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ALGEBRAS OF UNBOUNDED OPERATORS OVER THE RING OF

MEASURABLE FUNCTIONS AND THEIR DERIVATIONS AND

AUTOMORPHISMS

S. ALBEVERIO, SH. A. AYUPOV, A. A. ZAITOV, AND J. E. RUZIEV

Abstract. In the present paper derivations and ∗-automorphisms of algebras of
unbounded operators over the ring of measurable functions are investigated and it
is shown that all L0-linear derivations and L0-linear ∗-automorphisms are inner.
Moreover, it is proved that each L0-linear automorphism of the algebra of all linear
operators on a bo-dense submodule of a Kaplansky-Hilbert module over the ring of
measurable functions is spatial.

0. Introduction

The theory of derivations and automorphisms of operator algebras is an important
branch of the theory of operator algebras and mathematical physics. The present paper
is devoted to the study of derivations and automorphisms of the algebras of unbounded
operators over the ring of measurable functions. Derivations on the algebras of bounded
operators are rather well-investigated [1]. A certain method of investigation of derivations
was suggested in [3], where it was proved that any derivation of a standard algebra of
bounded operators on a normed space is inner and any automorphism of such algebra is
spatial.

A survey of results and open problems in the theory of derivations on unbounded
operators algebras were given in [2]. Later the existence of non-inner derivations on the
algebra L(M) of measurable operators affiliated with an abelian von Neumann algebra
M was established in [4]. Recently it was proved [5] that in the algebra of (equivalence
classes of) measurable complex functions on a locally separable measure space there exist
non trivial derivations and non-extendable automorphisms which are not identical.

Derivations and automorphisms of special classes of unbounded operator algebras (so-
called O∗-algebras) were considered in [6], in particular it was proved that all derivations
and all ∗-automorphisms of the maximal O∗-algebra L+(D) are inner and every auto-
morphism of the algebra L(D) is spatial. In the present paper we study derivations
and automorphisms of standard algebras of unbounded L0-linear operators and obtain
L0-valued versions of the above results from [6].

It should be noted that L0-valued analogues of some classic results become very useful
in solving problems of classical operator algebras. For example, in [7] the theory of
Kaplansky-Hilbert modules over L0 has been applied for the investigation of derivations
on algebras of τ -measurable operators affiliated with a type I von Neumann algebra and
faithful normal semi-finite trace τ.
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The Section 1 contains preliminaries from the theory of Kaplansky-Hilbert modules
over L0. In Section 2 we develop the theory of unbounded L0-linear operators on
Kaplansky-Hilbert modules over L0 and introduce and study notions such as O-modules,
O∗-modules, O-algebras, O∗-algebras for the L0-valued case. Further we show that every
L0-linear derivation of the algebra L+(D) is inner and each automorphism of the algebra
L(D) is spatial. We also consider ∗-isomorphisms of O∗-algebras over the ring of mea-
surable functions and prove that every L0-linear ∗-isomorphism between O∗-algebras is
spatial and each L0-linear ∗-automorphism of the algebra L+(D) is inner.

1. Kaplansky-Hilbert modules over the ring of measurable functions

Let (Ω, Σ, µ) be a space with a complete finite measure, and let L0 = L0(Ω) be the
algebra of all measurable complex-valued functions on (Ω, Σ, µ) (functions equal almost
everywhere are identified).

Consider a vector space X over the field C of complex numbers. A map ‖·‖ : X −→ L0

is called an L0-valued norm on X , if for any ϕ, ψ ∈ X, λ ∈ C the following conditions
are fulfilled:
1) ‖ϕ‖ ≥ 0;
2) ‖ϕ‖ = 0 ⇐⇒ ϕ = 0;
3) ‖λϕ‖ = |λ|‖ϕ‖;
4) ‖ϕ + ψ‖ ≤ ‖ϕ‖ + ‖ψ‖.

The pair (X, ‖·‖) is said to be a lattice-normed space (shortly, LNS) over L0. An LNS
X is called d-decomposable, if for any ϕ ∈ X and for each decomposition ‖ϕ‖ = e1 + e2

into the sum of disjoint elements there exist ϕ1, ϕ2 ∈ X such that ϕ = ϕ1 + ϕ2 and
‖ϕ1‖ = e1, ‖ϕ2‖ = e2. A d-decomposable norm is also called a Kantorovich norm. A net
(ϕα)α∈A of element from X is called (bo)-convergent to ϕ ∈ X , if the net (‖ϕα −ϕ‖)α∈A

(o)-converges to zero in L0 (recall that (o)-convergence of a net from L0 is equivalent to
its convergent almost everywhere). A Banach-Kantorovich space (further, BKS) over L0

is a (bo)-complete d-decomposable LNS over L0.
Any BKS X over L0 is a module over L0, i.e. for any λ ∈ L0 and ϕ ∈ X the element

λϕ ∈ X is determined and ‖λϕ‖ = |λ|‖ϕ‖ (see [8, 9]).
A module E over L0 is said to be finite-generated, if there exist ϕ1, ϕ2, . . . , ϕn in E such

that every ϕ ∈ E can be decomposed as ϕ = α1ϕ1 + · · · + αnϕn where αi ∈ L0, i = 1, n.
The elements ϕ1, ϕ2, . . . , ϕn are called generators of the module E. A minimal number
of generators of a finite-generated module E is denoted by d(E). A module E over L0

is called σ-finite-generated, if there exists a partition (πn)n∈N of the unit in ∇ (∇ is
the Boolean algebra of all idempotents in L0) such that each πnE is finite-generated.
A finite-generated module E over L0 is called homogeneous of type n, if n = d(πE) for
every nonzero π ∈ ∇.

Elements ϕ1, ϕ2, . . . , ϕn ∈ E are called ∇-linear independent, if for every π ∈ ∇ and

any α1, α2, . . . , αn ∈ L0 the equality π
n∑

k=1

αkϕk = 0 implies πα1 = πα2 = · · · = παn = 0

(see [7]).
If E is module over L0 which is a homogeneous of type n then there exists a basis

{ϕ1, ϕ2, . . . , ϕn} in E, consisting of ∇-linear independent elements, i.e. each element
ϕ ∈ E can be uniquely represented in the form ϕ = α1ϕ1 + · · · + αnϕn, αi ∈ L0, i = 1, n

(see [10], Proposition 6).
Let X and Y be BKS over L0. An operator a : X → Y is L0-linear if a(αϕ + βψ) =

αa(ϕ)+βa(ψ) for all α, β ∈ L0, ϕ, ψ ∈ X. The set of all L0-linear operators is denoted by
L(X, Y ). An operator a ∈ L(X, Y ) is called L0-bounded, if there exists c ∈ L0 such that
‖a(ϕ)‖ ≤ c‖ϕ‖ for all ϕ ∈ X. For an L0-bounded operator a we put ‖a‖ = sup{‖a(ϕ)‖ :
‖ϕ‖ ≤ 1}. An L0-linear operator a : X → Y is said to be finite-generated (respectively,
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σ-finite-generated, homogeneous of type n), if a(X) = {a(ϕ) : ϕ ∈ X} is a finite-generated
(respectively, σ-finite-generated, homogeneous of type n) submodule in Y.

It is clear that each L0-linear σ-finite-generated operator a : X → Y can be represented

as a =
∞∑

n=1
πnan, where (πn)n∈N is a partition of the unit ∇, and an are homogeneous

operators of finite type. Moreover if a is a finite-generated operator then (πn) is a finite
partition of unit.

Let a : X → Y be a homogeneous of type n L0-linear operator and let {ψ1, . . . , ψn}
be a basis in a(X). Denote by X∗ the space of all L0-bounded L0-linear functionals from
X into L0. Then there exists a system {f1, . . . , fn} ⊂ Y ∗ such that fi(ψj) = δij1, where
δij is Kroenecker symbol (see [10], Proposition 2). We define gi ∈ X∗, i = 1, n as follows

gi(ϕ) = fi(a(ϕ)), ϕ ∈ X.

It is clear that

a(ϕ) =

n∑

k=1

gk(ϕ)ψk, ϕ ∈ X.

This formula gives the general form of L0-bounded L0-linear operators from X into Y

which are homogeneous of type n(n ∈ N).
If X and Y coincide then L(X) is used for L(X, X).
An algebra U ⊂ L(X) over L0 is said to be standard if F(X) ⊂ U , where F(X) is

the algebra of all finite-generated L0-linear operators from L(X). The following algebras
over L0 are examples of standard algebras: the algebra F(X); the algebra Fσ(X) of
all σ-finite-generated L0-linear operators from L(X); the algebra K(X) of all L0-linear
cyclically compact operators from L(X); the whole algebra L(X).

Let A be a module over L0. A map 〈·, ·〉 : A × A → L0 is called an L0-valued inner
product, if for all ϕ, ψ, η ∈ A, λ ∈ L0 the following conditions are fulfilled:
1) 〈ϕ, ϕ〉 ≥ 0;
2) 〈ϕ, ϕ〉 = 0 ⇔ ϕ = 0;

3) 〈ϕ, ψ〉 = 〈ψ, ϕ〉;
4) 〈λϕ, ψ〉 = λ〈ϕ, ψ〉;
5) 〈ϕ + ψ, η〉 = 〈ϕ, η〉 + 〈ψ, η〉.

If 〈·, ·〉 : A × A → L0 is an L0-valued inner product then the following formula

‖ϕ‖ =
√

〈ϕ, ϕ〉

determines an L0-valued norm on A. A pair 〈A, 〈·, ·〉) is called Kaplansky-Hilbert module
over L0 or L0-Hilbert space if (A, ‖ · ‖) is BKS over L0 (see [8, 9]).

Let X be a Kaplansky-Hilbert module over L0, and X0 ⊂ X. Note that X0 is a bo-
closed submodule of the Kaplansky-Hilbert module X if and only if X0 is a submodule
in the usual sense, i.e. X0 is a set containing all sums of the form bo-

∑
α∈A

παϕα, where

(ϕα)α∈A is any bounded family in X0 and (πα)α∈A is a partition of the unit in ∇, and
it is also closed with respect to the norm of the module X.

Let I be an index set. For every i ∈ I consider a Kaplansky-Hilbert module Xi over L0.

Put XI = {ϕ ∈
∏
i∈I

Xi : (o)-
∑
i∈I

‖ϕi‖
2
i ∈ L0}. Considered with the pointwise operations,

XI forms a module over L0. The inner product 〈·, ·〉 : XI ×XI → L0 is defined as follows:

〈ϕ, ψ〉 = (o)-
∑

i∈I

〈ϕi, ψi〉i,

where ϕ, ψ ∈ XI and 〈·, ·〉i : Xi × Xi → L0 is the inner product in the corresponding

Xi. Then ‖ϕ‖ =
√

〈ϕ, ϕ〉 gives an L0-valued norm on XI , and it clear that ‖ϕ‖ =

((o)-
∑
i∈I

〈ϕi, ϕi〉i)
1/2. Besides XI equipped with this structure forms a Kaplansky-Hilbert
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module over L0. We say that XI is the direct sum of the family (Xi)i∈I and denote it
by

⊕
i∈I

Xi.

Let X1, X2 be Kaplansky-Hilbert modules over L0, and let a be an operator from
X1 into X2. The domain of the operator a is denoted by D(a). The set of all pairs
(ϕ, aϕ), ϕ ∈ D(a), in the direct sum X1 ⊕ X2, is called the graph of the operator a. The
graph of the operator a is denoted by G(a). Thus

G(a) = {(ϕ, aϕ) : ϕ ∈ D(a)}.

It is clear that two operators a and b coincide if and only if G(a) = G(b). The set
S ⊂ X1⊕X2 is the graph of an appropriate operator if and only if the relations (ϕ, ψ) ∈ S,

(ϕ, ψ′) ∈ S imply ψ = ψ′. An operator a : X1 → X2 is L0-linear if and only if G(a) is
a submodule of X1 ⊕ X2. An operator a : X1 → X2 is called bo-closed if its graph G(a)
bo-closed in X1 ⊕ X2.

If an operator a is not bo-closed then by the definition its graph G(a) is not bo-closed

in X1 ⊕ X2. If the bo-closure G(a) of the set G(a) in X1 ⊕ X2 is the graph of some
operator, then this operator is denoted by ã and it is called the bo-closure of a. In this
case the operator a is said to be bo-closable operator.

Note that ã is the least bo-closed extension of the operator a. The set G(a), which is
the graph of the operator ã : X1 → X2, consists of elements of the form (ϕ, aϕ), ϕ ∈ D(a)
and their bo-limits.

For a Kaplansky-Hilbert module X over L0 an L0-valued version of the Riesz theorem
is also true , i.e. for every L0-bounded L0-linear functional f : X → L0 there exists a
vector ψ ∈ X such that f(ϕ) = 〈ϕ, ψ〉 for all ϕ ∈ X (see [9]).

Let a : X → Y be an L0-linear operator. An adjoint operator to a is an operator
a∗ : Y → X , satisfying the condition 〈aϕ, ψ〉 = 〈ϕ, a∗ψ〉 for all ϕ ∈ X and ψ ∈ Y .

Let ϕ, ψ ∈ X. We define an L0-linear operator ϕ ⊗ ψ on X by the rule

(ϕ ⊗ ψ)η = 〈η, ψ〉ϕ.

An element λ ∈ L0 is called strictly positive (denoted by λ ≫ 0) if λ(ω) > 0 for almost
every ω ∈ Ω. If ‖ϕ‖ ≫ 0, ‖ψ‖ ≫ 0, then the operator ϕ⊗ψ is homogeneous of type one.
Moreover, ϕ ⊗ ψ is a projection if and only if ψ = ϕ and ‖ϕ‖ = 1.

2. Derivations and automorphisms of O∗-algebras over L0

Let X be a Kaplansky-Hilbert module over L0, and let D ⊂ X be a dense domain.
By ID we denote the identity map on D.

Definition 1. A set of bo-closable L0-linear operators with the domain D and containing
ID is said to be an O-family over L0. In this case D is called the domain of this family.

If A is an O-family over L0 then the domain of this family will be denoted by D(A).
If a ∈ A then according to the definition we have D(A) = D(a) = D.

Definition 2. An O-module over L0 is an O-family A over L0 such that αa + βb ∈ A
for all a, b ∈ A and α, β ∈ L0.

Recall that by ab we denote the composition of the operators a and b. If a and b are
operators on D and bD ⊂ D then ab is also an operator on D defined by abϕ = a(bϕ),
ϕ ∈ D.

Definition 3. An O-algebra over L0 is an O-module A over L0 such that bD(A) ⊂ D(A)
and ab ∈ A for all a, b ∈ A.

It is easy to see that every O-algebra over L0 with the operations of addition, multi-
plication by elements of L0 and the product defined as the composition of operators, is
an algebra over L0. Note also that ID is the unit of this algebra.
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Definition 4. An O∗-family over L0 on D is a set A of L0-linear operators with the
domain D such that ID ∈ A, D ⊂ D(a∗), and a+ ∈ A for all a ∈ A, where a+ = a∗|D.

Let A be an O∗-family over L0 on D. Then A is an O-family over L0 on D. Indeed,
each operator a ∈ A is bo-closable because D ⊂ D(a∗) and D is dense in X.

If a ∈ A then

(1) 〈aϕ, ψ〉 = 〈ϕ, a+ψ〉 for all ϕ, ψ ∈ D

and hence a = (a+)+. From the above we obtain, in particular, that a → a+ is a bijective
map of A onto itself.

Definition 5. An O∗-module over L0 is an O-module over L0 which is an O∗-family
over L0.

If A is an O∗-module over L0 on D then the map a → a+, a ∈ A, is an involution
on A.

Definition 6. An O∗-algebra over L0 is an O-algebra over L0 which is an O∗-family
over L0.

Let L+(D) denote the set of all L0-linear operators a on a Kaplansky-Hilbert module
X over L0 which satisfy aD ⊂ D, D ⊂ D(a∗) and a∗D ⊂ D.

Theorem 1. L+(D) is the largest O∗-algebra over L0 with the domain D.

Proof. At first we check that L+(D) is an O∗-family over L0. Let a ∈ L+(D). We have
a+D = a∗D ⊂ D, (a+)∗ = (a∗|D)∗ ⊃ a∗∗ ⊃ a, and hence (a+)∗D = aD ⊂ D, i.e.
a+ ∈ L+(D), as it was asserted.

Now let us show that L+(D) is an O-algebra over L0. Let a, b ∈ L+(D). It is easy
to see that λa ∈ L+(D) for all λ ∈ L0. From D ⊂ D(a∗) ∩ D(b∗) ⊂ D((a + b)∗) and
(a + b)∗D = (a∗ + b∗)D it follows that (a + b) ∈ L+(D).

We shall show that ab ∈ L+(D). Let ϕ ∈ D and ψ ∈ D. According to (1) we have
〈abϕ, ψ〉 = 〈bϕ, a+ψ〉. By virtue of a+D ⊂ D, applying again (1), we obtain 〈abϕ, ψ〉 =
〈ϕ, b+a+ψ〉. Besides, b+a+ ⊂ (ab)∗ and b+a+ = (b∗|D)(a∗|D) = (b∗a∗)|D = (ab)∗|D =
(ab)+. These imply that D ⊂ D((ab)∗), (ab)∗D = b+a+D ⊂ D. Thus, ab ∈ L+(D).

From the above it is clear that L+(D) is an O∗-algebra over L0.
Now let A be an arbitrary O∗-algebra over L0 with the domain D and let a ∈ A.

According to the definition 3 we have aD ⊂ D since A is an O-algebra. The definition 4
yields that a+ ∈ A since A is an O∗-algebra. Hence, a∗D = a+D ⊂ D. This means that
A ⊂ L+(D). Theorem 1 is proved. �

Let X be a Kaplansky-Hilbert module over L0, and let D ⊂ X be a bo-dense submod-
ule. By the symbol L(D) we denote the algebra of all L0-linear operators a : D → D. Let
U be a standard algebra in L(D). Recall that a linear operator δ : U → L(D) is said to
be a derivation, if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ U . If for a derivation δ : U → L(D)
there exists an element x ∈ U such that δ(a) = xa − ax for all a ∈ U then δ is called an
inner derivation.

Further in theorems 2 and 3 we suppose that there exists a vector e in the bo-dense
submodule D of the Kaplansky-Hilbert module X over L0 such that ‖e‖ = 1, where 1 is
the unit in L0.

Theorem 2. Let δ : U → L(D) be an L0-linear derivation of a standard algebra U . Then
there exists x ∈ L(D) such that

δ(a) = xa − ax

for all a ∈ U .
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Proof. At first consider the case U = F(D), where F(D) is the algebra of finite-generated
operators a : D → D.

Fix a vector e ∈ D with ‖e‖ = 1 and a functional f : D → L0 such that f(e) = 1.

Define a projection p ∈ F(D) by

p(ϕ) = f(ϕ)e, ϕ ∈ D.

Since p2 = p then δ(p) = pδ(p) + δ(p)p and therefore pδ(p)p = 0. Put ψ = pδ(p) − δ(p)p.

Then pψ − ψp = pδ(p) + δ(p)p = δ(p).
Putting δ′(a) = δ(a) − (aψ − ψa) we get δ′(p) = 0. Thus, one may assume that

δ(p) = 0. Then we have

(2) δ(ap) = aδ(p) + δ(a)p = δ(a)p.

Consider a vector ϕ ∈ D and an operator a ∈ F(D) such that a(e) = ϕ. Define an
operator x : D → D by the formula

x(ϕ) = δ(a)e.

The operator x is defined correctly. Indeed, let ϕ ∈ D be a vector and let a1, a2 ∈ F(D)
be operators such that a1(e) = a2(e) = ϕ. For each η ∈ D we have (aip)η = f(η)ai(e),
i = 1, 2, i.e. a1p = a2p. Therefore by virtue of (2) it follows that δ(a1)(e) = (δ(a1)p)(e) =
δ(a1p)(e) = δ(a2p)(e) = (δ(a2)p)(e) = δ(a2)(e), i.e. δ(a1) = δ(a2).

It easy to see that the operator x is L0-linear.
Let ϕ ∈ D and a ∈ F(D). Then (xap)ϕ = x(a(p(ϕ))) = x(f(ϕ)a(e)) = f(ϕ)x(a(e)) =

f(ϕ)δ(a)(e) = δ(a)p(ϕ) = δ(ap)ϕ. Thus, xap = δ(a)p for all a ∈ F(D). Therefore for
b ∈ F(D) we have xabp = δ(ab)p = aδ(b)p + δ(a)bp = axbp + δ(a)bp, i.e.

(3) δ(a)bp = xabp − axbp.

Now for an arbitrary ϕ ∈ D take b ∈ F(D) such that b(e) = ϕ. Then (bp)(e) = ϕ.

Hence from (3) we obtain δ(a) = xa − ax for all a ∈ F(D).
Let now U ⊂ L(D) be an arbitrary standard algebra and take b ∈ U . Then ba ∈ F(D)

for all a ∈ F(D). Therefore

(4) δ(ba) = xba − bax.

On the other hand according to the definition of derivation we have

(5) δ(ba) = δ(b)a + bδ(a) = δ(b)a + b(xa − ax).

From (4) and (5) we obtain δ(b)a = xba − bxa = (xb − bx)a.

Now for an arbitrary ϕ ∈ D take a ∈ F(D) such that a(ϕ) = ϕ. Then δ(b)(ϕ) =
δ(b)(a(ϕ)) = (δ(b)a)(ϕ) = ((xb−bx)a)(ϕ) = (xb−bx)(a(ϕ)) = (xb−bx)(ϕ), i.e. δ(b)(ϕ) =
(xb − bx)(ϕ) for any ϕ ∈ D. This means that δ(b) = xb − bx for all b ∈ U . Theorem 2 is
proved. �

Replacing F(D) by F+(D) := F(D) ∩ L+(D) and L(D) by L+(D), we get

Corollary 1. Let δ : U → L+(D) be an L0-linear derivation of the algebra U ⊃ F+(D),
where D is a bo-dense submodule of a Kaplansky-Hilbert module X with a vector e ∈ D
with ‖e‖ = 1. Then there exists x ∈ L+(D) such that

δ(a) = xa − ax

for all a ∈ U . In particular each L0-linear derivation of the algebra L+(D) over L0 is
inner.

Recall that a bijective linear operator α : L(D) → L(D) is called automorphism if
α(ab) = α(a)α(b) for all a, b ∈ L(D).
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Theorem 3. Let α : F(D) → F(D) be an L0-linear automorphism of the algebra F(D).
Then there exists x ∈ L(D) such that x−1 ∈ L(D) and

α(a) = xax−1

for all a ∈ F(D).

Proof. Let e ∈ D be a vector with ‖e‖ = 1 and let f : D → L0 be an L0-linear functional
such that ‖e‖ = 1, f(e) = 1. We define a projection p ∈ F(D) as follows

p(ϕ) = f(ϕ)e, ϕ ∈ D.

Then obviously p(e) = e. Moreover the projection α(p) is homogeneous of type one be-
cause α is an L0-linear automorphism. Now take e1 ∈ D such that ‖e1‖ = 1, α(p)(e1) =
e1.

We define an operator x : D → D as follows: for any ϕ ∈ D take an operator a ∈ F(D)
such that a(e) = ϕ and put

x(ϕ) = α(a)(e1), ϕ ∈ D.

Let ϕ ∈ D and take a1, a2 ∈ F(D) such that a1(e) = a2(e) = ϕ. For each ψ ∈
D we have (aip)(ψ) = f(ψ)ai(e), i = 1, 2, i.e. a1p = a2p. Therefore α(a1)(e1) =
α(a1)α(p)(e1) = α(a1p)(e1) = α(a2p)(e1) = α(a2)α(p)(e1) = α(a2)(e1). This means that
x is defined correctly.

Obviously x is L0-linear.
Now we shall show that x is a bijection. Let ϕ1, ϕ2 ∈ D such that ϕ1 �= ϕ2. Choose

a1, a2 ∈ F(D) such that ai(e) = ϕi, i = 1, 2. Then a1 �= a2, and hence a1p �=
a2p. Since aip, i = 1, 2, are one-generated operators and α is an automorphism then
α(a1)(e1) = α(a1)α(p)(e1) = α(a1p)(e1) �= α(a2p)(e1) = α(a2)α(p)(e1) = α(a2)(e1).
Hence, x(ϕ1) �= x(ϕ2). Now take ψ ∈ D, and a ∈ F(D) such that a(e1) = ψ. Put
b = α−1(a). Then for ϕ = b(e) one has x(ϕ) = α(b)(e1) = α(α−1(a))(e1) = a(e1) = ψ,

i.e. x(ϕ) = ψ.

Let ϕ ∈ D and a ∈ F(D). Take b ∈ F(D) such that b(e) = ϕ. Then (xa)(ϕ) =
x(a(ϕ)) = x(ab(e)) = α(ab)(e1) = α(a)α(b)(e1) = α(a)x(ϕ). Thus, xa = α(a)x, i.e.
α(a) = xax−1 for all a ∈ F(D). Theorem 3 is proved. �

Corollary 2. For each L0-linear automorphism of a standard algebra U there exists
x ∈ L(D) such that x−1 ∈ L(D) and

α(a) = xax−1

for all a ∈ U . In particular, each L0-linear automorphism of the algebra L(D) is spatial.

Let D1, resp. D2 be (bo)-dense submodules in the Kaplansky-Hilbert modules X1,
resp. X2 over L0, and let A1 and A2 be ∗-subalgebras respectively in the O∗-algebras
L+(D1) and L+(D2) over L0.

Definition 7. An L0-linear ∗-isomorphism π : A1−→A2 is said to be spatial if there

exists an isometry U : X1
on
−→ X2 such that

(i) UD1 = D2,

(ii) π(a)ϕ = UaU−1ϕ for all ϕ ∈ D2, a ∈ A1.

Then we say that π is implemented by the operator U .

An L0-linear ∗-automorphism of an algebra A is called inner, if it is spatial and it
may be implemented by a unitary operator U on a Kaplansky-Hilbert module X over L0

such that U |D ∈ A, where D is a (bo)-dense submodule of X .
Let A be a module over L0 and a ∗-algebra over L0. The set of all projections in A

is denoted by Isa(A). If p1, p2 ∈ Isa(A) then we write p1 ≤ p2 if and only if p1p2 = p1.
The relation ≤ is a reflexive, antisymmetric and transitive relation in Isa(A). If there
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exists an L0-linear ∗-isomorphism π from the algebra A onto a ∗-subalgebra of L+(D),

and if p is a projection in A then π̃(p) is also a projection in L+(D), i.e. π̃(p) ∈ L+(D)

and π̃(p)
2

= π̃(p). Obviously the relation p1 ≤ p2 is equivalent to the usual relation

π̃(p1) ≤ π̃(p2) between the projections π̃(p1) and π̃(p2). Let H1(A) denote the set of
all homogeneous of type one projections of the algebra A. For p1, p2 ∈ H1(A) we shall
write p1 ≈ p2, if p1Ap2 �= {0}. Further on, the elements of the set H1(A) will be called
projections of rank one.

Let Di be a (bo)-dense submodule of a Kaplansky-Hilbert module Xi over L0 such
that there exists ϕi ∈ Di, ‖ϕi‖ = 1, i ∈ I. By DI we denote a (bo)-dense submodule
of the Kaplansky-Hilbert module XI over L0, consisting of all vectors (ϕi) := (ϕi)i∈I ,

which have only finitely many nonzero coordinates ϕi ∈ Di.
Note that every element (ai) := (ai)i∈I of the product

∏
i∈I

L+(Di) is an operator on

DI which acts according to the formula:

(ai)(ϕi) = (aiϕi), (ϕi) ∈ DI .

The set of all such operators forms an O∗-algebra with the domain DI . This algebra is
denoted by L+(Di : i ∈ I)

Lemma 1. Let A be a ∗-subalgebra of the algebra L+(DI) over L0 and let M(A) be
the set of all projections p ∈ H1(A), for which the generators of the images pDI have a
unique nonzero coordinate. Then:

(i) The set M(L+(Di : i ∈ I)) consists of the projections of the form ϕi ⊗ ϕi, where
ϕi ∈ Di, ‖ϕi‖ = 1, i ∈ I. If ϕi ⊗ ϕi and ψj ⊗ ψj are two such operators then ϕi ⊗ ϕi ≈
ψj ⊗ ψj if and only if i = j.

(ii) M(A) = M(L+(Di : i ∈ I)) if and only if A ⊆ L+(Di : i ∈ I) and F(Di) ⊆ A for
all i ∈ I.

(iii) If M(A) = M(L+(Di : i ∈ I)) then on the set M(A) = M(L+(Di : i ∈ I))
the relation ”≈” corresponding to the ∗-algebra A coincides with the relation ”≈” corre-
sponding to the ∗-algebra L+(Di : i ∈ I).

(iv) The set H1(L
+(Di : i ∈ I)) of projections of rank one consists of all L0-linear

projections of the form (o)-
∑
i∈I

πi(ϕi ⊗ ϕi), where ϕi ∈ Di, ‖ϕi‖ = 1, and (πi)i∈I is a

partition of the unit in ∇.

Proof. (i) From the definition it follows that the operators of the form ϕi ⊗ ϕi, ϕi ∈ Di,
‖ϕi‖ = 1, i ∈ I, are projections of rank one.

Let ϕi ⊗ ϕi, ψj ⊗ ψj ∈ M(L+(Di : i ∈ I)). If i �= j then ϕi ⊗ ϕiM(L+(Di : i ∈
I))ψj ⊗ ψj = {0}. This implies that ϕi ⊗ ϕi ≈ ψj ⊗ ψj if and only if i = j.

ii) Suppose that M(A) = M(L+(Di : i ∈ I). At first we shall prove that A ⊆ L+(Di :
i ∈ I). Fix i ∈ I. If we prove that aϕ ∈ Di for some ϕ ∈ Di then by virtue of the
linearity of the operator a ∈ A we have aψ ∈ Di for any ψ ∈ Di. Therefore without loss
of generality we may suppose that ‖ϕ‖ = 1 and aϕ �= 0. Then ϕ ⊗ ϕ ∈ A and hence
a + ϕ⊗ϕ ∈ A. Apply the operator a + ϕ⊗ϕ to the element ϕ ∈ Di : (a + ϕ⊗ϕ)(ϕ) =
a(ϕ) + ϕ. This implies that aϕ ∈ Di.

Now let us show that F(Di) ⊂ A. For this it is enough to prove that ϕ ⊗ ψ ∈ A
for all unit elements ϕ, ψ ∈ Di since each finite-generated operator from F(Di) may
be represented as a linear combination of operators of rank one. Let ϕ, ψ ∈ Di and
‖ϕ‖ = ‖ψ‖ = 1. By virtue of (i) we have ϕ ⊗ ϕ, ψ ⊗ ψ ∈ M(A) = M(L+(Di : i ∈ I)).
From this it follows that the operators ϕ ⊗ ϕ, ψ ⊗ ψ belong to A and hence

(ψ ⊗ ψ)(ϕ ⊗ ϕ) = 〈ψ, ϕ〉(ϕ ⊗ ψ) ∈ A,

i.e. (ϕ ⊗ ψ) ∈ A.
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The inverse statement is obvious.
(iii) If M(A) = M(L+(Di : i ∈ I)) then from (ii) it follows that A ⊂ L+(Di : i ∈ I).

Therefore according to (i) it is sufficient to show that ψ ⊗ ψAϕ ⊗ ϕ �= {0} for all unit
elements ϕ, ψ ∈ Di. Consider ξ⊗ξ ∈ A, where the vector ξ ∈ Di is defined by the formula

ξ =

{ 1√
2
(ϕ + ψ), if 〈ϕ, ψ〉 = 0,

ϕ, in other cases.

Then we have
(ψ ⊗ ψ)(ξ ⊗ ξ)(ϕ ⊗ ϕ) = 〈ϕ, ξ〉〈ψ, ξ〉ϕ ⊗ ψ �= 0,

i.e. ψ ⊗ ψAϕ ⊗ ϕ �= {0}.
(iv) Let a = (ai)i∈I ∈ L+(Di : i ∈ I) be a projection of rank one. Then ai is a

projection in L+(Di) for all i ∈ I. Since a is a projection of rank one there exist a partition
(πi)i∈I of the unit in ∇ and a vector ϕi ∈ Di, ‖ϕi‖ = 1, such that ai = πi(ϕi ⊗ ϕi).
From this we have a = (o)-

∑
i∈I

πi(ϕi ⊗ ϕi). Lemma 1 is proved. �

Theorem 4. Let Di and Dj be (bo)-dense submodules of Kaplansky-Hilbert modules Xi

(i ∈ I) and Xj (j ∈ J) over L0, respectively, such that for each i ∈ I and j ∈ J there exist
ei ∈ Di and fj ∈ Dj with ‖ei‖ = 1 and ‖fj‖ = 1. Let A and B be ∗-subalgebras of the
algebras L+(DI) and L+(DJ ) over L0, respectively, satisfying the following conditions

M(A) = M(L+(Di : i ∈ I)),

M(B) = M(L+(Dj : j ∈ J)).

Suppose that there exists an L0-linear ∗-isomorphism π, mapping A onto B. Then π

is a spatial L0-linear ∗-isomorphism. Moreover, there exist a partition (πα) of the unit
in ∇, bijective maps χα : I → J and surjective isometries Uα : XI → XJ such that
U =

∑
α

παUα implements π and Uα(παDi) = παDχα (i) for all i ∈ I.

Proof. Since π is a ∗-isomorphism, it preserves the relation ≈ and π(M(A)) ⊂ H1(B).
Hence

(6) π(M(L+(Di : i ∈ I))) ⊂ H1(L
+(Dj : j ∈ J)).

From (6) we have π(ϕi ⊗ ϕi) ∈ H1(L
+(Dj : j ∈ J)). By virtue of lemma 1, π(ϕi ⊗ ϕi)

has the form (o)-
∑
j∈J

πij(ψij ⊗ ψij), where (πij)j∈J is a partition of the unit in ∇ such

that (πij)i∈I is also a partition of the unit in ∇.
Since π is a ∗-isomorphism the cardinalities of the sets I and J are equal. Let S(I, J)

be the set of all bijections from I onto J. For each α ∈ S(I, J) put χα(i) = α(i) and

πα =
∧
i∈I

πiχα (i). Then παπα′ = 0 at α �= α
′

and
∨
α

πα = 1. Indeed, if α �= α
′

then there

exists i0 ∈ I such that α(i0) �= α
′

(io). Then πi0χα (i0)πi0χ
α
′
(i0) = 0. From this it follows

that παπα′ = 0 at α �= α
′

. Further,
∨
α

πα =
∨
α

(
∧
i∈I

πiχα (i)) =
∧
i∈I

(
∨

απiχα (i)

) = 1.

Suppose that ϕi ∈ Di, ψχα (i) ∈ Dj , are unit elements such that π(πα(ϕi ⊗ ϕi)) =
πα(ψχα (i) ⊗ ψχα (i)). We shall prove that

(7) ‖παxϕi‖ = ‖παπ(x)ψχα (i)‖

for any x ∈ A. From the lemma 1 it follows that xϕi ∈ Di and hence παxϕi ∈ Di,

πα(xϕi ⊗ xϕi) ∈ A. One has

(8)

π(πα(xϕ ⊗ xϕ)) = παπ(x(ϕ ⊗ ϕ)x+)

= παπ(x)π(ϕ ⊗ ϕ)π(x)+ = π(x)π(πα(ϕ ⊗ ϕ))π(x)+

= πα(π(x)ψχα (i) ⊗ π(x)ψχα (i)).
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If π(x)ψ = 0 then (7) is true. If π(x)ψχα (i) �= 0 then

(9)
(π(πα(xϕi ⊗ xϕi))

2 = π(πα(xϕ ⊗ xϕ)2) = παπ‖xϕi‖
2(xϕi ⊗ xϕi)

= ‖παxϕ‖2(π(x)ψχα (i) ⊗ π(x)ψχα (i)).

On the other hand according to (8) we have

(10) (π(xϕi ⊗ xϕi))
2 = ‖παπ(x)ψχα (i)‖

2(π(x)ψχα (i) ⊗ π(x)ψχα (i)).

From the equalities (9) and (10) we obtain (7). If i ∈ I then from (7) it follows that the
equality

Uαi(παxϕi) = παπ(x)ψχα (i), x ∈ A,

defines a unique norm preserving L0-linear surjective map

Uαi : παAϕi → παπ(A)ψχα (i) ≡ παBψχα (i).

By virtue of lemma 1 the inclusions F(Di) ⊆ A|Di ⊆ L+(Di) are true. From this it fol-
lows that παAϕi = παDi. Similarly, παBψχα (i) = παDχα (i). Thus, Uα(παDi) = παDχα (i),

where Uα =
⊕
i∈I

Uαi. Since the index i ∈ I is arbitrary it follows that Uα(παDI) = παDJ .

Put U = (o)-
∑
α

παUα. It is clear that U is a surjective isometry from XI onto XJ . For

a ∈ A one has

π(a)(παπ(x)ψχα (i)) = παπ(ax)ψχα (i) = Uαπαaxϕi = UαaU−1
α (παπ(x)ψχα (i)),

i.e. π(a)(παπ(x)ψχα (i)) = UαaU−1
α (παπ(x)ψχα (i)) for all x ∈ A, πα and i ∈ I. The latter

equality implies π(a)ψ = UaU−1ψ for all ψ ∈ DJ and a ∈ A. Thus, π is spatial and it is
implemented by U. Theorem 4 is proved. �

Corollary 3. Let Di and Dj be (bo)-dense submodules of Kaplansky-Hilbert modules Xi

(i ∈ I) and Xj (j ∈ J) over L0, respectively, such that for each i ∈ I and j ∈ J there
exist ei ∈ Di and fj ∈ Dj with ‖ei‖ = 1 and ‖fi‖ = 1. If π is an L0-linear ∗-isomorphism
from L+(Di : i ∈ I) onto a ∗-subalgebra of L+(DJ ) such that M(π(L+(Di : i ∈ I))) =
M(L+(Dj : j ∈ J)) then π is a spatial L0-linear ∗-isomorphism from L+(Di : i ∈ I) onto
L+(Dj : j ∈ J).

Proof. Assume that A = L+(Di : i ∈ I) and B = π(A). Then according to theorem 4 π

is spatial. By the properties of the isometry U listed in theorem 4 the map a �→ UaU−1

is a surjection from L+(Di : i ∈ I) onto L+(Dj : j ∈ J). The equality π(a) = UaU−1

implies that π(A) = L+(Dj : j ∈ J). Corollary 3 is proved. �

Corollary 4. Let D be a bo-dense submodule of a Kaplansky-Hilbert module X over L0

such that there exists e ∈ D with ‖e‖ = 1. Then each L0-linear ∗-automorphism of the
O∗-algebra L+(D) is inner.

Proof. Put A = B = L+(D) and apply Theorem 4. Then every L0-linear ∗-automorphism
π of the algebra L+(D) is spatial. If π is implemented by some U then UD = D and
U∗D = D. So U |D ∈ L+(D) and therefore by definition 7 π is inner. Corollary 4 is
proved. �
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