INTEGRAL REPRESENTATIONS FOR SPECTRAL FUNCTIONS OF SOME NONSELF-ADJOINT JACOBI MATRICES

S. M. ZAGORODNYUK

Abstract

We study a Jacobi matrix J with complex numbers $a_{n}, n \in \mathbb{Z}_{+}$, in the main diagonal such that $r_{0} \leq \operatorname{Im} a_{n} \leq r_{1}, r_{0}, r_{1} \in \mathbb{R}$. We obtain an integral representation for the (generalized) spectral function of the matrix J. The method of our study is similar to Marchenko's method for nonself-adjoint differential operators.

1. Introduction

The main object of our present investigation will be a three-diagonal semi-infinite complex number matrix of the following form:

$$
J=\left(\begin{array}{ccccc}
a_{0} & b_{0} & 0 & 0 & \ldots \tag{1}\\
b_{0} & a_{1} & b_{1} & 0 & \ldots \\
0 & b_{1} & a_{2} & b_{2} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right),
$$

where $b_{n}>0$, and

$$
\begin{equation*}
a_{n} \in \mathbb{C}: r_{0} \leq \operatorname{Im} a_{n} \leq r_{1}, \tag{2}
\end{equation*}
$$

for some $r_{0}, r_{1} \in \mathbb{R}, n \in \mathbb{Z}_{+}$.
Thus, in the case $r_{0}=r_{1}=0$ we obtain the classical Jacobi matrix. The spectral theory of Jacobi matrices is classic, see [1], [2], [3]. For the Jacobi matrix J, there is a corresponding non-decreasing function $\sigma(x), x \in \mathbb{R}$, which is called a spectral function. The procedure of a construction of $\sigma(x)$ provides a solution of the direct spectral problem for J. The inverse spectral problem is to reconstruct J from σ. The corresponding procedure is well-known and simple.

Recently, we have introduced a notion of a spectral function for some nonself-adjoint semi-infinite banded matrices, see [4], [5]. The spectral function is a bilinear (that means linear with respect to the both arguments) functional $\sigma(u, v), u, v \in \mathbb{P}$, defined on a set of complex polynomials \mathbb{P}. We will use methods which were applied by Marchenko to some nonself-adjoint Sturm-Liouville operators (see [6]) and obtain an integral representation for the spectral function $\sigma(u, v)$ of the matrix J from (1).

Notations. As usual, we denote by $\mathbb{R}, \mathbb{C}, \mathbb{N}, \mathbb{Z}, \mathbb{Z}_{+}$the sets of real, complex, positive integer, integer, non-negative integer numbers, respectively. By \mathbb{P} we denote the set of all polynomials with complex coefficients. By l^{2} we denote a space of vectors $x=$ $\left(x_{0}, x_{1}, x_{2}, \ldots\right), x_{n} \in \mathbb{C}, n \in \mathbb{Z}_{+}$, such that $\|x\|:=\left(\sum_{n=0}^{\infty}\left|x_{n}\right|^{2}\right)^{\frac{1}{2}}<\infty$. By $l_{\text {fin }}^{2}$ we denote a subset of l^{2} which consists of finite vectors, i.e., vectors $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$, $x_{n} \in \mathbb{C}, n \in \mathbb{Z}_{+}$, with only a finite number of nonzero elements x_{n}.

2000 Mathematics Subject Classification. Primary 47B36; Secondary 47B39, 39A70.
Key words and phrases. Jacobi matrix, semi-infinite matrix, spectral function, difference equation.

2. Polynomials of the first and of the second kinds

Let J be the semi-infinite matrix from (1), (2). Consider the following difference equations:

$$
\begin{gather*}
a_{0} y_{0}+b_{0} y_{1}=\lambda y_{0} \tag{3}\\
b_{n-1} y_{n-1}+a_{n} y_{n}+b_{n} y_{n+1}=\lambda y_{n}, \quad n \in \mathbb{N} \tag{4}
\end{gather*}
$$

where y_{n} are unknowns and λ is a complex parameter.
By $P_{n}(\lambda), n \in \mathbb{Z}_{+}$, we denote a solution of (3), (4) with the initial condition $P_{0}=1$.
Polynomials $P_{n}(\lambda)$ we will call polynomials of the first kind. Denote by $Q_{n}(\lambda), n \in \mathbb{Z}_{+}$, a solution of (4) with the initial conditions $Q_{0}=0, Q_{1}=\frac{1}{b_{0}}$. Polynomials $Q_{n}(\lambda)$ we will call polynomials of the second kind.

If we write relation (4) for P_{n} and then multiply it by Q_{n}, we will get

$$
\begin{equation*}
b_{n-1} P_{n-1} Q_{n}+a_{n} P_{n} Q_{n}+b_{n} P_{n+1} Q_{n}=\lambda P_{n} Q_{n}, \quad n \in \mathbb{N} \tag{5}
\end{equation*}
$$

In a similar manner we will get

$$
\begin{equation*}
b_{n-1} Q_{n-1} P_{n}+a_{n} Q_{n} P_{n}+b_{n} Q_{n+1} P_{n}=\lambda Q_{n} P_{n}, \quad n \in \mathbb{N} \tag{6}
\end{equation*}
$$

Subtract (6) from (5) to get

$$
b_{n-1}\left(P_{n-1} Q_{n}-P_{n} Q_{n-1}\right)=b_{n}\left(P_{n} Q_{n+1}-P_{n+1} Q_{n}\right), \quad n \in \mathbb{N}
$$

Using the initial conditions we obtain

$$
\begin{equation*}
P_{n-1}(\lambda) Q_{n}(\lambda)-P_{n}(\lambda) Q_{n-1}(\lambda)=\frac{1}{b_{n-1}}, \quad n \in \mathbb{N} \tag{7}
\end{equation*}
$$

We will use relation (7) in the sequel.
Proposition 1. Let $y_{n}=y_{n}(\lambda), n \in \mathbb{Z}_{+}$, be an arbitrary solution of difference equation (4). The following relation holds true:

$$
\begin{gather*}
\sum_{j=1}^{n-1}\left(\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right)\left|y_{j}(\lambda)\right|^{2}=b_{n-1} \operatorname{Im}\left(y_{n-1}(\lambda) \overline{y_{n}(\lambda)}\right)-b_{0} \operatorname{Im}\left(y_{0}(\lambda) \overline{y_{1}(\lambda)}\right) \tag{8}\\
n=2,3, \ldots
\end{gather*}
$$

Proof. Set $\widehat{a}_{n}=\widehat{a}_{n}(\lambda)=a_{n}-\lambda, n \in \mathbb{N}$, and rewrite relation (4) in the following form:

$$
\begin{equation*}
b_{n-1} y_{n-1}+\widehat{a}_{n} y_{n}+b_{n} y_{n+1}=0, \quad n \in \mathbb{N} \tag{9}
\end{equation*}
$$

Apply the complex conjugation to the both sides of (9) to get

$$
\begin{equation*}
b_{n-1} \overline{y_{n-1}}+\overline{\widehat{a}_{n}} \overline{y_{n}}+b_{n} \overline{y_{n+1}}=0, \quad n \in \mathbb{N} \tag{10}
\end{equation*}
$$

Multiply relation (9) by $\overline{y_{n}}$, relation (10) by y_{n}, and then subtract to obtain

$$
\begin{equation*}
b_{n-1}\left(y_{n-1} \overline{y_{n}}-\overline{y_{n-1}} y_{n}\right)+\left(\widehat{a}_{n}-\overline{\widehat{a}_{n}}\right) y_{n} \overline{y_{n}}+b_{n}\left(y_{n+1} \overline{y_{n}}-\overline{y_{n+1}} y_{n}\right)=0, \quad n \in \mathbb{N} \tag{11}
\end{equation*}
$$

Set

$$
A_{n}=A_{n}(\lambda)=b_{n}\left(y_{n} \overline{y_{n+1}}-\overline{y_{n}} y_{n+1}\right)=b_{n} 2 i \operatorname{Im}\left(y_{n} \overline{y_{n+1}}\right), \quad n \in \mathbb{Z}_{+}
$$

Then we can write

$$
\begin{equation*}
\left(\widehat{a}_{n}-\overline{\widehat{a}_{n}}\right) y_{n} \overline{y_{n}}=A_{n}-A_{n-1}, \quad n \in \mathbb{N} \tag{12}
\end{equation*}
$$

Summing up we obtain
(13) $\sum_{j=1}^{n-1}\left(\widehat{a}_{j}-\overline{\widehat{a}_{j}}\right) y_{j} \overline{y_{j}}=A_{n-1}-A_{0}=2 i b_{n-1} \operatorname{Im}\left(y_{n-1} \overline{y_{n}}\right)-2 i b_{0} \operatorname{Im}\left(y_{0} \overline{y_{1}}\right), \quad n=2,3, \ldots$

Therefore relation (8) is true.

Corollary 1. Let $P_{n}(\lambda)$ and $Q_{n}(\lambda), n \in \mathbb{Z}_{+}$, be polynomials of the first and of the second kinds for difference equations (3), (4), respectively. Polynomials $P_{n}(\lambda)$ satisfy the following relation:

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right)\left|P_{j}(\lambda)\right|^{2}=b_{n-1} \operatorname{Im}\left(P_{n-1}(\lambda) \overline{P_{n}(\lambda)}\right), \quad n \in \mathbb{N} \tag{14}
\end{equation*}
$$

Choose an arbitrary $w \in \mathbb{C}$ and consider the polynomials

$$
\begin{equation*}
\Psi_{n}(\lambda, w)=w P_{n}(\lambda)+Q_{n}(\lambda), \quad n \in \mathbb{Z}_{+} . \tag{15}
\end{equation*}
$$

The polynomials $\Psi_{n}(\lambda, w)$ satisfy the following relation:
(16) $\quad \sum_{j=0}^{n-1}\left(\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right)\left|\Psi_{j}(\lambda, w)\right|^{2}=b_{n-1} \operatorname{Im}\left(\Psi_{n-1}(\lambda, w) \overline{\Psi_{n}(\lambda, w)}\right)-\operatorname{Im} w, \quad n \in \mathbb{N}$.

Proof. To obtain relations (14), (16) for $n \geq 2$, it is sufficient to write relation (8) for the polynomials $P_{n}(\lambda)$ and $\Psi_{n}(\lambda, w)$, respectively, and to use the initial conditions. For the case $n=1$ relations (14), (16) can be verified using the initial conditions.

Set

$$
\begin{equation*}
\Pi=\Pi\left(r_{0}, r_{1}\right)=\left\{\lambda \in \mathbb{C}: r_{0} \leq \operatorname{Im} \lambda \leq r_{1}\right\} . \tag{17}
\end{equation*}
$$

Corollary 2. Let $P_{n}(\lambda), n \in \mathbb{Z}_{+}$, be polynomials of the first kind for difference equations (3), (4). The roots of polynomials $P_{n}(\lambda)$ lie in the strip $\Pi\left(r_{0}, r_{1}\right)$.

Proof. For an arbitrary root $\lambda_{0} \in \mathbb{C}$ of $P_{n-1}(\lambda), n=2,3, \ldots$, by (14) we obtain

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(\operatorname{Im} a_{j}-\operatorname{Im} \lambda_{0}\right)\left|P_{j}\left(\lambda_{0}\right)\right|^{2}=0 \tag{18}
\end{equation*}
$$

Suppose that $\operatorname{Im} \lambda_{0}>r_{1}$. By (2) we obtain

$$
\operatorname{Im} a_{j}-\operatorname{Im} \lambda_{0}<0, \quad j \in \mathbb{Z}_{+}
$$

Then (18) leads to a contradiction since $P_{0}=1$. If we suppose that $\operatorname{Im} \lambda_{0}<r_{0}$, we will get

$$
\operatorname{Im} a_{j}-\operatorname{Im} \lambda_{0}>0, \quad j \in \mathbb{Z}_{+}
$$

That contradicts relation (18) as well.

3. Weyl's discs

Like in the classical case (see [1]), an important role in our further considerations will play the following function:

$$
\begin{equation*}
w_{n}(\lambda, \tau)=-\frac{Q_{n}(\lambda)-\tau Q_{n-1}(\lambda)}{P_{n}(\lambda)-\tau P_{n-1}(\lambda)} \tag{19}
\end{equation*}
$$

where $\lambda, \tau \in \mathbb{C}, n \in \mathbb{N}\left(P_{n}, Q_{n}\right.$ are polynomials of the first and of the second kinds for difference equations (3), (4)). We set

$$
\begin{gather*}
\Pi_{+}=\Pi_{+}\left(r_{1}\right)=\left\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda>r_{1}\right\}, \quad \Pi_{-}=\Pi_{-}\left(r_{0}\right)=\left\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda<r_{0}\right\} \tag{20}\\
\Pi_{0}=\Pi_{0}\left(r_{0}, r_{1}\right)=\Pi_{+}\left(r_{1}\right) \cup \Pi_{-}\left(r_{0}\right)
\end{gather*}
$$

1) Choose an arbitrary $\lambda \in \Pi_{+}\left(r_{1}\right)$ and $n \in \mathbb{N}$. By virtue of Corollary 2, relations (14) and (2) we get

$$
b_{n-1} \operatorname{Im}\left(P_{n-1}(\lambda) \overline{P_{n}(\lambda)}\right)=b_{n-1}\left|P_{n-1}(\lambda)\right|^{2} \operatorname{Im}\left(\overline{\left(\frac{P_{n}(\lambda)}{P_{n-1}(\lambda)}\right)}\right)<0
$$

Thus, we have

$$
\begin{equation*}
\operatorname{Im}\left(\frac{P_{n}(\lambda)}{P_{n-1}(\lambda)}\right)>0 \tag{22}
\end{equation*}
$$

So, a pole of the map $w_{n}(\lambda, \tau)$ (for the fixed $\lambda \in \Pi_{+}, n \in \mathbb{N}$) lies in the upper half-plane $\mathbb{C}_{+}^{\prime}=\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda>0\}$. In particular, this means that the real line \mathbb{R} is mapped on a circle $C_{n}(\lambda)$ in the w-plane (the complex plane of the variable w). The lower half-plane $\mathbb{C}_{-}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau \leq 0\}$ is mapped on a disc $D_{n}(\lambda)$. The inverse map for $w_{n}(\lambda, \tau)$ has the following form:

$$
\begin{equation*}
\tau_{n}(\lambda, w)=\frac{w P_{n}(\lambda)+Q_{n}(\lambda)}{w P_{n-1}(\lambda)+Q_{n-1}(\lambda)}=\frac{\Psi_{n}(\lambda, w)}{\Psi_{n-1}(\lambda, w)} \tag{23}
\end{equation*}
$$

For an arbitrary $w \in \mathbb{C}: \Psi_{n-1}(\lambda, w) \neq 0$ (this means that $w \neq-\frac{Q_{n-1}(\lambda)}{P_{n-1}(\lambda)}$) by virtue of relation (16) we can write

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right)\left|\Psi_{j}(\lambda, w)\right|^{2}=-b_{n-1}\left|\Psi_{n-1}(\lambda)\right|^{2} \operatorname{Im}\left(\frac{\Psi_{n}(\lambda, w)}{\Psi_{n-1}(\lambda)}\right)-\operatorname{Im} w . \tag{24}
\end{equation*}
$$

In our case we have $\operatorname{Im} a_{j}-\operatorname{Im} \lambda<0, j \in \mathbb{Z}_{+}$. Therefore

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right|\left|\Psi_{j}(\lambda, w)\right|^{2}=\operatorname{Im} w+b_{n-1}\left|\Psi_{n-1}(\lambda)\right|^{2} \operatorname{Im} \tau_{n}(\lambda, w) \tag{25}
\end{equation*}
$$

From the last relation and relation (16) for the case $w=-\frac{Q_{n-1}(\lambda)}{P_{n-1}(\lambda)}$, we see that the disc $D_{n}(\lambda)$ consists of $w \in \mathbb{C}$ such that

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| \Psi_{j}(\lambda, w)\right|^{2} \leq \operatorname{Im} w \tag{26}
\end{equation*}
$$

From relation (26) it follows that

$$
\begin{equation*}
D_{n+1}(\lambda) \subseteq D_{n}(\lambda), \quad n \in \mathbb{N}, \quad \lambda \in \Pi_{+} \tag{27}
\end{equation*}
$$

Hence, there exists a non-empty intersection $D_{\infty}(\lambda)=\cap_{j \in \mathbb{N}} D_{j}(\lambda)$. From relation (26) it follows that $D_{\infty}(\lambda)$ consists of $w \in \mathbb{C}$ such that

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| \Psi_{j}(\lambda, w)\right|^{2} \leq \operatorname{Im} w \tag{28}
\end{equation*}
$$

2) Choose an arbitrary $\lambda \in \Pi_{-}\left(r_{0}\right)$ and $n \in \mathbb{N}$. Reasoning similarly, we obtain that

$$
\begin{equation*}
\operatorname{Im}\left(\frac{P_{n}(\lambda)}{P_{n-1}(\lambda)}\right)<0 \tag{29}
\end{equation*}
$$

A pole of the map $w_{n}(\lambda, \tau)$ lies in the lower half-plane $\mathbb{C}_{-}^{\prime}=\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda<0\}$. The real line is mapped on a circle $C_{n}(\lambda)$ and the upper half-plane $\mathbb{C}_{+}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau \geq 0\}$ is mapped on a disc $D_{n}(\lambda)$. For $w \in \mathbb{C}: \Psi_{n-1}(\lambda, w) \neq 0$, by virtue of relation (16) we can write relation (24). In our case we have $\operatorname{Im} a_{j}-\operatorname{Im} \lambda>0, j \in \mathbb{Z}_{+}$, therefore

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right|\left|\Psi_{j}(\lambda, w)\right|^{2}=-\operatorname{Im} w-b_{n-1}\left|\Psi_{n-1}(\lambda)\right|^{2} \operatorname{Im} \tau_{n}(\lambda, w) \tag{30}
\end{equation*}
$$

From relation (15) and relation (16) for the case $w=-\frac{Q_{n-1}(\lambda)}{P_{n-1}(\lambda)}$, we see that the disc $D_{n}(\lambda)$ consists of $w \in \mathbb{C}$ such that

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| \Psi_{j}(\lambda, w)\right|^{2} \leq-\operatorname{Im} w \tag{31}
\end{equation*}
$$

From relation (31) it follows that

$$
\begin{equation*}
D_{n+1}(\lambda) \subseteq D_{n}(\lambda), \quad n \in \mathbb{N}, \quad \lambda \in \Pi_{+} \tag{32}
\end{equation*}
$$

Thus, there exists a non-empty intersection $D_{\infty}(\lambda)=\cap_{j \in \mathbb{N}} D_{j}(\lambda)$. From relation (31) it follows that $D_{\infty}(\lambda)$ consists of $w \in \mathbb{C}$ such that

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right|\left|\Psi_{j}(\lambda, w)\right|^{2} \leq-\operatorname{Im} w \tag{33}
\end{equation*}
$$

The radius of $C_{n}(\lambda)$ is denoted by $r_{n}(\lambda), \lambda \in \Pi_{0}$. We will need an analytic expression for $r_{n}(\lambda)$.

Proposition 2. Let $\lambda \in \Pi_{0}$ and $n \in \mathbb{N}$. The radius of the circle $D_{n}(\lambda)$ is equal to

$$
\begin{equation*}
r_{n}(\lambda)=\frac{1}{b_{n-1}\left|P_{n}(\lambda) \overline{P_{n-1}(\lambda)}-P_{n-1}(\lambda) \overline{P_{n}(\lambda)}\right|}=\frac{1}{2 \sum_{j=0}^{n-1}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| P_{j}(\lambda)\right|^{2}} \tag{34}
\end{equation*}
$$

Proof. To obtain the first equality in (34), one repeats the standard arguments from the proof of Theorem 1.2.3 in [1]. The second equality follows from relation (14).

Consider a sequence of functions,

$$
\widehat{w}_{n}(\lambda):=w_{n}(\lambda, 0)=-\frac{Q_{n}(\lambda)}{P_{n}(\lambda)}, \quad \lambda \in \Pi_{0}\left(r_{0}, r_{1}\right), \quad n \in \mathbb{N} .
$$

Notice that $\widehat{w}_{n}(\lambda) \in D_{n}(\lambda), n \in \mathbb{N}, \lambda \in \Pi_{0}$. Hence, using relations (26), (31) we can write

$$
\begin{aligned}
\left|\widehat{w}_{n}(\lambda)\right|^{2} & =\left|\widehat{w}_{n}(\lambda) P_{0}(\lambda)+Q_{0}(\lambda)\right|^{2} \leq \sum_{j=0}^{n-1} \frac{\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right|}{\left|\operatorname{Im} a_{0}-\operatorname{Im} \lambda\right|}\left|\widehat{w}_{n}(\lambda) P_{j}(\lambda)+Q_{j}(\lambda)\right|^{2} \\
& \leq \frac{\left|\operatorname{Im} \widehat{w}_{n}(\lambda)\right|}{\left|\operatorname{Im} a_{0}-\operatorname{Im} \lambda\right|} \leq \frac{\left|\widehat{w}_{n}(\lambda)\right|}{\left|\operatorname{Im} a_{0}-\operatorname{Im} \lambda\right|} .
\end{aligned}
$$

Consequently, we obtain

$$
\begin{equation*}
\left|\widehat{w}_{n}(\lambda)\right| \leq \frac{1}{\left|\operatorname{Im} a_{0}-\operatorname{Im} \lambda\right|}, \quad \lambda \in \Pi_{0}, \quad n \in \mathbb{N} \tag{35}
\end{equation*}
$$

Thus, in any compact subset of Π_{0}, the sequence of functions $\widehat{w}_{n}(\lambda)$ is uniformly bounded. The functions $\widehat{w}_{n}(\lambda)$ are analytic in Π_{0} as it follows from Corollary 2. By virtue of Montel's theorem (see [7]) we can assert that there exists a subsequence $\widehat{w}_{n_{k}}(\lambda), k \in \mathbb{N}$, which is uniformly convergent to a function $m(\lambda)$ in Π_{0}. The function $m(\lambda)$ is analytic by Weierstrass's theorem. Passing to the limit in (35) with $n=n_{k}, k \rightarrow \infty$, we obtain

$$
\begin{equation*}
|m(\lambda)| \leq \frac{1}{\left|\operatorname{Im} a_{0}-\operatorname{Im} \lambda\right|}, \quad \lambda \in \Pi_{0} \tag{36}
\end{equation*}
$$

Observe that $m(\lambda) \in D_{n}(\lambda)$ for any $n \in \mathbb{N}$, and therefore

$$
\begin{equation*}
m(\lambda) \in D_{\infty}(\lambda), \quad \lambda \in \Pi_{0} \tag{37}
\end{equation*}
$$

For an arbitrary $\varepsilon>0$ we set

$$
\Pi_{0, \varepsilon}=\Pi_{0, \varepsilon}\left(r_{0}, r_{1}\right)=\left\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda \leq r_{0}-\varepsilon\right\} \cup\left\{\lambda \in \mathbb{C}: \operatorname{Im} \lambda \geq r_{1}+\varepsilon\right\} .
$$

Proposition 3. For the function $m(\lambda)$ the following relation holds true:

$$
\begin{equation*}
m(\lambda) \rightarrow 0, \quad \lambda \rightarrow \infty, \quad \lambda \in \Pi_{0, \varepsilon}, \quad \varepsilon>0 \tag{38}
\end{equation*}
$$

Proof. Since $m(\lambda) \in D_{n}(\lambda), \widehat{w}_{n}(\lambda) \in D_{n}(\lambda), n \in \mathbb{N}, \lambda \in \Pi_{0}$, we can write

$$
\begin{equation*}
\left|m(\lambda)+\frac{Q_{n}(\lambda)}{P_{n}(\lambda)}\right| \leq 2 r_{n}(\lambda), \quad \lambda \in \Pi_{0, \varepsilon}, \quad \varepsilon>0, \quad n \in \mathbb{N} \tag{39}
\end{equation*}
$$

From relation (34) we see that

$$
\left|r_{n}(\lambda)\right| \leq \frac{1}{2\left|\operatorname{Im} a_{1}-\operatorname{Im} \lambda \| P_{1}(\lambda)\right|^{2}} \leq \frac{b_{0}^{2}}{2 \varepsilon\left|\lambda-a_{0}\right|^{2}}, \quad \lambda \in \Pi_{0, \varepsilon}, \quad n=2,3, \ldots
$$

Thus, for any fixed $n, n=2,3, \ldots$, we obtain

$$
r_{n}(\lambda) \rightarrow 0, \quad \lambda \rightarrow \infty, \quad \lambda \in \Pi_{0, \varepsilon}
$$

Passing to the limit in relation (39) we see that

$$
m(\lambda)+\frac{Q_{n}(\lambda)}{P_{n}(\lambda)} \rightarrow 0, \quad \lambda \rightarrow \infty, \quad \lambda \in \Pi_{0, \varepsilon}
$$

It remains to notice that

$$
\frac{Q_{n}(\lambda)}{P_{n}(\lambda)} \rightarrow 0, \quad \lambda \rightarrow \infty
$$

since $\operatorname{deg} Q_{n}=n-1, \operatorname{deg} P_{n}=n$.
The following theorem is valid.
Theorem 1. Difference equation (4) has a solution $y_{n}=m(\lambda) P_{n}(\lambda)+Q_{n}(\lambda), n \in \mathbb{Z}_{+}$, which belongs to l^{2} for any $\lambda \in \Pi_{0}$.

Proof. Since the function $m(\lambda), \lambda \in \Pi_{0}$, belongs to the disc $D_{\infty}(\lambda)$, from relations (28), (33) it follows that

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| m(\lambda) P_{j}(\lambda)+Q_{j}(\lambda)\right|^{2}<\infty \tag{40}
\end{equation*}
$$

Since $\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right| \geq \operatorname{Im} \lambda-r_{1}>0, \lambda \in \Pi_{+}$, and $\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right| \geq r_{0}-\operatorname{Im} \lambda>0, \lambda \in \Pi_{-}$, the result follows.

4. The spectral function

Let J be the semi-infinite matrix from (1), (2). Observe that it is a matrix that is complex symmetric (with respect to the transposition). Let $\left\{P_{n}(\lambda)\right\}_{n \in \mathbb{Z}_{+}},\left\{Q_{n}(\lambda)\right\}_{n \in \mathbb{Z}_{+}}$ be the defined above solutions of the corresponding difference equations (3),(4). Recall (see [4, p. 474]) that a linear with respect to the both arguments functional $\sigma(u, v), u, v \in$ \mathbb{P}, is called a spectral function of difference equations (3),(4) if it satisfies relations

$$
\begin{equation*}
\sigma\left(P_{n}, P_{m}\right)=\delta_{n, m}, \quad n, m \in \mathbb{Z}_{+} \tag{41}
\end{equation*}
$$

For the given difference equations (3), (4) it is not hard to obtain the spectral function using (41) as a definition and then extending this definition by the linearity. Namely, if $P(\lambda)=\sum_{j=0}^{\infty} \xi_{j} P_{j}(\lambda), \xi_{j} \in \mathbb{C}$, and $R(\lambda)=\sum_{j=0}^{\infty} \nu_{j} P_{j}(\lambda), \nu_{j} \in \mathbb{C}$, we set

$$
\begin{equation*}
\sigma(P, R)=\sum_{j=0}^{\infty} \xi_{j} \nu_{j} \tag{42}
\end{equation*}
$$

Here all sums are finite. However, representation (42) is not very convenient. It requires the knowledge of all coefficients of resolutions of the polynomials P, R via the polynomials $\left\{P_{n}(\lambda)\right\}_{n \in \mathbb{Z}_{+}}$. We are going to derive an analytic representation for the spectral function σ.

Note that according to Theorem 1 in [4] we have

$$
\begin{equation*}
\sigma(P, R)=\sigma(P R, 1), \quad P, R \in \mathbb{P} \tag{43}
\end{equation*}
$$

That means that it is enough to obtain an analytic representation for $\sigma(u, 1), u \in \mathbb{P}$. If

$$
\begin{equation*}
u(\lambda)=\sum_{j=0}^{\infty} u_{k} P_{k}(\lambda), \quad u_{k} \in \mathbb{C} \tag{44}
\end{equation*}
$$

then by (41) we will get

$$
\begin{equation*}
\sigma(u, 1)=u_{0} . \tag{45}
\end{equation*}
$$

Let $\Psi_{n}(\lambda, w)$ and $m(\lambda)$ be defined as in the previous Section. We set

$$
\begin{equation*}
\Psi_{n}(\lambda):=m(\lambda) P_{n}(\lambda)+Q_{n}(\lambda), \quad \lambda \in \Pi_{0}, \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{f}(\lambda):=\sum_{j=0}^{\infty} \Psi_{j}(\lambda) f_{j}, \quad f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \in l_{\mathrm{fin}}^{2}, \quad \lambda \in \Pi_{0} \tag{47}
\end{equation*}
$$

Proposition 4. Let $f=\left(f_{0}, f_{1}, f_{2}, \ldots\right) \in l_{\text {fin }}^{2}$ and $\varepsilon>0$. For the function $\Psi_{f}(\lambda)$ the following relation holds:

$$
\begin{equation*}
\Psi_{f}(\lambda)=-\frac{1}{\lambda}\left(f_{0}+\bar{o}(1)\right), \tag{48}
\end{equation*}
$$

where $\bar{o}(1) \rightarrow 0$ as $\lambda \rightarrow \infty$ in a strip $\Pi_{0, \varepsilon}$.
Proof. Let f and ε be from the statement of the Proposition. Set $g=\left(g_{0}, g_{1}, g_{2}, \ldots\right)$, where

$$
\begin{gathered}
g_{0}=a_{0} f_{0}+b_{0} f_{1} \\
g_{n}=b_{n-1} f_{n-1}+a_{n} f_{n}+b_{n} f_{n+1}, \quad n \in \mathbb{N} .
\end{gathered}
$$

Observe that $g \in l_{\text {fin }}^{2}$. We can write

$$
\begin{aligned}
\Psi_{g}(\lambda) & =\sum_{j=0}^{\infty} \Psi_{j}(\lambda) g_{j}=\Psi_{0}(\lambda)\left(a_{0} f_{0}+b_{0} f_{1}\right)+\sum_{j=1}^{\infty} \Psi_{j}(\lambda)\left(b_{j-1} f_{j-1}+a_{j} f_{j}+b_{j} f_{j+1}\right) \\
& =\Psi_{0}(\lambda)\left(a_{0} f_{0}+b_{0} f_{1}\right)+\sum_{k=0}^{\infty} \Psi_{k+1}(\lambda) b_{k} f_{k}+\sum_{j=1}^{\infty} \Psi_{j}(\lambda) a_{j} f_{j}+\sum_{l=2}^{\infty} \Psi_{l-1}(\lambda) b_{l-1} f_{l} \\
& =\Psi_{0}(\lambda) a_{0} f_{0}+\Psi_{1}(\lambda) b_{0} f_{0}+\sum_{j=1}^{\infty}\left(b_{j-1} \Psi_{j-1}(\lambda)+a_{j} \Psi_{j}(\lambda)+b_{j} \Psi_{j+1}(\lambda)\right) f_{j} \\
& =\Psi_{0}(\lambda) a_{0} f_{0}+\Psi_{1}(\lambda) b_{0} f_{0}+\lambda \sum_{j=1}^{\infty} \Psi_{j}(\lambda) f_{j}, \quad \lambda \in \Pi_{0},
\end{aligned}
$$

where we have used the fact that $\Psi_{j}(\lambda)$ is a solution of difference equation (4).
Since $\Psi_{0}(\lambda)=m(\lambda)$, and $b_{0} \Psi_{1}(\lambda)=\lambda m(\lambda)-a_{0} m(\lambda)+1$, we get

$$
\Psi_{g}(\lambda)=\lambda m(\lambda) f_{0}+f_{0}+\lambda \sum_{j=1}^{\infty} \Psi_{j}(\lambda) f_{j}=f_{0}+\lambda \sum_{j=0}^{\infty} \Psi_{j}(\lambda) f_{j}=f_{0}+\lambda \Psi_{f}(\lambda)
$$

Therefore

$$
\begin{equation*}
\Psi_{f}(\lambda)=\frac{1}{\lambda}\left(-f_{0}+\Psi_{g}(\lambda)\right), \quad \lambda \in \Pi_{0} . \tag{49}
\end{equation*}
$$

By virtue of the Cauchy-Buniakovskiy inequality we can write

$$
\begin{equation*}
\left|\Psi_{g}(\lambda)\right| \leq\left(\sum_{j=0}^{\infty}\left|\Psi_{j}(\lambda)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{j=0}^{\infty}\left|g_{j}(\lambda)\right|^{2}\right)^{\frac{1}{2}}, \quad \lambda \in \Pi_{0} \tag{50}
\end{equation*}
$$

If $\lambda \in \Pi_{0, \varepsilon}$ then $\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda\right|>\varepsilon$. Since the function $m(\lambda), \lambda \in \Pi_{0, \varepsilon}$, belongs to the disc $D_{\infty}(\lambda)$, by virtue of relations (28), (33) we can write
(51) $\varepsilon \sum_{j=0}^{\infty}\left|m(\lambda) P_{j}(\lambda)+Q_{j}(\lambda)\right|^{2} \leq \sum_{j=0}^{\infty}\left|\operatorname{Im} a_{j}-\operatorname{Im} \lambda \| m(\lambda) P_{j}(\lambda)+Q_{j}(\lambda)\right|^{2} \leq|\operatorname{Im} m(\lambda)|$.

Hence, we get

$$
\begin{equation*}
\left|\Psi_{g}(\lambda)\right| \leq \frac{|m(\lambda)|}{\varepsilon}\left(\sum_{j=0}^{\infty}\left|g_{j}(\lambda)\right|^{2}\right)^{\frac{1}{2}}, \quad \lambda \in \Pi_{0, \varepsilon} . \tag{52}
\end{equation*}
$$

Applying Proposition 3 we complete the proof.
Theorem 2. The spectral function σ of difference equations (3),(4) has the following representation:

$$
\begin{align*}
\sigma(P, R) & =\frac{1}{2 \pi i} \lim _{\delta \rightarrow 0}\left\{\int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} P(\lambda) R(\lambda) e^{-\delta \lambda^{2}} m(\lambda) d \lambda\right. \tag{53}\\
& \left.+\int_{\infty+i\left(r_{0}-\varepsilon\right)}^{-\infty+i\left(r_{0}-\varepsilon\right)} P(\lambda) R(\lambda) e^{-\delta \lambda^{2}} m(\lambda) d \lambda\right\}, \quad P, R \in \mathbb{P},
\end{align*}
$$

where

$$
\begin{equation*}
\varepsilon>0: \varepsilon>-r_{1}, \varepsilon>r_{0} . \tag{54}
\end{equation*}
$$

Proof. We first note that the function $\Psi_{f}(\lambda)$ from (47) is analytic in Π_{0}. Choose an arbitrary $\varepsilon>0$ which satisfies (54) and consider points $a_{N}^{+}=-N+i\left(r_{1}+\varepsilon\right), c^{+}=i\left(r_{1}+\varepsilon\right)$, $b_{N}^{+}=N+i\left(r_{1}+\varepsilon\right)$, and $a_{N}^{-}=-N+i\left(r_{0}-\varepsilon\right), c^{-}=i\left(r_{0}-\varepsilon\right), b_{N}^{-}=N+i\left(r_{0}-\varepsilon\right)$ in the complex λ-plane. We also denote

$$
\begin{aligned}
& C_{N}^{+}=\left\{\lambda \in \mathbb{C}:\left|\lambda-c^{+}\right|=N, \operatorname{Im} \lambda \geq r_{1}+\varepsilon\right\}, \\
& C_{N}^{-}=\left\{\lambda \in \mathbb{C}:\left|\lambda-c^{-}\right|=N, \operatorname{Im} \lambda \leq r_{0}-\varepsilon\right\} .
\end{aligned}
$$

Condition (54) ensures that the points $a_{N}^{+}, c^{+}, b_{N}^{+}$and the half of the circle, C_{N}^{+}, lie in the open upper half-plane \mathbb{C}_{+}^{\prime}. The points $a_{N}^{-}, c^{-}, b_{N}^{-}$and the half of the circle, C_{N}^{-}, lie in the open lower half-plane \mathbb{C}_{-}^{\prime}. Using the analyticity we can write

$$
\begin{align*}
& \int_{a_{N}^{+}}^{b_{N}^{+}} \Psi_{f}(\lambda) d \lambda+\int_{C_{N}^{+}} \Psi_{f}(\lambda) d \lambda=0, \tag{55}\\
& \int_{b_{\bar{N}}^{-}}^{a_{N}^{-}} \Psi_{f}(\lambda) d \lambda+\int_{C_{\bar{N}}^{-}} \Psi_{f}(\lambda) d \lambda=0 \tag{56}
\end{align*}
$$

By virtue of Proposition 4 we can write

$$
\begin{equation*}
\int_{C_{N}^{+}} \Psi_{f}(\lambda) d \lambda=-f_{0} \int_{C_{N}^{+}} \frac{1}{\lambda} d \lambda-\int_{C_{N}^{+}} \frac{1}{\lambda} \bar{o}(1) d \lambda, \tag{57}
\end{equation*}
$$

where $\bar{o}(1)=-\Psi_{g}(\lambda)$ (see (49)) is an analytic function in Π_{0}. Since $|\lambda| \geq N-\left|r_{1}+\varepsilon\right|$ in C_{N}^{+}, we get

$$
\left|\frac{\bar{o}(1)}{\lambda}\right| \leq \frac{|\bar{o}(1)|}{N-\left|r_{1}+\varepsilon\right|},
$$

and the second term in the right-hand side of (57) tends to zero as $N \rightarrow \infty$. For the first term in the right-hand side of (57), we can write

$$
-f_{0}\left(\ln a_{N}^{+}-\ln b_{N}^{+}\right)=-f_{0} i\left(\arg a_{N}^{+}-\arg b_{N}^{+}\right) \rightarrow-\pi i f_{0}
$$

as $N \rightarrow \infty$. Here we have used an arbitrary analytic branch of the logarithm in $\mathbb{C} \backslash[0,+\infty)$. Calculating arguments we used that points a_{N}^{+}, b_{N}^{+}lie in \mathbb{C}_{+}^{\prime}.

Passing to the limit in (55) we get

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{a_{N}^{+}}^{b_{N}^{+}} \Psi_{f}(\lambda) d \lambda=\pi i f_{0} \tag{58}
\end{equation*}
$$

Proceeding in an analogous manner with relation (56) we obtain

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{b_{N}^{-}}^{a_{N}^{-}} \Psi_{f}(\lambda) d \lambda=\pi i f_{0} \tag{59}
\end{equation*}
$$

Summing up relations (58) and (59) we get

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\{\int_{a_{N}^{+}}^{b_{N}^{+}} \Psi_{f}(\lambda) d \lambda+\int_{b_{N}^{-}}^{a_{N}^{-}} \Psi_{f}(\lambda) d \lambda\right\}=2 \pi i f_{0} \tag{60}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{a_{N}^{+}}^{b_{N}^{+}} \Psi_{f}(\lambda) d \lambda=\lim _{\delta \rightarrow 0} \int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} \Psi_{f}(\lambda) d \lambda \tag{61}
\end{equation*}
$$

We first note that the integral in the right-hand side of (61) exists, since $\Psi_{f}(\lambda)$ is bounded (see (48)). For an arbitrary $\widehat{\varepsilon}>0$ we can write

$$
\begin{align*}
& \left|\int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} \Psi_{f}(\lambda) d \lambda-\lim _{N \rightarrow \infty} \int_{a_{N}^{+}}^{b_{N}^{+}} \Psi_{f}(\lambda) d \lambda\right| \tag{62}\\
& \quad=\left|\lim _{N \rightarrow \infty} \int_{a_{N}^{+}}^{b_{N}^{+}}\left(e^{-\delta \lambda^{2}}-1\right) \Psi_{f}(\lambda) d \lambda\right| \leq\left|\int_{a_{N}^{+}}^{b_{N}^{+}}\left(e^{-\delta \lambda^{2}}-1\right) \Psi_{f}(\lambda) d \lambda\right|+\frac{\widehat{\varepsilon}}{2},
\end{align*}
$$

for $N \geq N_{0}, N_{0} \in \mathbb{N}$. On the finite segment $\left[a_{N_{0}}^{+}, b_{N_{0}}^{+}\right]$, the function $\left(e^{-\delta \lambda^{2}}-1\right) \Psi_{f}(\lambda)$ uniformly tends to zero as $\delta \rightarrow 0$. Therefore,

$$
\int_{a_{N_{0}}^{+}}^{b_{N_{0}}^{+}}\left(e^{-\delta \lambda^{2}}-1\right) \Psi_{f}(\lambda) d \lambda \rightarrow 0, \quad \delta \rightarrow 0
$$

Hence, we can choose $\widehat{\delta}>0$ such that $|\delta|<\widehat{\delta}_{0}$ implies

$$
\begin{equation*}
\left|\int_{a_{N_{0}}^{+}}^{b_{N_{0}}^{+}}\left(e^{-\delta \lambda^{2}}-1\right) \Psi_{f}(\lambda) d \lambda\right| \leq \frac{\widehat{\varepsilon}}{2} \tag{63}
\end{equation*}
$$

From relations (62), (63) it follows that (61) holds. In an analogous manner we obtain

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{b_{N}^{-}}^{a_{N}^{-}} \Psi_{f}(\lambda) d \lambda=\lim _{\delta \rightarrow 0} \int_{\infty+i\left(r_{0}-\varepsilon\right)}^{-\infty+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} \Psi_{f}(\lambda) d \lambda \tag{64}
\end{equation*}
$$

From (60), (61), (64) we obtain

$$
\begin{equation*}
\lim _{\delta \rightarrow 0}\left\{\int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} \Psi_{f}(\lambda) d \lambda+\int_{\infty+i\left(r_{0}-\varepsilon\right)}^{-\infty+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} \Psi_{f}(\lambda) d \lambda\right\}=2 \pi i f_{0} \tag{65}
\end{equation*}
$$

Let $u(\lambda) \in \mathbb{P}$ be an arbitrary complex polynomial which has resolution (44). A vector of coefficients $u=\left(u_{0}, u_{1}, u_{2}, \ldots\right)$ belongs to $l_{\text {fin }}^{2}$. For $\lambda \in \Pi_{0}$ we can write

$$
\begin{equation*}
\Psi_{u}(\lambda)=\sum_{j=0}^{\infty} \Psi_{j}(\lambda) u_{j}=\sum_{j=0}^{\infty}\left(m(\lambda) P_{j}(\lambda)+Q_{j}(\lambda)\right) u_{j}=m(\lambda) u(\lambda)+\sum_{j=0}^{\infty} Q_{j}(\lambda) u_{j} \tag{66}
\end{equation*}
$$

Let us show that
(67) $\lim _{\delta \rightarrow 0}\left\{\int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda+\int_{\infty+i\left(r_{0}-\varepsilon\right)}^{-\infty+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda\right\}=0, \quad j \in \mathbb{Z}_{+}$.

Since the function $e^{-\delta \lambda^{2}} Q_{j}(\lambda)$ is analytic in \mathbb{C}, we have

$$
\begin{align*}
& \int_{-N+i\left(r_{1}+\varepsilon\right)}^{N+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda+\int_{N+i\left(r_{0}-\varepsilon\right)}^{-N+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda \\
& \quad+\int_{N+i\left(r_{1}+\varepsilon\right)}^{N+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda+\int_{-N+i\left(r_{0}-\varepsilon\right)}^{-N+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} Q_{j}(\lambda) d \lambda=0 . \tag{68}
\end{align*}
$$

The last two terms in the left-hand side of (68) tend to zero as $N \rightarrow \infty$. In fact, the length of the path of integration is constant and the function under the integral tends to zero as $N \rightarrow \infty$, in the both cases. So, proceeding to the limit in (68) we obtain (67).

If we write relation (65) for the function $\Psi_{u}(\lambda)$ from (66) and use (67), we will get

$$
\begin{align*}
& \lim _{\delta \rightarrow 0}\left\{\int_{-\infty+i\left(r_{1}+\varepsilon\right)}^{\infty+i\left(r_{1}+\varepsilon\right)} e^{-\delta \lambda^{2}} m(\lambda) u(\lambda) d \lambda+\int_{\infty+i\left(r_{0}-\varepsilon\right)}^{-\infty+i\left(r_{0}-\varepsilon\right)} e^{-\delta \lambda^{2}} m(\lambda) u(\lambda) d \lambda\right\} \tag{69}\\
& \quad=2 \pi i u_{0}=2 \pi i \sigma(u(\lambda), 1)
\end{align*}
$$

If we take into account relation (43), we will obtain relation (53). The proof is complete.

References

1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner, New York, 1965. (Russian edition: Fizmatgiz, Moscow, 1961)
2. Yu. M. Berezanskii, Expansion in Eigenfunction of Self-Adjoint Operators, Amer. Math. Soc., Providence, R. I., 1968. (Russian edition: Naukova Dumka, Kiev, 1965)
3. F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New YorkLondon, 1964. (Russian edition: Mir, Moscow, 1968)
4. S. M. Zagorodnyuk, Direct and inverse spectral problems for $(2 N+1)$-diagonal, complex, symmetric, non-Hermitian matrices, Serdica Math. J. 30 (2004), no. 4, 471-482.
5. S. M. Zagorodnyuk, The direct and inverse spectral problems for $(2 N+1)$-diagonal complex antisymmetric (with respect to the transposition) matrices, Methods Funct. Anal. Topology 14 (2008), no. 2, 124-131.
6. V. A. Marchenko, A resolution by eigenfunctions of nonself-adjoint singular differential operators of the second order, Mat. Sb. 52(94) (1960), no. 2, 739-788. (Russian)
7. A. I. Markushevich, The Theory of Analytic Functions, Vol. 1, Nauka, Moscow, 1967. (Russian)

School of Mathematics and Mechanics, Karazin Kharkiv National University, 4 Svobody sQ., Kharkiv, 61077, Ukraine

E-mail address: Sergey.M.Zagorodnyuk@univer.kharkov.ua

