {Vp}p≥2.

Definition 1. Interaction, defined by the family of potentials V := {Vp}p≥2 is called:

a) stable, if there exists B > 0 such that

(2.6) U(γ) ≥ −B|γ| for any γ ∈ Γ0;

b) superstable, if there exist A > 0, B ≥ 0 and partition into cubes ∆λ such that

(2.7) U(γ) ≥ A
∑

∆∈∆λ

|γ∆|2 − B|γ| for any γ ∈ Γ0;

c) strong superstable, if there exist A > 0, B ≥ 0, m ≥ 2 and λ
′

> 0 such that

(2.8) U(γ) ≥ A
∑

∆∈∆λ

|γ∆|m − B|γ| for any γ ∈ Γ0, λ ≤ λ
′

.

In the above conditions constants A, B can depend on ∆λ and consequently on λ. In
our future estimates we will use several notations, which we introduce below.
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Definition 2. Let ∆, ∆i ∈ ∆λ; n, m, ki, k ∈ N, k1 + · · · + kn = p, p ≥ 2. Then

a) Ik1,...,kn
p (∆1, . . . , ∆n) := sup

n

x
(1)
1 ,...,x

(1)
k1

o

⊂∆1,...,
n

x
(n)
1 ,...,x

(n)
kn

o

⊂∆n

∣
∣
∣V −

p

(

x
(1)
1 , . . . , x

(n)
kn

)∣
∣
∣ ,

(2.9)

b) Ik|m
p (∆) :=

∑

(∆1,...,∆m)⊂∆λ

Ik,

m
︷ ︸︸ ︷

1, . . . , 1
p (∆, ∆1, . . . , ∆m), k + m = p.

(2.10)

Definition 3. Under the conditions of the def. 2 let ∆i 6= ∆j , if i 6= j, ∆i 6= ∆,
1 ≤ i ≤ m. Then

(2.11) Ik|{k1,...,km}
p (∆) :=

∑

{∆1,...,∆m}⊂∆λ

′∑

π∈Pm

I
k,kπ(1),...,kπ(m)
p (∆, ∆1, . . . , ∆m),

where Pm is a set of all permutations of numbers {1, . . . , m}, but the sum
∑′

π∈Pm
means

that we consider only different permutations of numbers {k1, . . . , km} (for example if
ki = kj for some i, j, permutation of numbers ki, kj is considered only once).

There are three useful remarks and two lemmas, which will be used in our estimates.

Remark 1. From the above definitions the following equality holds:

Ik|{k1,...,ki,...,km}
p (∆) = Iki|{k1,...,k,...,km}

p (∆).

Remark 2. If λ → 0 then the following is true:
(2.12)

λmdIk|m
p (∆) → sup

{x1,...,xk}⊂∆

∫

Rm

∣
∣V −

p (x1, . . . , xk, xk+1, . . . , xk+m)
∣
∣ dxk+1 . . . dxk+m.

If we multiply I
k|m
p (∆) by λmd we obtain definition of integral sums in the r.h.s of (2.12).

It allows us to write an estimate for the value of I
k|m
p (∆) (see (4.21)).

Remark 3. Due to the assumption A2 value of I
k|m
p (∆) does not depend on the position

of cubes ∆, so we can put

(2.13) Ik|m
p = Ik|m

p (∆).

Lemma 1. For any p ≥ 2 the following inequality holds:

(2.14)

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

Ik1|{k2,...,kj}
p (∆) ≤ I1|p−1

p (∆).

Proof. Using the definition (2.10) we can rewrite I
1|p−1
p (∆) in the following form:

(2.15) I1|p−1
p (∆) =

∑

(∆2,...,∆p)⊂∆λ

I

p

︷ ︸︸ ︷

1, . . . , 1
p (∆, ∆2, . . . , ∆p).

The sum in the r.h.s of (2.15) can be rewritten in the form of sums over sets of cubes
{∆2, . . . , ∆j}, j = 2, p, which belong to the area ∆λ \ {∆}. Then, neglecting some
combinatorial coefficients, which are greater then 1 and using the fact that Ip

p (∆) ≡ 0
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for sufficiently small λ (see A3 and Eq. (2.9) at n = 1, k1 = p), we can deduce from the
equality (2.15) that

(2.16) I1|p−1
p (∆) ≥

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

∑

{∆2,...,∆j}⊂∆λ\{∆}

′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆, ∆2, . . . , ∆j).

Let us take into account the following obvious estimate:

(2.17)
′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆, ∆2, . . . , ∆j) ≥

′∑

π∈Pj\{1}

I
k1,kπ(2),...,kπ(j)
p (∆, ∆2, . . . , ∆j),

where Pj\{1} is a set of all permutations of numbers {2, . . . , j}. Using (2.11), (2.16),
(2.17), we obtain finally

I1|p−1
p (∆) ≥

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

Ik1|{k2,...,kj}
p (∆).

�

Lemma 2. For any p ≥ 2 the following inequality holds:
(2.18)

∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j)

j
∑

i=1

|γ∆i
|p ≤ j

∑

∆∈∆λ,
|γ∆|≥1

|γ∆|pIk1|{k2,...,kj}
p (∆).

Proof. Taking into account the def. 3 we have

(2.19)

L :=
∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j)

j
∑

i=1

|γ∆i
|p

=
1

j!

∑

∆1∈∆λ,...,∆j∈∆λ

∆l 6=∆k,l 6=k

′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j)

j
∑

i=1

|γ∆i
|p.

By direct computation we can obtain that for any {∆1, . . . , ∆j} ⊂ ∆λ the following
estimate is true:

(2.20)
′∑

π∈Pj

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j) ≤

j
∑

t=1

′∑

π∈Pj\{t}

I
kt,kπ(2),...,kπ(j)
p (∆1, . . . , ∆j).

We obtain from (2.19), (2.20)

(2.21) L ≤ 1

j!

j
∑

r=1

∑

∆r∈∆λ

∑

∆1,...,∆r−1∈∆λ,

∆r+1,...,∆j∈∆λ,
∆l 6=∆k,l 6=k

j
∑

t=1

′∑

π∈Pj\{t}

I
kt,kπ(2),...,kπ(j)
p (∆1, . . . , ∆j)|γ∆r

|p.

As the number of sets {∆1, . . . , ∆r−1, ∆r+1, . . . , ∆j} ⊂ ∆λ in the third group of sums in
(2.21) is (j − 1)! and taking into account the def. 3 (see(2.11)) one can rewrite (2.21) in
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the following way:

(2.22) L ≤ 1

j

j
∑

r=1

∑

∆r∈∆λ

j
∑

t=1

Ikt|{k1,...,kt−1,kt+1,...,kj}
p (∆r)|γ∆r

|p.

We deduce finally from the remarks 1, 3 and (2.22)

L ≤ j
∑

∆∈∆λ,
|γ∆|≥1

|γ∆|pIk1|{k2,...,kj}
p (∆).

�

We give the following definition for the positive part of interaction potential:

(2.23) V p
p (∆) := inf

{x1,...,xp}⊂∆
V +

p (x1, . . . , xp).

The main result of the article is in the following theorem:

Theorem 2.1. Let the family of p-body potentials Vp :
(
R

d
)p → R, p ≥ 2 satisfy

assumptions A1–A4. Let also the part of interaction U (2)(γ) be stable (superstable,
strong superstable). If there exists such partition of R

d into cubes ∆λ, that the following
holds:

1) pp+1I1|p−1
p (∆) ≤ V p

p (∆), p > 2,(2.24)

2)
∑

p>2

pp+1I1|p−1
p (∆) < +∞,(2.25)

then interaction, corresponding to this family of potentials, is also stable (superstable,
strong superstable).

3. Proof of Theorem 2.1

Proof. Let conditions of the theorem (2.1) hold and γ ∈ Γ0. We can write U (p)(γ) in the
following form:

U (p)(γ) =
∑

∆∈∆λ,
|γ∆|≥p

∑

{x1,...,xp}⊂γ∆

Vp(x1, . . . , xp)

+

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

′∑

π:k
π(n)

≤|γ∆n |,

1≤n≤j

(3.1)

×
∑

{x
(1)
1 ,...,x

(1)
kπ(1)

}⊂γ∆1 ,...,{x
(j)
1 ,...,x

(j)
kπ(j)

}⊂γ∆j

Vp(x
(1)
1 , . . . , x

(j)
kπ(j)

).

The first part of (3.1) includes the interaction of particles within every arbitrary cube
∆, the second one does the same with particles, which are situated in different cubes
of ∆λ with |γ∆| ≥ 1. The 4-th group of sums in the second term of (3.1) is the sum
over all different permutations (see def. 3) π : (k1, . . . , kj) → (kπ(1), . . . , kπ(j)) and all

values k1, . . . , kj (k1 ≤ · · · ≤ kj), kl ≥ 1, l = 1, j, k1 + · · · + kj = p with the restrictions

1 ≤ kπ(n) ≤ |γ∆n
|, n = 1, j.

Let us explain this notation by simple example. Let the number of cubes, where
there are particles for 7-potential be j = 4. The set of ki is (1, 2, 2, 2). We consider a
set of cubes {∆1, . . . , ∆4} such that |γ∆1 | = 1, |γ∆2 | = 3, |γ∆3 | = 2, |γ∆4 | = 6. As a
result, all permutations π such that π(1) = 2, π(1) = 3, π(1) = 4 are not allowed, i.e.
k2 = k3 = k4 = 2 > |γ∆1 |.
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Using definitions (2.23) and (2.9) we can estimate (3.1) in the following way:

U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

V p
p (∆)Cp

|γ∆| −
p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

′∑

π:k
π(n)

≤|γ∆n |,

1≤n≤j

(3.2)

×
(

j
∏

m=1

C
kπ(m)

|γ∆m |

)

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j),

where Ck
n = n!

(n−k)!k! .

Using inequalities ∀n ≥ k ≥ 1, nk

kk ≤ Ck
n ≤ nk

k! , we obtain

U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

V p
p (∆)

pp
|γ∆|p −

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

(3.3)

×
′∑

π:k
π(n)

≤|γ∆n |,

1≤n≤j

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j)

j
∏

m=1

|γ∆m
|kπ(m)

kπ(m)!
.

Let us consider the following inequality:

(3.4)

j
∏

i=1

ami

i ≤ 1

m1 + · · · + mj

j
∑

i=1

mia
m1+···+mj

i ≤
j
∑

i=1

a
m1+···+mj

i ,

where a1, . . . , aj ∈ R+; m1, . . . , mj ∈ N. R.h.s of this inequality is obvious, the l.h.s is
a consequence of twice used Iensen’s inequality. Let us denote m = m1 + · · · + mj . We
have

1

m

j
∑

i=1

mia
m
i =

j
∑

i=1

mi

m
am

i ≥
(

j
∑

i=1

miai

m

)m

,

from the other side

j
∏

i=1

ami

i = exp

(
j
∑

i=1

milnai

)

=

(

exp

(
j
∑

i=1

milnai

m

))m

≤
(

j
∑

i=1

miai

m

)m

.

Using (3.4), we obtain

U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

V p
p (∆)

pp
|γ∆|p −

p
∑

j=2

∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

∑

{∆1,...,∆j}⊂∆λ,

|γ∆r |≥1,1≤r≤j

(3.5)

×
j
∏

m=1

1

km!

′∑

π:k
π(n)

≤|γ∆n |,

1≤n≤j

I
kπ(1),...,kπ(j)
p (∆1, . . . , ∆j)

j
∑

i=1

|γ∆i
|p.

Taking into account, that the sum w.r.t. π defined in (3.1) contains less number of terms,
the the same one in (2.11), as it does not have the restrictions kπ(n) ≤ |γ∆n

|, n = 1, j
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and using lemma 2, that is inequality (2.18), we obtain
(3.6)

U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

V p
p (∆)

pp
|γ∆|p −

p
∑

j=2

j

B(p; j)

∑

∆∈∆λ,
|γ∆|≥1

|γ∆|p
∑

kl≥1,1≤l≤j,
k1+···+kj=p,

k1≤···≤kj

Ik1|{k2,...,kj}
p (∆),

where

B(p; j) = inf
kπ(t)≥1,1≤t≤p,

kπ(1)+···+kπ(j)=p

(kπ(1)! . . . kπ(j)!)

Since max j
B(p;j) = p, 2 ≤ j ≤ p and taking into account definitions 2, 3 and lemma 1,

we deduce, that

(3.7) U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

V p
p (∆)

pp
|γ∆|p − pI1|p−1

p

∑

∆⊂∆λ,
|γ∆|≥1

|γ∆|p.

Number of cubes with |γ∆| = k is not more than |γ|
k

. Due to this, the following estimate
holds:

∑

∆∈∆λ,
|γ∆|≥1

|γ∆|p =
∑

∆∈∆λ,
|γ∆|≥p

|γ∆|p +

p−1
∑

k=1

∑

∆∈∆λ,
|γ∆|=k

|γ∆|p

(3.8)

≤
∑

∆∈∆λ,
|γ∆|≥p

|γ∆|p +

p−1
∑

k=1

kp−1|γ|.

Using (3.7) and (3.8), we obtain the final estimate of U (p)(γ)

(3.9) U (p)(γ) ≥
∑

∆∈∆λ,
|γ∆|≥p

|γ∆|p
(

V p
p (∆)

pp
− pI1|p−1

p

)

− pI1|p−1
p

p−1
∑

k=1

kp−1|γ|.

Let us take into account the following obvious estimate:

(3.10)
∑

p>2

pI1|p−1
p

p−1
∑

k=1

kp−1 <
∑

p>2

pp+1I1|p−1
p .

Using the last estimates (3.9), (3.10) the conditions of superstability (strong superstabi-
lity) (2.24)–(2.25) are fulfilled with

(3.11) B = B2 +
∑

p>2

pp+1I1|p−1
p , A = A2,

where A2, B2 are taken from the condition of superstability (strong superstability) of
2-body part of interaction. If pair potential is only stable, then many-body interaction
is also stable with the constant B from (3.11). �

Remark 4. Actually, we proved modified superstability inequality (3.9) for the family
of p-body potentials V := {Vp}p≥2, which satisfies assumptions A1–A4 and conditions

(2.24), (2.25).
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4. Example of many-body interaction

Example 1. Let V be a many-body interaction, specified by a family of p-body potentials
Vp :

(
R

d
)p → R, p ≥ 2

Vp(x1, . . . , xp) =
Ap

(
∑

1≤i<j≤p

|xi − xj |
)m(p)

− Bp
(

∑

1≤i<j≤p

|xi − xj |
)n(p)

,

(4.1)

Ap > 0, Bp > 0; m(p) > n(p), n(p) > (p − 1)d.

Write down the conditions on Ap, Bp, that ensure superstability of interaction.
Verification of assumptions A1–A2 is obvious. Let us analyze the assumption A3

for the family of p-body potentials (4.1). Consider the following estimates of the sum
∑

1≤i<j≤p

|xi − xj | in (4.1).

Lemma 3.

(4.2)
∑

1≤i<j≤p

|xi − xj | ≥ (p − 1) max
1≤i<j≤p

|xi − xj |.

Proof. Let us put for definiteness max
1≤i<j≤p

|xi − xj | = |x1 − x2|. Then the following range

of estimates holds:

∑

1≤i<j≤p

|xi − xj | ≥ |x1 − x2| +
p
∑

j=3

(|x1 − xj | + |x2 − xj |)

(4.3)

≥ |x1 − x2| +
p
∑

j=3

|x1 − x2| = (p − 1)|x1 − x2|.

The minimum of
∑

1≤i<j≤p

|xi − xj | is reached, if p − 2 particles coincide. �

The sum
∑

1≤i<j≤p

|xi − xj | can be estimated from above in such a way:

(4.4)
∑

1≤i<j≤p

|xi − xj | ≤
p(p − 1)

2
max

1≤i<j≤p
|xi − xj |.

Remark 5. In 1-dimensional case the estimate (4.4) can be improved
∑

1≤i<j≤p

|xi − xj | ≤
(

p −
[p

2

]) [p

2

]

max
1≤i<j≤p

|xi − xj |.

The maximum of
∑

1≤i<j≤p

|xi − xj | is reached, if
[

p
2

]
particles are situated at one point

and the rest of them are situated at another one.

It follows from (4.2), (4.4), that for any (x1, . . . , xp) ⊂ ∆, p ≥ 2 the following is true:

(4.5) Vp (x1, . . . , xp) ≥
A

′

p
(

max
1≤i<j≤p

|xi − xj |
)m(p)

− B
′

p
(

max
1≤i<j≤p

|xi − xj |
)n(p)

,

where A
′

p =
Ap

( p(p−1)
2 )

m(p) , B
′

p =
Bp

(p−1)n(p) .
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We deduce from (4.5), that for any fixed p ≥ 2 there exists such a ball B(D; Rp) with
a center in the arbitrary point D and a radius Rp:

(4.6) Rp =

(
Ap

Bp

) 1
m(p)−n(p) 1

2(p − 1)
(

p
2

) m(p)
m(p)−n(p)

,

that Vp (x1, . . . , xp) ≥ 0 for any (x1, . . . , xp) ⊂ B(D; Rp). So, we have to find such values
of Ap, Bp that R0 = inf

p≥2
Rp > 0 in order the assumption A3 to be fulfilled for the family

of potentials (4.1), where the length of a rib of d-dimensional cube in the partition ∆λ0

is equal to

(4.7) λ0 =
2R0√

d
.

In the ball B(0; R0) with a center in the origin and a radius R0: Vp (x1, . . . , xp) ≥ 0 for
any (x1, . . . , xp) ⊂ B(0; R0) and any p ≥ 2.

It is clear that

∣
∣V −

p (x1, . . . , xp)
∣
∣ ≤ B′

p
(

max
1≤i<j≤p

|xi − xj |
)n(p)

.

Prove that it satisfies the assumption A4. Let us put x1 = 0 for definiteness. There are
two cases for any (x1, . . . , xp) ⊂ (Rd)p

1) diam({x1, . . . , xp}) = dist(xi; xj),

0 ∈ B

(
xi + xj

2
;
|xj − xi|

2

)

, 1 < i ≤ p, 1 < j ≤ p ;

2) diam({x1, . . . , xp}) = dist(0; xj), 1 < j ≤ p .

In accordance with these two cases one can write the following estimate:

∫

(Rd)p−1

∣
∣V −

p (0, x2, . . . , xj)
∣
∣ dx2dxp ≤ Kp = K(1)

p + K(2)
p ;

K(1)
p ≤ B′

pC
2
p−1

∫

|x2+xp|

2 ≤
|xp−x2|

2 ,

|xp−x2|>2R0

dx2dxp

|xp − x2|n(p)
(4.8)

×
∫

˛

˛

˛

xp+x2
2 −x3

˛

˛

˛≤
|xp−x2|

2

dx3 · · ·
∫

˛

˛

˛

xp+x2
2 −xp−1

˛

˛

˛≤
|xp−x2|

2

dxp−1,

K(2)
p ≤ B′

p(p − 1)

∫

|xp|>2R0

dxp

|xp|n(p)

∫

| xp

2 −x2|≤ |xp|

2

dx2 · · ·
∫

| xp

2 −xp−1|≤ |xp|

2

dxp−1.(4.9)

The first integral K
(1)
p and the second K

(2)
p refer to cases 1) and 2) respectively. In

(4.9) p − 1 is a number of xj , 1 < j ≤ p. Let us take into account that a volume of
d-dimensional ball B(a, R) is

(4.10)

∫

|x−a|≤R

dx =
2π

d
2 Rd

dΓ
(

d
2

) .
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Using (4.10) one can rewrite (4.8), (4.9) in the following form:

(4.11) K(1)
p ≤ B′

pC
2
p−1

(

π
d
2

2d−1dΓ
(

d
2

)

)p−3 ∫

|x2+xp|

2 ≤
|xp−x2|

2 ,

|xp−x2|>2R0

dx2dxp

|xp − x2|n(p)−(p−3)d
,

(4.12) K(2)
p ≤ B′

p(p − 1)

(

π
d
2

2d−1dΓ
(

d
2

)

)p−2 ∫

|xp|>2R0

dxp

|xp|n(p)−(p−2)d
.

In (4.11) we do the following substitution of variables: {x2; xp} → {x2; t}, t = xp − x2.
We obtain

K(1)
p ≤ B′

pC
2
p−1

(

π
d
2

2d−1dΓ
(

d
2

)

)p−3 ∫

|t|>2R0

dt

|t|n(p)−(p−3)d

∫

|x2+
t
2 |≤

|t|
2

dx2

(4.13)

= B′
pC

2
p−1

(

π
d
2

2d−1dΓ
(

d
2

)

)p−2 ∫

|t|>2R0

dt

|t|n(p)−(p−2)d
.

Using generalized spherical coordinates, we deduce from (4.12) and (4.13) that

K(1)
p ≤ B′

pC
2
p−12

dd

(

π
d
2

2d−1dΓ
(

d
2

)

)p−1 ∫ +∞

2R0

dr

rn(p)+(1−p)d+1
,(4.14)

K(2)
p ≤ B′

p(p − 1)2dd

(

π
d
2

2d−1dΓ
(

d
2

)

)p−1 ∫ +∞

2R0

dr

rn(p)+(1−p)d+1
.(4.15)

If n(p) + (1 − p)d > 0 integrals (4.14) and (4.15) converge and finally
∫

(Rd)p−1

∣
∣V −

p (0, x2, . . . , xp)
∣
∣ dx2dxp

≤ 2B′
pd(p − 1)2

(n(p) + (1 − p)d)(2R0)n(p)+(1−p)d

(

π
d
2

2d−1dΓ
(

d
2

)

)p−1

(4.16)

≤ 2Bpd

(p − 1)n(p)−2(n(p) + (1 − p)d)(2R0)n(p)+(1−p)d
= Fp.

As a result the assumption A4 holds. Now we will show that assumption A3 and the
conditions (2.24), (2.25) also hold, if we put for example
(4.17)

m(p) = pd + 1, n(p) = pd, Ap =

(
p(p − 1)

2

)m(p)

, Bp =
1

pp+2+ε2pd−1d
m(p)

2

, ε > 0.

Using (4.6), (4.7) we obtain in this case

(4.18) Rp = pp+2+ε(p − 1)pd2pd−2d
pd+1

2 , R0 = 22d+2+εdd+ 1
2 , λ0 = 22d+3+εdd.

So, the assumption A3 holds. We have from (4.16), (4.17) the upper bound for Fp

(4.19) Fp <
1

pp+2+εd
pd+1

2

.

Let us verify that the condition (2.25) yields. It follows directly from the estimate
pp+1Fp < 1

p1+ε . Function in the r.h.s of (4.5) achieves its minimum in the cubic area ∆
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with a rib λ, λ ≤ λ0 if max
1≤i<j≤p

|xi − xj | = λ
√

d. Using (4.5), (4.17) we obtain the lower

bound for V p
p (∆)

(4.20) V p
p (∆) ≥ 1

(λ
√

d)pd+1
− 1

(λ
√

d)pd
.

We deduce from the Remark 2 that

(4.21) I1|p−1 ∼ Fp − δ

λ(p−1)d
, δ > 0, if λ → 0.

This fact, inequalities (4.19), (4.20) imply fulfillment of (2.24).
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