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ON n-TUPLES OF SUBSPACES IN LINEAR AND UNITARY SPACES

YU. S. SAMOILENKO AND D. YU. YAKYMENKO

To the memory of A. Ya. Povzner, a prominent mathematician and a remarkable person

Abstract. We study a relation between brick n-tuples of subspaces of a finite di-
mensional linear space, and irreducible n-tuples of subspaces of a finite dimensional
Hilbert (unitary) space such that a linear combination, with positive coefficients, of
orthogonal projections onto these subspaces equals the identity operator. We prove
that brick systems of one-dimensional subspaces and the systems obtained from them
by applying the Coxeter functors (in particular, all brick triples and quadruples of
subspaces) can be unitarized. For each brick triple and quadruple of subspaces, we
describe sets of characters that admit a unitarization.

1. Introduction

A relationship between representations of algebraic objects in linear spaces and their
∗-representations in Hilbert spaces is useful for a study of these objects.

In this paper, we study a relation between brick n-tuples L = (V ; V1, . . . , Vn) of
subspaces Vk of a complex finite dimensional linear space V , see Section 2, and irre-
ducible orthoscalar n-tuples S = (H ; H1, . . . , Hn) of subspaces Hk of a finite dimensional
Hilbert (unitary) space H , that is, such that there exists a collection of positive numbers
(a0; a1, . . . , an), called a character, such that

(1)
∑

akPHk
= a0I,

where PHk
are orthogonal projections onto the subspaces Hk and I is the identity operator

on H , see Section 4. Recall that an n-tuple L = (V ; V1, . . . , Vn) of subspaces Vk is called
brick if any linear operator X : V → V such that X(Vk) ⊂ Vk is a multiple of the identity
operator. An n-tuple of orthogonal projections {PHk

}n
k=1 is called irreducible if, for any

linear operator X : H → H , [X, PHk
] = 0, k = 1, . . . , n, implies that X = λI, λ ∈ C.

If an n-tuple of orthogonal projections PHk
on H is irreducible and satisfies relation (1),

then the corresponding collection of the subspaces Hk of the linear space H will be brick,
see [15]. In this paper, we call a brick collection L = (V ; V1, . . . , Vn) unitarizable if
there exists a scalar product on V and a character χ = (a0; a1, . . . , an) such that the
corresponding collection of orthogonal projections onto Hk = Vk satisfies (1). In Section 4
we prove (Theorems 1 and 2) that brick systems of one-dimensional subspaces and the
ones they yield by applying the Coxeter functors (in particular, all brick triples and
quadruples of spaces) can be unitarized, see [22], [23] for unitarizing all nondegenerate
brick quadruples with the characters (γ; 1, 1, 1, 1), γ > 0. There are also other examples
of systems of subspaces that can be unitarized. In Section 5, for all brick quadruples of
subspaces we describe sets of characters that allow for a unitarization, see Theorems 3
and 4.
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The interests of the authors to the topics discussed in the paper was increased in
connection with the article [7], where it was remarked that “There seems to be interesting
relations with the n-tuples of subspaces and the sums of projections”.

2. On n-tuples of subspaces of a linear space

2.1. In this subsection, we recall known facts about n-tuples of subspaces of a linear
space, needed in the sequel.

Let L = (V ; V1, V2, . . . , Vn) be a system of subspaces of V , L̃ = (Ṽ ; Ṽ1, Ṽ2, . . . , Ṽn) a

system of subspaces of Ṽ . A linear operator R : V → Ṽ is called a homomorphism of the
system L into L̃ if R(Vi) ⊂ Ṽi, ∀i = 1, n. R : V → Ṽ is called an isomorphism if there

exists an inverse R−1 such that R−1(Ṽi) ⊂ Vi, ∀i = 1, n, and the systems L and L̃ will
be called isomorphic (equivalent).

Denote by Hom(L, L̃) the set of homomorphisms from L into L̃. End(L) := Hom(L, L),
that is, End(L) = {R : V → V | R(Vi) ⊂ Vi, ∀i = 1, n}. A system S is called brick (Schur,
transitive) if End(L) = CI.

Denote by Idem(L) = {R : V → V | R(Vi) ⊂ Vi, ∀i = 1, n, R2 = R}. A system L
is called indecomposable if Idem(L) = {0, I}. The property of being indecomposable is
equivalent to that the system is not isomorphic to a direct sum of two nonzero systems.

It directly follows from the definitions that a brick system is also indecomposable.
However, if n � 4 there are examples showing that the converse is not true.

An isomorphism preserves the property of a system to be indecomposable or brick.

2.2. There are only four indecomposable nonequivalent pairs of subspaces, – (C; 0, 0),
(C; C, 0), (C; 0, C), (C; C, C). All of them are brick.

The number of nonequivalent indecomposable triples of subspaces is 9. There are eight
triples of subspaces of a one-dimensional space, – (C; 0, 0, 0), (C; C, 0, 0), (C; 0, C, 0),
(C; C, C, 0), (C; 0, 0, C), (C; C, 0, C), (C; 0, C, C), (C; C, C, C), and one triple in a two-
dimensional space. This is (C2; C(1, 0), C(0, 1), C(1, 1)). All of them are brick.

For n = 4 already, not every indecomposable n-tuple will be brick. A description of
brick quadruples and indecomposable quadruples is given in [2, 24, 9] and others. For
our purposes, a complete description is not needed, but we will only use some properties.

Let d = (d0; d1, d2, d3, d4) be a generalized dimension of the system L = (V ; V1, V2,
V3, V4). A Tits form is the quadratic form

T (d) =

4∑

i=0

d2
i − d0

4∑

i=1

di.

For an indecomposable system L, the Tits form of the dimension d equals either 1 (the
dimension d in such a case is called a real root) or 0 (and d is called an imaginary root). If
d is a real root, then for this dimension there exists exactly one indecomposable quadruple
of subspaces. If d is an imaginary root, then for this dimension there exists a family of
quadruples. Imaginary roots will be multiples of the imaginary root σ = (2; 1, 1, 1, 1). In
such a case, brick systems will be obtained only for the minimal root σ.

To classify quadruples of spaces, it is convenient to use the notion of a deficiency
defined by

def(L) =

4∑

i=1

di − 2d0.

One way to construct indecomposable quadruples is to use Coxeter functors Φ+ and
Φ− [9]. These functors allow to use a system to obtain other systems preserving the
indecomposability and brick properties. They also preserve the deficiency and the type
of the root.
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The following is a list of all dimensions corresponding to real roots:

D4(2m + 1,−1) = (2m + 1; m, m, m, m + 1), def = −1,
D4(2m + 1, 1) = (2m + 1; m + 1, m + 1, m + 1, m), def = 1,
D4(2m,−1) = (2m; m, m, m, m − 1), def = −1,
D4(2m, 1) = (2m; m, m, m, m + 1), def = 1,

and permutation of the subspaces Di(·, ·), i = 1, 2, 3;

D0(2m + 1,−2) = (2m + 1; m, m, m, m), def = −2,
D0(2m, 2) = (2m + 1; m + 1, m + 1, m + 1, m + 1), def = 2,
D3,4(2m + 1, 0) = (2m + 1; m, m, m + 1, m + 1), def = 0,

and permutations of the subspaces Di,j(2m + 1, 0).
In the case where def �= 0, all indecomposable systems with these dimensions will be

brick and can be obtained by applying the Coxeter functors to the simplest collections of
subspaces; these are collections of subspaces of a space of dimension 1. For the dimension
Di,j(2m + 1, 0), a system will be brick only if m = 0.

Brick nonequivalent quadruples in a space of dimension σ = (2; 1, 1, 1, 1) can be written
as follows:

Sµ = (C2 =< e1, e2 >; < e1 >, < e2 >, < e1 + µe2 >, < e1 + e2 >),

µ ∈ C \ {0, 1},

S3,4 = (C2 =< e1, e2 >; < e1 >, < e2 >, < e1 + e2 >, < e1 + e2 >)

and permutations of Si,j .

2.3. For n � 5 a description of indecomposable n-tuples of subspaces is a very difficult
problem and contains, as a subproblem, the problem of a description, up to unitary
equivalence, of indecomposable pairs of operators on a finite dimensional linear space.

Indeed, let E be a linear space, A, B linear operators on E. Consider quinaries of
subspaces, L(A,B) = (E ⊕E; (x, 0), (0, x), (x, x), (x, Ax), (x, Bx), x ∈ E). Such a quinary
will be called an operator quinary. Note that each quinary (V ; V1, . . . , V5) such that
dimV = 2n, dimVi = n, i = 1, 5, and Vi ∩ Vj = 0, i �= j, is equivalent to an operator
quinary with nondegenerate A and B.

A description of indecomposable quinaries up to equivalence is already a very difficult
problem, – it is the problem of a description of indecomposable pairs of operators on a
linear space up to equivalence.

Proposition 2.1. 1) LA,B ≃ LÃ,B̃ ⇐⇒ (A, B) ∼ (Ã, B̃), that is, there exists an

invertible operator T from Ẽ into E such that Ã = T−1AT, B̃ = T−1BT .
2) LA,B is indecomposable ⇐⇒ the pair (A, B) is indecomposable, that is, for all

idempotents T = T 2 on E such that TA = AT , TB = BT , we have that T = 0
or T = I.

For n � 5, the problem of a description of brick n-tuples of subspaces up to equivalence
is also very difficult.

Proposition 2.2. LA,B is brick if and only if (A, B) is brick, that is, if TA = AT, TB =
BT , then T = λI.

This problem, for example, contains the problem of describing irreducible pairs of
unitary operators on a finite dimensional Hilbert space up to unitary equivalence ([23]).

2.4. A possible additional condition for the problem of describing indecomposable n-
tuples of subspaces to become meaningful is the condition that the subspaces of the
collection make a representation of a finite partially ordered set, see papers on represen-
tations of primitive posets in the category of linear spaces [24, 5, 6] and others, and also
on representations of not primitive posets [25, 13, 4, 34, 32, 11] and others.
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Another additional condition for the problem of a description of irreducible n-tuples
of subspaces to possibly become solvable is a condition on possible indecomposable terms
in the decomposition of the quadruples (V ; Vi1 , Vi2 , Vi3 , Vi4), i1, i2, i3, i4 ∈ {1, 2, . . . , n},
ik �= ij (k �= j).

3. On n-tuples of subspaces of a Hilbert space

3.1. There are many works dealing with n-tuples S = (H ; H1, H2, . . . , Hn) of subspaces
of a Hilbert space H , see [10, 31, 7] and others. In the sequel, H is usually assumed
to be a finite dimensional Hilbert space, i.e., a unitary space. Using the Hilbert space
property of H we can assign, to every subspace Hi, a unique orthogonal projection
Pi : H → H onto this subspace. Collections of subspaces S = (H ; H1, H2, . . . , Hn) and

S̃ = (H̃ ; H̃1, H̃2, . . . , H̃n) are called unitary equivalent if there exists a unitary operator

U : H → H̃ such that UPi = P̃iU ∀i = 1, n.
A collection of orthogonal projections {Pi}

n
i=1 on H is called irreducible if for any

X ∈ L(H) satisfying XPi = PiX for all i = 1, n it follows that X = λI (λ ∈ C).
To a collection of subspaces S = (H ; H1, H2, . . . , Hn) of a Hilbert space there always

corresponds the collection of subspaces L = (V = H ; V1 = H1, V2 = H2, . . . , Vn = Hn) in
the linear space V = H , forgetting the scalar product structure. Here unitary equivalent
collections will correspond to isomorphic systems in a linear space (an isomorphism of
systems of subspaces of a Hilbert space is understood as an isomorphism of the corre-
sponding systems in linear spaces). The converse, of course, is not true.

For a unitary space, one can also talk about brick collections and indecomposable
collections of subspaces meaning brick and indecomposable collections of subspaces of H
considered as a linear space. It is easy to see here that indecomposability of a collection
of subspaces implies that the corresponding collection of the orthogonal projections is
irreducible. If a collection of orthogonal projections is irreducible, then the collection of
subspaces need not be, in general, indecomposable. For example, a pair of projections
onto two nonorthogonal one-dimensional subspaces in C2 will be irreducible but the pair
of the corresponding subspaces is decomposable.

3.2. Irreducible pairs of subspaces exist only in one- and two-dimensional unitary spaces.
A list of the corresponding unitary nonequivalent pairs of orthogonal projections {P1, P2}
is the following.

a) dimH = 1: {P1 = 0, P2 = 0}, {P1 = 1, P2 = 0}, {P1 = 0, P2 = 1}, {P1 = 1, P2 =
1};

b) dimH = 2:

P1 =

(
1 0
0 0

)

, P2 =

(
cos2 φ cosφ sin φ

cosφ sin φ sin2 φ

)

, φ ∈ (0, π/2).

A description of triples of subspaces of H up to unitary equivalence is a ∗-wild problem.
Even assuming that two of these spaces are orthogonal, the problem is still ∗-wild [19, 20].

3.3. For a system of subspaces of a Hilbert space, one can also define Coxeter functors,
◦
F ,

•
F , F+ =

◦
F

•
F , and F− =

•
F

◦
F , see [17, 14], which correspond to the Coxeter functors

Φ+ and Φ− for systems in a linear space; if a system S in a Hilbert space H corresponds
to a system L in a linear space V = H , then F+S is isomorphic to the system Φ+L, and
F−S is isomorphic to the system Φ−L.

The Coxeter functors have the following properties:
◦
F ◦

◦
F=

•
F ◦

•
F= F+ ◦ F− =

F− ◦ F+ = Id ; they preserve the property of the system to be brick or indecomposable,
as well as irreducibility. If d = (d0; d1, . . . , dn) is a dimension of a system S, then the

dimension of
◦
F S is

◦
c d := (

∑n
i=1 di − d0; d1, . . . , dn), and the dimension of

•
F S is

•
c d :=
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(d0; d0 − d1, . . . , d0 − dn). Similarly, F+S has the dimension c+d := (
◦
c
•
c)d {=

•
c (

◦
c (d)) },

and the dimension of F−S is c−d := (
•
c
◦
c)d.

3.4. One of a natural additional condition on the collection S = (H ; H1, H2, . . . , Hn)
so that the problem of unitary description of the n-tuple of subspaces of H becomes
solvable is the orthoscalar condition, which is the linear relation

∑
αkPHk

= α0I for a
fixed character χ = (α0; α1, . . . , αn), αk > 0 [17, 18, 26, 28, 15]. A remarkable property
of such collections of subspaces is that the Coxeter functors preserve the orthoscalarity
property, although changing the character, in general. Namely, if S is an orthoscalar

collection with a character χ, then
◦
F S is orthoscalar with the character

•
c (χ), and

•
F S

is orthoscalar with the character
◦
c (χ).

For n = 2 and n = 3, orthoscalar collections have a finite Hilbert type, that is, for
any fixed character there exists only a finite number of unitary nonequivalent irreducible
collections of subspaces satisfying the relation

∑
αkPHk

= α0I.
For n = 4 there are two possibilities that depend on the character. One of them is

that there exists a finite number of irreducible unitary nonequivalent such quadruples
(all of them are in a finite dimensional H , although their dimensions could increase when
changing the characters), and they can be obtained from the simplest ones by applying
the Hilbert space version of the Coxeter functors; formulas for orthogonal projections
onto the subspaces of such quadruples for χ = (γ; 1, 1, 1, 1), γ > 0, can be found in [27].
Another possibility is a quadruple of one-dimensional subspaces of a two-dimensional
space; formulas for the orthogonal projections are given in [15].

3.5. For n � 5, a description, up to unitary equivalence, of n-tuples of subspaces,

(H ; H1, H2, . . . , Hn),

such that
∑

αkPHk
= 2I is a ∗-wild problem [27]. It contains the problem of describing

triples of orthogonal projections P, Q, R such that Q⊥R,

P + (I − P ) + Q + R + (I − Q − R) = 2I.

We remark that for all γ such that γ ∈ [n−
√

n2−4n
n

, n−
√

n2+4n
n

], the problem of a unitary
description of n-tuples of subspaces satisfying the condition

∑
αkPHk

= γI is not a type
I problem, see [17, 30].

3.6. One can impose an additional condition on the orthoscalar collection

S = (H ; H1, H2, . . . , Hn), n � 5,

which would allow for a description of unitary nonequivalent irreducible collections of
subspaces. This is the condition that the subspaces of the collection make a representa-
tion of a finite partially ordered set Γ with the number of vertices |Γ| = n.

In the case where Γ is a primitive partially ordered set, that is, a partially ordered set

consisting of k not connected linearly ordered sets p
(j)
1 < p

(j)
2 < · · · < p

(j)
mi ,

∑k
i=1 mi =

n, p
(j)
i ∈ Γ, j = 1, . . . , k, a study of their representations in a Hilbert space is the same

as studying collections of subspaces (H ; {H
(j)
i }j=1,...,k

i=1,...,mj
) such that H

(j)
i ⊂ H

(j)
i+1 and

k∑

j=1

mj∑

i=1

a
(j)
i P

H
(j)
i

= I

for some fixed collection of positive numbers {a
(j)
i }j=1,...,k

i=1,...,mj
.
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Let us now consider the subspaces {U
(j)
1 = H

(j)
1 , U

(j)
2 = H

(j)
2 ⊖ H

(j)
1 , . . . , U

(j)
mj =

H
(j)
mj ⊖H

(j)
mj−1, U

(j)
0 = H ⊖H

(j)
mj}, j = 1, k, that are mutually orthogonal for fixed j. We

have that
mj∑

i=0

P
U

(j)
i

= I, j = 1, k,

k∑

j=1

mj∑

i=1

β
(j)
i P

U
(j)
i

= I,

where β
(j)
i = a

(j)
i + · · · + a

(j)
mi , i = 1, . . . , mj. It is clear that this is the same as to

consider a collection of self-adjoint operators Aj =
∑mj

i=1 β
(j)
i P

U
(j)
i

, that is, such that the

spectrum satisfies σ(Aj) ⊂ {0 < β
(mj)
i < · · · < β

(1)
i } and

∑k
j=1 Aj = I. For a study of

such operators, see [18, 33, 28, 1] and others.
The representation type of such a problem depends on the tree

� �· · · � ��· · ·��

�

...

�

. . .

︸ ︷︷ ︸ ︸ ︷︷ ︸

m1 mk

}

mj

If the tree corresponds to a Dynkin diagram, then there exists only a finite number of
unitary nonequivalent systems of operators {Aj}

k
j=1 (all of them are finite dimensional)

for any fixed collection of spectrums; if it is a Euclidean graph, which is an extended
Dynkin graph, then depending on the collection of the spectrums, that are the numbers

{β
(j)
i }j=1,...,k

i=1,...,mj
, the number of such unitary nonequivalent irreducible collections is finite

or infinite (all of them are operators on a finite dimensional space, but the dimension of H
could increase when changing the admissible spectrums). If this tree contains a Euclidean

graph as a proper subgraph, then there always exists a collection {β
(j)
i }j=1,...,k

i=1,...,mj
for which

there is an irreducible collection of infinite dimensional operators {Aj}
k
j=1.

3.7. Another additional conditions on the collection S = (H ; H1, H2, . . . , Hn) for the
problem of unitary description to become solvable is to choose a configuration of sub-

spaces with given possible collections Mij ⊂ {(0, 0), (1, 0), (0, 1), (1, 1), 0 < ϕ
(ij)
1 < ϕ

(ij)
2 <

· · · < ϕ
(ij)
mij < π

2 } of irreducible representations for pairs of subspaces Hi and Hj , i �= j,
i, j = 1, . . . , n. This is a way one obtains various generalizations of the Temperley-Lieb
algebras [8, 29] and many others.

4. Unitarization

4.1. Definition. We will say that a collection of subspaces L = (V ; V1, V2, . . . , Vn)
of a linear space V can be unitarized with a character χ = (a0; a1, . . . , an), a0 � 0,
ak > 0, 1 � k � n, if H = V can be endowed with a scalar product in such a way
that

∑n
k=1 akPHk

= a0I, where PHk
are the orthogonal projections onto Hk = Vk. It

is not difficult to show that if a collection L can be unitarized with a character χ, then
a collection L′, which is equivalent to L, can also be unitarized with the character χ.
Hence, a collection L can be unitarized with a character χ if and only if this collection
is isomorphic to an orthoscalar collection S with the character χ.

It is clear that a unitarization with a character χ = (a0; a1, . . . , an) is the same as a
unitarization with the character χ′ = (a0/γ; a1/γ, . . . , an/γ), γ > 0.

If a0 = 1, we will write the character χ = (a0; a1, . . . , an) as χ = (a1, . . . , an). Thus,
(a0; a1, . . . , an) = (a1

a0
, . . . , an

a0
).
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It follows from [15] that if an irreducible collection of subspaces of a Hilbert space is
orthoscalar, then it is brick. Hence, an indecomposable collection in a linear space can
be unitarized only if it is brick.

Similarly to [15], one can conclude that if for a fixed character χ there exists a uni-
tarization of an indecomposable collection L, then it is unique, that is, if systems of
subspaces S and S̃ are orthoscalar with the character χ and are isomorphic to L, then
S and S̃ are unitary equivalent.

In this paper we study the following problems.

1) For what brick collections there is a unitarization with some character ?
2) How to describe the characters that allow for a unitarization of a given brick

collection ?

Let us remark that statements connected with the unitarization problem are also
contained in [12, 3] and others.

4.2. It is not difficult to get an answer to the above questions for collections of n sub-
spaces if n = 2 or n = 3.

For n = 2, we have the following.

(C; 0, 0) can be unitarized with the characters (0; a1, a2), where a1 > 0, a2 > 0
are arbitrary positive numbers.
(C; C, 0) can be unitarized with the characters (a0; a1, a2), where a0 = a1,
a1 > 0, a2 > 0. For (C; 0, C), the answers are obtained by a corresponding
permutation.
(C; C, C) can be unitarized with the characters (a0; a1, a2), where a0 > 0, a1 > 0,
a2 > 0, a0 = a1 + a2.

Let n = 3. Note that if one of the subspaces of the collection is zero, then the problem
of describing the characters is reduced to the problem with fewer subspaces, since the
coefficients corresponding to the zero subspace can be chosen arbitrarily and it does not
influence the others. For example, for (C; C, C, 0), we get that a unitarization is only
possible with the characters (a0; a1, a2, a3), where ai > 0, 0 � i � 3, a0 = a1 + a2.

For n = 3 there are only two collections without zero subspaces.

(C; C, C, C) can be unitarized with the characters (a0; a1, a2, a3), where ai >
0, 0 � i � 3, a0 = a1 + a2 + a3.
(C2; C(1, 0), C(0, 1), C(1, 1)) can be unitarized with the characters (a0; a1, a2, a3),
where 0 < ai < a0, 0 � i � 3, 2a0 = a1 + a2 + a3.

4.3. In the general situation, the following propositions are useful when studying unita-
rization of n-tuples of subspaces.

Proposition 4.1. A collection of subspaces L = (V ; V1, . . . , Vn) can be unitarized with a
character χ if and only if Φ+L and Φ−L can be unitarized with the characters c−χ and
c+χ, correspondingly, with the condition that Φ+L �= 0 and Φ−L �= 0, correspondingly.

Proof. Indeed, let L be isomorphic to an orthoscalar collection S with a character χ, and
let Φ+L �= 0. Then F+S �= 0 and F+S is orthoscalar with the character c−χ. Since
F+S is isomorphic to Φ+L, we see that Φ+L can be unitarized with the character c−χ.
Similarly we obtain that Φ−L can be unitarized with the character c+χ if Φ−L �= 0. The
converse statement follows, since F+F− = F−F+ = Id . �

Proposition 4.2. If a collection of subspaces, L = (V ; V1, . . . , Vn), of a linear space
V can be unitarized with some character, then the collections L′

0 = (V ; V1, . . . , Vn, 0),
L′

1 = (V ; V1, . . . , Vn, V ), and L′ = (V ; V1, . . . , Vn, Vk), 1 � k � n, can be unitarized with
some characters.
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Proof. Let L be isomorphic to an orthoscalar collection S = (H ; H1, . . . , Hn) with a
character χ = (a1, . . . , an). Then the collection S′

0 = (H ; H1, . . . , Hn, 0) is isomor-
phic to L′

0 and is orthoscalar with the character (a1, . . . , an, 1), the collection S′
1 =

(H ; H1, . . . , Hn, H) is isomorphic to L′
1 and is orthoscalar with the character

(a1/2, . . . , an/2, 1/2),

the collection S′ = (H ; H1, . . . , Hn, Hk) is isomorphic to L′ and is orthoscalar with the
character (a1, . . . , ak/2, . . . , an, ak/2). �

Theorem 1. Let H be a linear space of finite dimension m. Let S = (H ; H1, H2, . . . , Hn)
be a brick collection of one-dimensional subspaces of H, that is, dim Hi = 1 (note that
brickness is equivalent to indecomposability in this case). Then S is unitarizable with
some character.

Proof. Let us introduce an arbitrary scalar product (·, ·)1 on H . Let T =
∑

PHk
, where

PHk
are orthogonal projections onto Hk with respect to the scalar product (·, ·)1. Since

the collection S is brick, the operator T is nondegenerate. Also, the operator T is non-
negative, being a sum of nonnegative operators. It is clear that T−1 is also nonnegative.

Define a new scalar product by (·, ·)2 = (T−1(·), ·)1. Such a definition is correct, since
T−1 is nondegenerate and nonnegative.

Let vi ∈ Hi, i = 1, n (vi �= 0). Then for all v ∈ H and all i,

PHi
(v) =

(v, vi)1
(vi, vi)1

· vi.

Let P ′
Hi

be orthogonal projections onto Hi with respect to the scalar product (·, ·)2.
Then, for all v ∈ H ,

P ′
Hi

(v) =
(v, vi)2
(vi, vi)2

· vi =
(T−1(v), vi)1

(vi, vi)2
· vi =

(vi, vi)1
(vi, vi)2

· PHi
(T−1(v)).

We see that
∑ (vi, vi)2

(vi, vi)1
· P ′

Hi
(v) =

∑

PHi
(T−1(v)) = T (T−1(v)) = v,

that is
∑ (vi, vi)2

(vi, vi)1
· P ′

Hi
= I,

which means that the collection S with the character χ = {
(vi,vi)2
(vi,vi)1

, i = 1, n} can be

unitarized. �

Theorem 2. 1) All collections of subspaces of a linear space, which are obtained
from brick collections of one-dimensional subspaces by adding its copies (see
Proposition 4.2) and by applying the Coxeter functors, can be unitarized with
some character.

2) Any brick quadruples of spaces can be unitarized with some character.

Proof. The first part of the theorem follows directly from Propositions 4.1, 4.2, and
Theorem 1.

To prove the second part, let us recall (see Section 2) that any brick quadruple has
either discrete or continuous spectrum. In the case of a discrete spectrum, the brick
quadruples are obtained from the simplest ones by applying the Coxeter functors. Since
the simplest quadruples are one-dimensional, they will be unitarizable. Hence, by Propo-
sition 4.1, all brick quadruples, in the case of a discrete spectrum, are also unitarizable.
For a continuous spectrum, all brick quadruples have the dimension (2; 1, 1, 1, 1). Hence,
they are unitarizable by Theorem 1. �
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5. A description of characters for which representations of a quadruple

of subspaces of V can be unitarized

5.1. All brick quadruples of subspaces are of only two types; the generalized dimension
is a real root (we will call this case discrete) and an imaginary root (we will call it
continuous case). In the discrete case, for every dimension there is exactly one brick
quadruple. All possible dimensions in this case can be written as follows:

D4(2m + 1,−1) = (2m + 1; m, m, m, m + 1), def = −1,
D4(2m + 1, 1) = (2m + 1; m + 1, m + 1, m + 1, m), def = 1,
D4(2m,−1) = (2m; m, m, m, m− 1), def = −1,
D4(2m, 1) = (2m; m, m, m, m + 1), def = 1,

and permutations of the spaces Di(·, ·), i = 1, 2, 3;

D0(2m + 1,−2) = (2m + 1; m, m, m, m), def = −2,
D0(2m, 2) = (2m + 1; m + 1, m + 1, m + 1, m + 1), def = 2.

Theorem 3. Conditions on the character such that every brick quadruple can be unita-
rized in the discrete case can be written as follows:

D4(2m + 1,−1) : m · def(a) + ai > 0, i = 1, 4, m · def(a) = a4 − a0, where
def(a) = 2a0 − a1 − a2 − a3 − a4,
D4(2m + 1, 1) : ai − m · def(a) > 0, i = 1, 4, (m + 1) · def(a) + a4 − a0 = 0,
D4(2m,−1) : (m − 1) · def(a) + a0 − ai > 0, i = 1, 4, m · def(a) + a4 = 0,
D4(2m, 1) : a0 − ai − m · def(a) > 0, i = 1, 4, m · def(a) = a4,
D0(4m + 1,−2) : m · def(a) + ai > 0, i = 1, 4, 2m · def(a) + a0 = 0,
D0(4m + 1, 2) : ai − m · def(a) > 0, i = 1, 4, a0 − (2m + 1) · def(a) = 0,
D0(4m + 3,−2) : m · def(a) + a0 − ai > 0, i = 1, 4, (2m + 1) · def(a) + a0 = 0,
D0(4m + 3, 2) : a0 − ai − m · def(a) > 0, i = 1, 4, a0 − (2m + 2) · def(a) = 0.

Proof. Using
◦
c and

•
c we can write that

D4(2m + 1,−1) = (
•
c
◦
c)

2m

D4(1,−1),

D4(2m + 1, 1) = (
•
c
◦
c)

2m •
c D4(1,−1),

D4(2m,−1) = (
•
c
◦
c)

2m−1
D4(1,−1),

D4(2m, 1) = (
•
c
◦
c)

2m−1 •
c D4(1,−1),

D0(2m + 1,−2) = (
•
c
◦
c)

m

D0(1,−2),

D0(2m + 1, 2) = (
•
c
◦
c)

m •
c D0(1,−2).

Properties of Coxeter functors show that if there exists a brick collection of subspaces of
dimension d, which can be unitarized with a character χ = (a0; a1, a2, a3, a4), then there

exists a brick collection of subspaces with the dimension
•
c (d), which can be unitarized

with the character
◦
c (χ), as well as a brick collection of subspaces with the dimension

◦
c (d), unitarizable with the character

•
c (χ). Thus, knowing the characters that permit the

simplest quadruples to be unitarized, we can find the characters allowing a unitarization
of other quadruples in the discrete case.

It is clear that a quadruple with the dimension D4(1,−1) = (1; 0, 0, 0, 1) can be unita-
rized with χ4 = (a0; a1, a2, a3, a4) if and only if a0 = a4, ai > 0, i = 0, 4; a quadruple with
the dimension D0(1,−2) = (1; 0, 0, 0, 0) can be unitarized with χ1 = (a0; a1, a2, a3, a4) if
and only if a0 = 0, ai > 0, i = 1, 4.
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We get, for example, that for the dimension D4(2m + 1,−1) = (
•
c
◦
c)

2m

D4(1,−1), a

collection of subspaces can be unitarized with a character χ if and only if χ = (
◦
c
•
c)

2m

χ4.
In other words, if χ is a character that allows for a unitarization of a quadruple with the

dimension (
•
c
◦
c)

2m

D4(1,−1), then (
•
c
◦
c)

2m

χ and χ4 must satisfy the same conditions.
It is not difficult to calculate that (see [26, 28])

(
•
c
◦
c)

2m

(a0; a1, a2, a3, a4) = (2m · def(a) + a0; m · def(a) + a1, m · def(a) + a2,

m · def(a) + a3, m · def(a) + a4),

(
•
c
◦
c)

2m •
c (a0; a1, a2, a3, a4) = (2m · def(a) + a0; m · def(a) + a0 − a1,

m · def(a) + a0 − a2, m · def(a) + a0 − a3, m · def(a) + a0 − a4),

(
•
c
◦
c)

2m+1
(a0; a1, a2, a3, a4) = ((2m + 1) · def(a) + a0; m · def(a) + a0 − a1,

m · def(a) + a0 − a2, m · def(a) + a0 − a3, m · def(a) + a0 − a4),

(
•
c
◦
c)

2m+1 •
c (a0; a1, a2, a3, a4) = ((2m + 1) · def(a) + a0; (m + 1) · def(a) + a1,

(m + 1) · def(a) + a2, (m + 1) · def(a) + a3, (m + 1) · def(a) + a4),

◦
c (

•
c
◦
c)

2m

(a0; a1, a2, a3, a4) = (a0 − (2m + 1) · def(a); a1 − m · def(a),

a2 − m · def(a), a3 − m · def(a), a4 − m · def(a)),

◦
c (

•
c
◦
c)

2m+1
(a0; a1, a2, a3, a4) = (a0 − (2m + 2) · def(a); a0 − a1 − (m + 1) · def(a),

a0 − a2 − (m + 1) · def(a), a0 − a3 − (m + 1) · def(a),

a0 − a4 − (m + 1) · def(a)).

By using these formulas and the conditions on the character that allow for a unitarization
of the simplest quadruples D4(1,−1) and D0(1,−2), we obtain conditions on the character
for other collections. �

Let us remark that similar considerations were used in [16], although for a different
purpose.

Also note that Theorem 3 shows that any brick quadruple with the character
(γ; 1, 1, 1, 1) can be unitarized in the discrete case, which was proved in [23]. Namely, for
a quadruple of dimension d = (d0; d1, d2, d3, d4), one should take γ = 2 − def(d)/d0. A
simple check shows that the conditions of Theorem 3 are satisfies.

5.2. Let us consider the continuous case. Here, brick collections exist only for the di-
mension (2; 1, 1, 1, 1). There is a series of quadruples parametrized with µ ∈ C \ {0, 1},

Sµ = (< e1, e2 >; < e1 >, < e2 >, < e1 + µe2 >, < e1 + e2 >),

and six degenerate quadruples,

S3,4 = (< e1, e2 >; < e1 >, < e2 >, < e1 + e2 >, < e1 + e2 >),

and Si,j obtained by permutation of the subspaces.

Theorem 4. a) The degenerate representation of S3,4 can be unitarized with the
character χ = (a0; a1, a2, a3, a4) if a3 + a4 < a0, a1 < a0, a2 < a0, 2a0 =
a1 + a2 + a3 + a4, ai > 0.

b) All nondegenerate representations can be unitarized with χ = (a0; a1, a2, a3, a4)
if and only if

2a0 =
4∑

j=1

aj , 0 < ai < a0, 2ai <
4∑

j=1

aj , i = 1, 4.
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Proof. a) Clearly, the degenerate representation of S3,4 can be unitarized with the char-
acter χ = (a0; a1, a2, a3, a4) if and only if the representation of the triple of subspaces,
(< e1, e2 >; < e1 >, < e2 >, < e1 + e2 >), can be unitarized with the character
(a0; a1, a2, a3+a4), that is, if a3+a4 < a0, a1 < a0, a2 < a0, 2a0 = a1+a2+a3+a4, ai >
0.

b) It is clear that the conditions imposed on the character are necessary (condition
2a0 = a1 +a2 +a3 +a4 obtained by taking the trace of a1P1 +a2P2 +a3P3 +a4P4 = a0I).
Let us prove that they are sufficient.

The proof is similar to considerations in [21]. Fix a1 � a2 � a3 � a4, a1+a2+a3+a4 =
2, and use the formulas obtained in [15] for solving the equation a1P1 + a2P2 + a3P3 +
a4P4 = I in the dimension (2; 1, 1, 1, 1), where Pi are orthogonal projections,

P1 =
1

2a1λ

(
(λ − A)(λ + B)

√

−(λ2 − A2)(λ2 − B2)
√

−(λ2 − A2)(λ2 − B2) −(λ + A)(λ − B)

)

,

P2 =
1

2a2λ

(
−(λ − D)(λ + C) eix

√

−(λ2 − D2)(λ2 − C2)

e−ix
√

−(λ2 − D2)(λ2 − C2) (λ + D)(λ − C)

)

,

P3 =
1

2a3λ

(
−(λ − D)(λ − C) −eix

√

−(λ2 − D2)(λ2 − C2)

−e−ix
√

−(λ2 − D2)(λ2 − C2) (λ + D)(λ + C)

)

,

P4 =
1

2a4λ

(
(λ + A)(λ + B) −

√

−(λ2 − A2)(λ2 − B2)

−
√

−(λ2 − A2)(λ2 − B2) −(λ − A)(λ − B)

)

,

A � λ � min(B, D), 0 � x < 2π, where A = (a4 − a1)/2, B = (a4 + a1)/2, C =
(a3 − a2)/2, D = (a3 + a2)/2.

If A = 0, then a1 = a2 = a3 = a4 = 1
2 . This case was considered in [23], where, in

particular, it was shown that any brick quadruple can be unitarized in the continuous
case with the character (2; 1, 1, 1, 1). So, we assume that A > 0.

Let us show that (Im P1, Im P2, Im P3, Im P4) give all brick nondegenerate quadruples
of the dimension (2; 1, 1, 1, 1) when λ and x are changing.

Denote

K1 =

√

(λ + A)(B − λ)

(λ − A)(B + λ)
, K2 =

√

(λ − C)(D + λ)

(λ + C)(D − λ)
, K3 =

λ + C

λ − C
K2,

K4 =
λ − A

λ + A
K1.

Then we have

Im P1 =< e1 + K1e2 >, Im P2 =< e1 + e−ixK2e2 >,

Im P3 =< e1 − e−ixK3e2 >, Im P4 =< e1 − K4e2 > .

If Pi �= Pj , i �= j, this system will be isomorphic to the system

(< e1, e2 >; < e1 >, < e2 >, < e1 + µe2 >, < e1 + e2 >),

where

µ =
1

(K1 + K4)(K2 + K3)
(K1K2 + K3K4 + K1K4e

ix + K2K3e
−ix).

Substituting, we get

µ =
1

2
−

AC

2λ2
+

1

4λ2
K1K

−1
2 (λ − A)(λ − C)eix +

1

4λ2
K−1

1 K2(λ + A)(λ + C)e−ix

=
1

2
−

AC

2λ2
+

1

4λ2

√

(λ2 − A2)(λ2 − C2)
(√

(B−λ)(D−λ)
(B+λ)(D+λ)e

−ix +
√

(B+λ)(D+λ)
(B−λ)(D−λ)e

ix
)

.
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For a fixed λ, we have that µ, considered as a function of x, is an ellipse in C. If λ
increases to min(B, D), then this ellipse extends to infinity. If λ approaches A, then the
ellipse contracts to the point (1

2 − C
2A

). Thus µ can be made arbitrary distinct from 0
and 1 when varying λ and x. �

Remark. Let us remark that the conditions on the character in part b), Theorem 4, do
not depend on the parameter µ, that is, all Sµ, µ ∈ C \ {0, 1}, can be unitarized with
the same characters.

Acknowledgments. The authors are grateful to the referee of the article for useful
suggestions and remarks.
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