EXPANSION IN EIGENFUNCTIONS OF RELATIONS GENERATED BY PAIR OF OPERATOR DIFFERENTIAL EXPRESSIONS

VOLODYMYR KHRABUSTOVSKYI
Dedicated to blessed memory of Professor Alexander Povzner

Abstract

For relations generated by a pair of operator symmetric differential expressions, a class of generalized resolvents is found. These resolvents are integrodifferential operators. The expansion in eigenfunctions of these relations is obtained.

1. The operator differential equation

$$
\begin{equation*}
l[y]-\lambda m[y]=m[f] \quad t \in \overline{\mathcal{I}}, \quad \mathcal{I}=(a, b) \subseteq R^{1} \tag{1}
\end{equation*}
$$

is considered on finite or infinite intervals in the space of vector-functions with values in a separable Hilbert space \mathcal{H}, where $l[y]$ and $m[y]$ are symmetric operator differential expressions of order r and s respectively, where $r+s>0, s$ is even. Expression $m[y]$ is non-negative and such that an operator first-order system obtained from the homogeneous equation (1) by using quasi-derivatives contains a spectral parameter λ in Nevanlinna's manner.

In the paper, the equation (1) reduces in a special way to a symmetric first order system containing the spectral parameter either in a linear way $(r>s)$ or in a nonlinear way $(r \leq s)$. Using this reduction and the characteristic operator of this system (see [19], [20]) we construct a class of the generalized resolvents of the minimal relation corresponding to (1). These resolvents are integro-differential operators. From this the inversion formulas and Parseval's equality are obtained. For their proof we modify Strauss's method [27] concerning the case of the generalized resovents as $s=0$ and $m[y] \equiv y$ which are integral operators (but not integro-differential operators) depending on λ in a more simple way (see [1], [4], [5], [6], [16], [17], [18], [27]) comparing with the case $s>0$.

The expansion formulas in the solutions of the homogeneous equation (1) were obtained in various particular situations in a number of papers. For $\operatorname{dim} \mathcal{H}=1$ in the regular case, $r>s$, and for special l and m this was done in [7, 14]. For $\operatorname{dim} \mathcal{H}<\infty$, $m[y] \equiv w(t) y, 0 \leq w(t) \in B(\mathcal{H})$, the expansion formulas were obtained in [1] for $r=1$ and, for the general case, in [16]-[18] (see also [26] for the case $r=1$). Then for $\operatorname{dim} \mathcal{H}<\infty$ the existence of the expansion formulas was proved in [11] under the assumption that the leading coefficient of the expression $m[y]$ is nondegenerate, and the minimal differential operator that corresponds to this expression is uniformly positive on any finite interval (i.e. under these assumptions even the case $m[y] \equiv w(t) y$ with degenerate weight $w(t)$ is not covered). However in [11], as it was mentioned by the authors, the Titchmarsh-Kodaira's formula for an explicit calculation of the spectral matrix is not obtained. Also [11] does not contain an explicit expression for the resolvent and the case $r=s$ is not considered.

Further in the paper, the boundary value problems for the equation (1) with boundary conditions depending on the spectral parameter are considered. We show that for some

[^0]boundary conditions, solutions of these problems are generated by a generalized resolvent if, in contrast to the case $s=0$, the boundary conditions contain the derivatives of vectorfunction $f(t)$ that are taken on the ends of interval.

In the general case where $\operatorname{dim} \mathcal{H}<\infty$ we find the absolutely continuous part of the spectral matrix on the axis when the coefficients of the equation (1) are periodic on the semi-axes and also we find the spectral matrix on the semi-axis when the coefficients are periodic. These formulas are obtained using the results that are obtained in [18], [19] for $s=0$.

Notice that it is not supposed in the paper that for $r \geq s$ the leading coefficient of the expression $m[y]$ (which set the metric) has an inverse in $B(\mathcal{H})$.

Many questions that concern differential operators and relations in the space of vectorfunctions are considered in the monographs $[1,2,3,13,23,24,25,26]$ containing an extensive literature. The method of studying these operators and relations based on a use of the abstract Weyl function was proposed in [9].

We denote by (.) and $\|\cdot\|$ the scalar product and the norm in various spaces with special indexes if it is necessary.

Let an interval $\Delta \subseteq R, f(t)(t \in \Delta)$ be a function with values in some Banach space B. The notation $f(t) \in C^{l}(\Delta), l=0,1, \ldots$ (we omit the index l if $l=0$) means that, in any point of $\Delta, f(t)$ has a norm $\|\cdot\|_{B}$ continuous derivatives of order up to and including l that are taken in the norm $\left\|\|_{B}\right.$; if Δ is either semi-open or closed interval then on its ends belonging to Δ the one-side continuous derivatives exist. The notation $f(t) \in C_{0}^{l}(\Delta)$ means that $f(t) \in C^{l}(\Delta)$ and $f(t)=0$ in the neighbourhoods of the ends of Δ.
2. We consider an operator differential equation in a separable Hilbert space \mathcal{H}_{1},

$$
\begin{equation*}
\frac{i}{2}\left((Q(t) x(t))^{\prime}+Q^{*}(t) x^{\prime}(t)\right)-H_{\lambda}(t) x(t)=W_{\lambda}(t) F(t), \quad t \in \overline{\mathcal{I}} \tag{2}
\end{equation*}
$$

where $Q(t),[\Re Q(t)]^{-1}, H_{\lambda}(t) \in B\left(\mathcal{H}_{1}\right), Q(t) \in C^{1}(\overline{\mathcal{I}})$; the operator function $H_{\lambda}(t)=$ $H_{\lambda}^{*}(t)$ is continuous in t and is Nevanlinna's in λ. Namely, the following condition holds:

The set $\mathcal{A} \supseteq C \backslash R^{1}$ exists, any of its points has a neighbourhood independent of $t \in \overline{\mathcal{I}}$, in this neighbourhood $H_{\lambda}(t)$ is analytic $\forall t \in \overline{\mathcal{I}} ; \forall \lambda \in \mathcal{A} H_{\lambda}(t) \in C(\overline{\mathcal{I}})$; the weight $W_{\lambda}(t)=\Im H_{\lambda}(t) / \Im \lambda \geq 0(\Im \lambda \neq 0)$.

In view of [20] $\forall \mu \in \mathcal{A} \bigcap R: W_{\mu}(t)=\partial H_{\mu}(t) / \partial \mu$ is Bochner locally integrable in the uniform operator topology.

For convenience of statements we suppose that $0 \in \overline{\mathcal{I}}$ and we denote $\Re Q(0)=G$.
Let $X_{\lambda}(t)$ be the operator solution of the homogeneous equation (2) satisfying the initial condition $X_{\lambda}(0)=I$, where I is an identity operator in \mathcal{H}_{1}.

For any $\alpha, \beta \in \overline{\mathcal{I}}, \alpha \leq \beta$ we denote

$$
\begin{gathered}
\Delta_{\lambda}(\alpha, \beta)=\int_{\alpha}^{\beta} X_{\lambda}^{*}(t) W_{\lambda}(t) X_{\lambda}(t) d t, \\
N=\left\{h \in \mathcal{H}_{1} \mid h \in \operatorname{Ker} \Delta_{\lambda}(\alpha, \beta) \forall \alpha, \beta\right\},
\end{gathered}
$$

P is an orthogonal projection onto $N^{\perp} . N$ is independent of $\lambda \in \mathcal{A}[20]$.
For $x(t) \in \mathcal{H}_{1}$ or $x(t) \in B\left(\mathcal{H}_{1}\right)$ we denote

$$
U[x(t)]=([\Re Q(t)] x(t), x(t)) \quad \text { or } \quad U[x(t)]=x^{*}(t)[\Re Q(t)] x(t),
$$

respectively.
As in [20] we introduce the following.
Definition 1. An analytic operator-function $M(\lambda)=M^{*}(\bar{\lambda}) \in B\left(\mathcal{H}_{1}\right)$ of non-real λ is called a characteristic operator (c.o.) of the equation (2) on \mathcal{I} (or, simply, c.o.), if for $\Im \lambda \neq 0$ and for any \mathcal{H}_{1}-valued vector-function $F(t) \in L_{W_{\lambda}}^{2}(\mathcal{I})$ with compact support the
corresponding solution $x_{\lambda}(t)$ of the equation (3) of the form

$$
\begin{align*}
x_{\lambda}(t, F) & =\mathcal{R}_{\lambda} F \\
& =\int_{\mathcal{I}} X_{\lambda}(t)\left\{M(\lambda)-\frac{1}{2} \operatorname{sgn}(s-t)(i G)^{-1}\right\} X_{\lambda}^{*}(s) W_{\lambda}(s) F(s) d s \tag{3}
\end{align*}
$$

satisfies the condition

$$
\begin{equation*}
(\Im \lambda) \lim _{(\alpha, \beta) \uparrow \mathcal{I}}\left(U\left[x_{\lambda}(\beta, F)\right]-U\left[x_{\lambda}(\alpha, F)\right]\right) \leq 0 \quad(\Im \lambda \neq 0) \tag{4}
\end{equation*}
$$

The properties of c.o. and sufficient condition (that are close to necessary condition) of the c.o.'s existence are obtained in [19, 20].

We consider in the separable Hilbert space \mathcal{H} the equation (1), where $l[y]$ and $m[y]$ are symmetric differential expressions of orders r and s correspondingly (one of these orders can be equal to zero), where s is even, with sufficiently smooth coefficients from $B(\mathcal{H})$.

Namely, $l[y]=\sum_{k=0}^{r} i^{k} l_{k}[y]$, where $l_{2 j}=D^{j} p_{j}(t) D^{j}, l_{2 j-1}=\frac{1}{2} D^{j-1}\left\{D q_{j}(t)+\right.$ $\left.q_{j}^{*}(t) D\right\} D^{j-1}, p_{j}(t)=p_{j}^{*}(t), q_{j}(t) \in B(\mathcal{H}), p_{j}(t), q_{j}(t) \in C^{j}(\overline{\mathcal{I}}), D=d / d t ; m[y]$ is defined in a similar way with s instead of r and $\tilde{p}_{j}(t)=\tilde{p}_{j}^{*}(t), \tilde{q}_{j}(t) \in B(\mathcal{H})$ instead of $p_{j}(t), q_{j}(t)$.

We denote by $p(t, \lambda)$ the coefficient at the highest-order derivative in the homogeneous equation (1), i.e.

$$
p(t, \lambda)= \begin{cases}p_{n}(t), & r=2 n>s, \\ p_{n}(t)-\lambda \widetilde{p}_{n}(t), & r=s=2 n, \\ -\lambda \widetilde{p}_{n}(t), & s=2 n>r, \\ i \Re q_{n+1}(t), & r=2 n+1>s\end{cases}
$$

It is supposed in the paper that for non-real $\lambda, p^{-1}(t, \lambda) \in B(\mathcal{H})$ for any $t \in \overline{\mathcal{I}}$. We note that in that case where $r=s$ the leading coefficients of both expressions $l[y]$ and $m[y]$ may not have inverses in $B(\mathcal{H})$ (in particular simultaneously) for any $t \in \overline{\mathcal{I}}$.

Denote $p=\max \{r, s\}$ and by $y^{[k]}(t \mid L)$ we denote the quasi-derivatives [21] of the vector-function $y(t)$ that corresponds to the differential expression L.

Using the substitution

$$
\begin{aligned}
x(t)= & x(t, \lambda) \\
& =\left\{\begin{array}{c}
\left(\sum_{j=0}^{n-1} \oplus y^{(j)}(t)\right) \oplus \sum_{j=1}^{n} \oplus y^{[p-j]}(t, \mid l-\lambda m), \\
\quad \text { if } p=2 n \text { is even, } \\
\left(\sum_{j=0}^{n-1} \oplus y^{(j)}(t)\right) \oplus\left(\sum_{j=1}^{n} \oplus y^{[p-j]}(t, \mid l-\lambda m)\right) \oplus\left(-i y^{(n)}(t)\right), \\
\text { if } p=2 n+1>1 \text { is odd, } \\
y(t), \quad \text { if } p=1,
\end{array}\right.
\end{aligned}
$$

for t and λ such that $p^{-1}(t, \lambda) \in B(\mathcal{H})$ the equation

$$
\begin{equation*}
l[y]-\lambda m[y]=0, \quad t \in \overline{\mathcal{I}} \tag{6}
\end{equation*}
$$

is reduced to a homogenous equation of type (2) in $\mathcal{H}_{1}=\mathcal{H}^{p}$. Under this substitution for odd $p=r>s$ we formally consider that $s=r-1$ and if it is necessary we set some leading coefficients in the expression $m[y]$ to be equal to zero. Analogously for even p we formally consider that $r=s$.

Then the quasi-derivatives in (5) are equal to

$$
\begin{equation*}
y^{[j]}(t \mid l-\lambda m)=y^{(j)}(t), \quad j=0, \ldots, \quad[p / 2]-1, \tag{7}
\end{equation*}
$$

$$
\begin{align*}
y^{[n]}(t \mid l-\lambda m)= & \left\{\begin{array}{l}
p(t, \lambda) y^{(n)}-\frac{i}{2}\left(q_{n}-\lambda \tilde{q}_{n}\right) y^{(n-1)}, \quad p=2 n, \\
-\frac{i}{2}\left(q_{n+1}-\lambda \tilde{q}_{n+1}\right) y^{(n)}, \quad p=2 n+1,
\end{array}\right. \tag{8}\\
y^{[p-j]}(t \mid l-\lambda m)= & -D y^{[p-j-1]}(t \mid l-\lambda m)+\left(p_{j}-\lambda \tilde{p}_{j}\right) y^{(j)} \\
+ & \frac{i}{2}\left[\left(q_{j+1}^{*}-\lambda \tilde{q}_{j+1}^{*}\right) y^{(j+1)}-\left(q_{j}-\lambda \tilde{q}_{j}\right) y^{(j-1)}\right], \\
& j=0, \ldots,\left[\frac{p-1}{2}\right], \quad q_{0} \equiv \tilde{q}_{0} \equiv 0 .
\end{align*}
$$

With this, $l[y]-\lambda m[y]=y^{[p]}(t \mid l-\lambda m)$.
In the homogeneous equation (2) obtained from equation (6) using substitution (5) for even $p=2 n$,

$$
\begin{gather*}
Q(t)=i J=\left(\begin{array}{cc}
0 & i I_{n} \\
-i I_{n} & 0
\end{array}\right) \tag{10}\\
H_{\lambda}(t)=\left\|h_{\alpha \beta}(t, \lambda)\right\|_{\alpha, \beta=1}^{2}, \quad h_{\alpha \beta} \in B\left(\mathcal{H}^{n}\right),
\end{gather*}
$$

where I_{n} is an identity operator in $B\left(\mathcal{H}^{n}\right), h_{11}(t, \lambda)=h_{11}^{*}(t, \bar{\lambda})$ is a three-diagonal operator matrix whose elements under the main diagonal are equal to

$$
\left(\frac{i}{2}\left(q_{1}-\lambda \tilde{q}_{1}\right), \ldots, \frac{i}{2}\left(q_{n-1} \lambda \tilde{q}_{n-1}\right)\right)
$$

the elements on the main diagonal are equal to

$$
\begin{aligned}
& \left(-\left(p_{0}-\lambda \tilde{p}_{0}\right), \ldots,\right. \\
& \left.\quad-\left(p_{n-2}-\lambda \tilde{p}_{n-2}\right) \frac{1}{4}\left(q_{n}^{*}-\lambda \tilde{q}_{n}^{*}\right) p^{-1}(t, \lambda)\left(q_{n}-\lambda \tilde{q}_{n}\right)-\left(p_{n-1}-\lambda \tilde{p}_{n-1}\right)\right),
\end{aligned}
$$

the rest of the elements are equal to zero. $h_{12}(t, \lambda)=h_{21}^{*}(t, \bar{\lambda})$ is the operator matrix with identical operators I_{1} under the diagonal, the elements on the diagonal are equal to $\left(0, \ldots, 0,-\frac{i}{2}\left(q_{n}^{*}-\lambda q_{n}^{*}\right) p^{-1}(t, \lambda)\right)$, the rest of the elements are equal to zero. $h_{22}(t, \lambda)=\operatorname{diag}\left(0, \ldots, 0, p^{-1}(t, \lambda)\right)$.

And for odd $p=2 n+1$,

$$
\begin{align*}
Q(t) & = \begin{cases}\left(\begin{array}{ccc}
0 & i I_{n} & 0 \\
-i I_{n} & 0 & 0 \\
0 & 0 & q_{n+1}
\end{array}\right), & p>1, \\
q_{1}, & p=1,\end{cases} \tag{11}\\
H_{\lambda}(t) & = \begin{cases}\left\|h_{\alpha \beta}(t, \lambda)\right\|_{\alpha, \beta=1}^{2}, & p>1, \\
p_{0}-\lambda \tilde{p}_{0}, & p=1,\end{cases}
\end{align*}
$$

where $B\left(\mathcal{H}^{n}\right) \ni h_{11}(t, \lambda)=h_{11}^{*}(t, \bar{\lambda})$ is a three-diagonal operator matrix whose elements under the diagonal are equal $\left(\frac{i}{2}\left(q_{1}-\lambda \tilde{q}_{1}\right), \ldots, \frac{i}{2}\left(q_{n-1}-\lambda \tilde{q}_{n-1}\right)\right)$, the elements on the diagonal are equal to $\left(-\left(p_{0}-\lambda \tilde{p}_{0}\right), \ldots,-\left(p_{n-1}-\lambda \tilde{p}_{n-1}\right)\right)$, the rest of the elements are equal to zero. $B\left(\mathcal{H}^{n+1}, \mathcal{H}^{n}\right) \ni h_{12}(t, \lambda)=h_{21}^{*}(t, \bar{\lambda})$ is an operator matrix whose elements with indices $j, j-1$ are equal to $I_{1}, j=2, \ldots, n$, the element with index $n, n+1$ is equal $\frac{1}{2}\left(q_{n}^{*}-\lambda q_{n}^{*}\right)$, the rest of the elements are equal to zero. $B\left(\mathcal{H}^{n+1}\right) \ni h_{22}(t, \lambda)=h_{22}^{*}(t, \bar{\lambda})$ is an operator matrix whose last row is equal to $\left(0, \ldots, 0,-i I_{1},-\left(p_{n}-\lambda \tilde{p}_{n}\right)\right)$, the rest of elements are equal to zero.

Therefore in the equation (2) with coefficients (10), (11), $H_{\lambda}(t)$ depend on λ in a nonlinear manner for $r \leq s$, and in a linear manner for $r>s$,

$$
\begin{equation*}
H_{\lambda}(t)=H_{0}(t)+\lambda H(t), \quad H_{0}^{*}(t)=H_{0}(t) \tag{12}
\end{equation*}
$$

Similarly to the general equation (2), for the equation (2) with coefficients (10),(11), the weight is

$$
W_{\lambda}(t)= \begin{cases}\Im H_{\lambda}(t) / \Im \lambda, & \text { if } \quad \Im \lambda \neq 0, \tag{13}\\ \frac{\partial H_{\lambda}(t)}{\partial \lambda}, & \text { if } \Im \lambda=0, \quad p^{-1}(t, \lambda) \in B(\mathcal{H}) .\end{cases}
$$

Everywhere below, unless stated otherwise, we assume that in the equation (2) with coefficients (10), (11), $W_{\lambda}(t) \geq 0(\Im \lambda \neq 0)$.

Moreover, tacitly we assume that the following condition holds:

$$
\begin{gather*}
\exists \lambda_{0} \in C ; \quad \alpha, \beta \in \overline{\mathcal{I}}, \quad 0 \in[\alpha, \beta], \quad \text { the number } \delta>0: \\
p^{-1}\left(t, \lambda_{0}\right) \in B(\mathcal{H}), \quad \forall t \in[\alpha, \beta], \tag{14}\\
m\left[\chi_{\alpha, \beta} y\left(t, \lambda_{0}\right), \chi_{\alpha, \beta} y\left(t, \lambda_{0}\right)\right] \geq \delta\left\|x\left(0, \lambda_{0}\right)\right\|^{2} .
\end{gather*}
$$

For any solution $y\left(t, \lambda_{0}\right)$ of the equation (6) as $\lambda=\lambda_{0}$, where

$$
\begin{gather*}
m[f(t), g(t)]=\int_{\mathcal{I}} \sum_{k=0}^{s} m_{k}[f(t), g(t)] d t, \\
m_{2 j}[f(t), g(t)]=\left(\tilde{p}_{2 j}(t) f^{(j)}(t), g^{(j)}(t)\right), \tag{15}\\
m_{2 j-1}[f(t), g(t)]=\frac{i}{2}\left\{\left(\tilde{q}_{j}^{*}(t) f^{(j)}(t), g^{(j-1)}(t)\right)-\left(\tilde{q}_{j}(t) f^{(j-1)}(t), g^{(j)}(t)\right)\right\},
\end{gather*}
$$

$\chi_{\alpha, \beta}$ is a characteristic function of the interval $(\alpha, \beta), x(t, \lambda)$ is defined by (5).
For sufficiently smooth vector-function $f(t)$ we denote

$$
\mathcal{H}^{p} \ni F_{\lambda}(t)=\left\{\begin{array}{l}
\left(\sum_{j=0}^{s / 2} \oplus f^{(j)}(t)\right) \oplus \mathrm{O} \oplus \ldots \tag{16}\\
\quad \ldots \oplus \mathrm{O}, \quad r=2 n, \quad r=2 n+1>1, \quad s<2 n, \\
\left(\sum_{j=0}^{n-1} \oplus f^{(j)}(t)\right) \oplus \mathrm{O} \oplus \ldots \oplus \\
\quad \oplus \mathrm{O} \oplus\left(-i f^{(n)}(t)\right), \quad r=2 n+1>1, \quad s=2 n, \\
f(t), \quad r=1, \\
\text { an analog of }(5) \text { for } f(t), r \leq s
\end{array}\right.
$$

Lemma 1. Let the vector-function $f(t) \in C^{s}(\overline{\mathcal{I}}), F_{\bar{\lambda}}(t)$ be defined by (16) with $\bar{\lambda}$ instead of $\lambda, W_{\lambda}(t)$ be defined by (13), (10), (11). Then
(17)

$$
W_{\lambda}(t) F_{\bar{\lambda}}(t)=\left\{\begin{array}{l}
\left(\sum_{j=0}^{s / 2-1} \oplus\left(f^{[s-j]}(t \mid m)+\left(f^{[s-j-1]}(t \mid m)\right)^{\prime}\right)\right) \oplus \\
f^{[s / 2]}(t \mid m) \oplus \mathrm{O} \oplus \ldots \oplus \mathrm{O}, \\
r=2 n+1, \quad r=2 n, \quad 0<s<2 n, \\
\left(\sum_{j=0}^{n-1} \oplus\left(f^{[s-j]}(t \mid m)+\left(f^{[s-j-1]}(t \mid m)\right)^{\prime}\right)\right) \\
\oplus \mathrm{O} \oplus \ldots \oplus \mathrm{O} \oplus\left(-i f^{[n]}(t \mid m)\right), \\
r=2 n+1>1, \quad s=2 n, \\
\tilde{p}_{0}(t) f(t) \oplus \mathrm{O} \oplus \ldots \oplus \mathrm{O}, \quad s=0 \\
\left(\sum_{j=0}^{n-1} \oplus\left(f^{[s-j]}(t \mid m)+\left(f^{[s-j-1]}(t \mid m)\right)^{\prime}\right)\right) \oplus \mathrm{O} \oplus \ldots \\
\quad \ldots \oplus \mathrm{O}+H_{\lambda}(t)\left(\mathrm{O} \oplus \ldots \oplus \mathrm{O} \oplus f^{[n]}(t \mid m)\right), r \leq s=2 n
\end{array}\right.
$$

for λ, t such that $p^{-1}(t, \lambda) \in B(\mathcal{H})$.
Proof. The proof for $r>s$ follows from (7)-(11), (16).
Let $r \leq s=2 n$. Let $\Im \lambda \neq 0$. Since
(18) $\quad W_{\lambda}(t) F_{\bar{\lambda}}=\frac{1}{2 i \Im \lambda}\left(\left(H_{\lambda}(t) F_{\lambda}(t)-H_{\bar{\lambda}}(t) F_{\bar{\lambda}}\right)+H_{\lambda}(t)\left(F_{\bar{\lambda}}(t)-F_{\lambda}(t)\right)\right)$,
using (7)-(10) and the fact that

$$
\begin{equation*}
H_{\lambda}(t) F_{\lambda}(t)=i J\left(F_{\lambda}(t)\right)^{\prime}-\operatorname{col}\left\{f^{[s]}(t \mid l-\lambda m), 0, \ldots, 0\right\} \tag{19}
\end{equation*}
$$

we obtain (17) since $\Im \lambda \neq 0$.

For $\lambda_{0} \in R, t \in \overline{\mathcal{I}}$ which imply that $p^{-1}\left(t, \lambda_{0}\right) \in B(\mathcal{H})$, formula (17) is proved by passing to the limit for $\lambda \rightarrow \lambda_{0}+i 0$. The lemma is proved.

As is seen from the proof, Lemma 1 remains true without assuming that $W_{\lambda}(t) \geq$ $0(\Im \lambda \neq 0)$ and (14).

Denote

$$
q= \begin{cases}s / 2, & r>s \\ s, & r \leq s\end{cases}
$$

Lemma 2. Let the vector-functions $f(t), g(t) \in C^{q}(\overline{\mathcal{I}}), W_{\lambda}(t)$ be defined by (13), (10), (11). Then

$$
\begin{equation*}
\sum_{k=0}^{s} m_{k}[f(t), g(t)]=\left(W_{\lambda}(t) F_{\lambda}(t), G_{\lambda}(t)\right)_{\mathcal{H}^{P}} \tag{20}
\end{equation*}
$$

for λ, t such that $p^{-1}(t, \lambda) \in B(\mathcal{H})\left(F_{\lambda}(t)\right.$ is defined by (16), $G_{\lambda}(t)$ is defined in a similar way using $g(t)$) and, therefore,

$$
\begin{equation*}
m\left[\chi_{\alpha, \beta} f(t), \chi_{\alpha, \beta} g(t)\right]=\left(F_{\lambda}(t), G_{\lambda}(t)\right)_{L_{W_{\lambda}}^{2}(\alpha, \beta)} \tag{21}
\end{equation*}
$$

for λ, t such that $p^{-1}(t, \lambda) \in B(\mathcal{H}) \forall t \in[\alpha, \beta] \subseteq \overline{\mathcal{I}}$.
Proof. For $r>s,(20)$ follows from (7)-(11), (16). For $r \leq s$, (20) can be proved using (5), (10), (16), (17) and (19). Lemma is proved.

Note that the proof shows that the formula (20) is valid without the fulfilment of the conditions $W_{\lambda}(t) \geq 0(\Im \lambda \neq 0)$ and (14).

In view of Lemma 2, the left-hand side of (20) is nonnegative for $g(t)=f(t)$ since $W_{\lambda}(t) \geq 0$ in the equation (2), (10), (11), and the condition (14) is equivalent that for this equation

$$
\begin{gather*}
\exists \lambda_{0} \in C, \quad \alpha, \beta \in \overline{\mathcal{I}}, \quad 0 \in[\alpha, \beta], \quad \text { the number } \delta>0: \\
p^{-1}\left(t, \lambda_{0}\right) \in B(\mathcal{H}), \quad \forall t \in[\alpha, \beta], \quad\left(\Delta_{\lambda_{0}}(\alpha, \beta) g, g\right) \geq \delta\|g\|^{2}, \quad g \in \mathcal{H}^{p} . \tag{22}
\end{gather*}
$$

Therefore, in view of [20], fulfilment of (14) implies its fulfilment with $\delta(\lambda)>0$ instead of the δ for $\lambda \in C$ such that $p^{-1}(t, \lambda) \in B(\mathcal{H}), \forall t \in[\alpha, \beta]$.

Example 1. Let $l[y]$ be a symmetric 2×2-matrix differential operation of the second order with a leading coefficient $\operatorname{diag}(p(t), 0)$, where $p(t) \neq 0$, and

$$
m[y]=-\left(\left(\begin{array}{cc}
0 & 0 \\
0 & q(t)
\end{array}\right) y^{\prime}\right)^{\prime}+P(t) y
$$

where $q(t)>0$, the operator $P(t)=P^{*}(t)>0$. In this case, $\operatorname{det} p(t, \lambda) \neq 0(\Im \lambda \neq 0)$, $W_{\lambda}(t) \geq 0(\Im \lambda \neq 0)$ and (14) holds, although $\operatorname{det} p_{1}(t) \equiv \operatorname{det} \tilde{p}_{1}(t) \equiv \operatorname{det} W_{\lambda}(t) \equiv 0$.

Definition 2. Every characteristic operator of the equation (2), (10), (11) corresponding to the equation (1) is said to be a characteristic operator of the equation (1) on \mathcal{I} (or simply c.o.).

Lemma 3. 1^{0}. We establish a correspondence between the vector-function $f(t) \in C^{s}(\overline{\mathcal{I}})$ and the vector-function $F_{\bar{\lambda}}(t)$ that is obtained from (16) with $\bar{\lambda}$ instead of λ.

Then equation (1) is equivalent to equation (2) with coefficients (10), (11), weight (13) and with $F(t)=F_{\bar{\lambda}}(t)$ for such λ and t that $p^{-1}(t, \lambda) \in B(\mathcal{H})$. Namely, if $y(t)$ is
a solution of the equation (1), then

$$
\begin{aligned}
x(t)= & x(t, \lambda, f) \\
& =\left\{\begin{array}{c}
\left(\sum_{j=0}^{n-1} \oplus y^{(j)}(t)\right) \oplus\left(\sum _ { j = 1 } ^ { n - 1 } \oplus \left(y^{[r-j]}(t \mid l-\lambda m)-\right.\right. \\
\left.\left.-f^{[s-j]}(t \mid m)\right)\right) \oplus y^{[n]}(t \mid l-\lambda m), \quad r=2 n>s, \\
\left(\sum_{j=0}^{n-1} \oplus y^{(j)}(t)\right) \oplus\left(\sum _ { j = 1 } ^ { n } \oplus \left(y^{[r-j]}(t \mid l-\lambda m)-\right.\right. \\
\left.\left.-f^{[s-j]}(t \mid m)\right)\right) \oplus\left(-i y^{(n)}(t)\right), \quad r=2 n+1>s, \quad r>1, \\
y(t), \quad r=1, \\
\left(\sum_{j=0}^{n-1} \oplus y^{(j)}(t)\right) \oplus\left(\sum _ { j = 1 } ^ { n } \oplus \left(y^{[s-j]}(t \mid l-\lambda m)-\right.\right. \\
\left.\left.-f^{[s-j]}(t \mid m)\right)\right), r \leq s=2 n \\
\quad\left(h e r e ~ f^{[k]}(t \mid m) \equiv 0 \text { as } k \leq 0\right)
\end{array}\right.
\end{aligned}
$$

is a solution of (2) with coefficients (10), (11), weight (13) and with $F(t)=F_{\bar{\lambda}}(t)$. Any solution of the equation (2) with coefficients (10), (11), weight (13) and with such $F(t)$ is equal to (23), where $y(t)$ is a solution of (1).
2^{0}. Let $M(\lambda)$ be a c.o. of the equation (1), \mathcal{H}^{p}-valued vector-function $F(t) \in L_{W_{\lambda}}^{2}(\mathcal{I})$ (in particular, one can set $F(t)=F_{\bar{\lambda}}(t)$, where $\left.f(t) \in C^{q}(\overline{\mathcal{I}}), m[f(t), f(t)]<\infty\right)$. Then the integral (3) converges strongly and

$$
\begin{equation*}
\left\|\mathcal{R}_{\lambda} F(t)\right\|_{L_{W_{\lambda}}^{2}(\mathcal{I})}^{2} \leq \Im\left(\mathcal{R}_{\lambda} F, F\right)_{L_{W_{\lambda}}^{2}(\mathcal{I})} / \Im \lambda \quad(\Im \lambda \neq 0) \tag{24}
\end{equation*}
$$

If, additionally, $F(t)$ has compact support, then the inequality (24) is valid without the requirement (14).

Proof. 1^{0} is verified using direct calculations taking into account (7)-(11) and Lemma 1.
2^{0} is proved in [20] for the general equation (2) satisfying a condition of type (22) as $\lambda_{0} \in \mathcal{A}$, and therefore it is proved for the equation (2) with coefficients (10), (11), weight (13). The statement 2^{0} for $F(t)$ with compact support is also proved in [20] for the general equation (2) without a condition of the type (22). Lemma is proved.

We notice that one can see from the proof that item 1° of Lemma 3 is valid without the fulfilment of the condition $W_{\lambda}(t) \geq 0(\Im \lambda \neq 0)$ and (14).

One can deduce from Lemmas $1-3$ the following.
Corollary 1. Let the vector-functions $x(t), y(t) \in C^{p}([\alpha, \beta]), f(t), g(t) \in C^{s}([\alpha, \beta])$, $p^{-1}(t, \lambda), p^{-1}(t, \mu) \in B(\mathcal{H}) \forall t \in[\alpha, \beta] \subseteq \overline{\mathcal{I}}$ and

$$
l[y]-\lambda m[y]=m[f], \quad l[x]-\mu m[x]=m[g] .
$$

Then Green's formula is valid,

$$
\begin{aligned}
m\left[\chi_{\alpha, \beta} f(t), \chi_{\alpha, \beta} x(t)\right] & -m\left[\chi_{\alpha, \beta} y(t), \chi_{\alpha, \beta} g(t)\right]+(\lambda-\bar{\mu}) m\left[\chi_{\alpha, \beta} y(t), \chi_{\alpha, \beta} x(t)\right] \\
& =\left.([i \Re Q(t)] x(t, \lambda, f), y(t, \mu, g))\right|_{\alpha} ^{\beta},
\end{aligned}
$$

where $x(t, \lambda, f)$ is defined by (23), $y(t, \mu, g)$ is defined in a similar way using $x(t)$ instead of $y(t), g$ instead of f and quasi-derivatives that correspond to the expression $l[x]-\mu m[x], Q(t)$ is defined by (10), (11).

We consider pre-Hilbert spaces $\stackrel{\circ}{H}$ and H of vector-functions $y(t) \in C_{0}^{s}(\overline{\mathcal{I}})$ and $y(t) \in$ $C^{s}(\overline{\mathcal{I}}), m[y(t), y(t)]<\infty$, correspondingly, with the scalar product

$$
\begin{equation*}
(f(t), g(t))_{m}=m[f(t), g(t)] \tag{25}
\end{equation*}
$$

where $m[f(t), g(t)]$ is defined by (15).

Definition 3. By $\stackrel{\circ}{L}{ }_{m}^{2}(\mathcal{I})$ and $L_{m}^{2}(\mathcal{I})$ we denote the completions of the spaces $\stackrel{\circ}{H}$ and H in the norms $\|\cdot\|_{m}=\sqrt{(\cdot, \cdot)_{m}}$ correspondingly. By $\stackrel{\circ}{\mathrm{P}}$ we denote the orthogonal projection in $L_{m}^{2}(\mathcal{I})$ onto $L_{m}^{2}(\mathcal{I})$.

We consider, in $L_{m}^{2}(\mathcal{I})$, the symmetric relation

$$
\begin{align*}
\mathcal{L}_{0}^{\prime}=\left\{\{\tilde{y}(t), \tilde{g}(t)\} \mid \tilde{y}(t) \stackrel{L_{m}^{2}(\mathcal{I})}{=} y(t),\right. & \tilde{g}(t) \stackrel{L_{m}^{2}(\mathcal{I})}{=} g(t), \tag{26}\\
& \left.y(t) \in C_{0}^{p}(\overline{\mathcal{I}}), g(t) \in C_{0}^{s}(\overline{\mathcal{I}}), l[y]=m[g]\right\} .
\end{align*}
$$

Further we assume that \mathcal{L}_{0}^{\prime} consists of pairs of the type $\{y(t), g(t)\}$. We denote $\mathcal{L}_{0}=\overline{\mathcal{L}^{\prime}}{ }_{0}$.
In the following theorem the generalized resolvents $R_{\lambda}=\int_{-\infty}^{\infty} \frac{d E_{\mu}}{\mu-\lambda}$ of the relation \mathcal{L}_{0} are constructed and corresponding generalized spectral families $E_{\mu}=E_{\mu-0}$ [10] are found. In this theorem we denote $E_{\alpha, \beta}=\frac{1}{2}\left(E_{\beta+0}+E_{\beta}-E_{\alpha+0}-E_{\alpha}\right),-\infty<\alpha \leq \beta<$ ∞.
Theorem 1. 1^{0}. Let $M(\lambda)$ be the characteristic operator of the equation (1),

$$
\begin{equation*}
x_{\lambda}\left(t, F_{\bar{\lambda}}\right)=\operatorname{col}\left\{y_{j}(t, \lambda, f)\right\}_{j=1}^{p} \quad\left(y_{j} \in \mathcal{H}\right) \tag{27}
\end{equation*}
$$

be the corresponding solution (3) of the equation (2) with coefficients (10), (11), weight (13) and $F(t)=F_{\bar{\lambda}}(t)$, where $F_{\bar{\lambda}}(t)$ is defined by (16) with $\bar{\lambda}$ instead of $\lambda, f(t) \in C^{s}(\overline{\mathcal{I}})$, $m[f(t), f(t)]<\infty$ (and therefore $F_{\bar{\lambda}}(t) \in L_{W_{\lambda}}^{2}(\mathcal{I})$ in view of (20)).

Then an integro-differential operator $R_{\lambda} f=y_{1}(t, \lambda, f)$ which is densely defined in $L_{m}^{2}(\mathcal{I})$ and given by the first vector-valued component of the solution (27) is, after closing, the generalized resolvent of the relation \mathcal{L}_{0}.
2^{0}. Let $M(\lambda)$ be the characteristic operator of the equation (1) (and therefore by [20] $\Im M(\lambda) \geq 0$ as $\Im \lambda>0)$ and $\sigma(\mu)=w-\lim _{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{0}^{\mu} \Im \mathrm{M}(\mu+i \varepsilon) d \mu$ be the spectral operatorfunction that corresponds to $M(\lambda)$.

Let E_{μ} be the generalized spectral family corresponding to the generalized resolvent R_{λ} from the item 1° of this theorem. Then for any $f(t) \in C_{0}^{s}(\overline{\mathcal{I}})$ the equality

$$
\begin{equation*}
\stackrel{\circ}{P} E_{\alpha, \beta} f(t)=\stackrel{\circ}{P} \int_{\alpha}^{\beta}\left[X_{\mu}(t)\right]_{1} d \sigma(\mu) \varphi(\mu, f), \tag{28}
\end{equation*}
$$

is valid in $L_{m}^{2}(\mathcal{I})$, where $\left[X_{\lambda}(t)\right]_{1} \in B\left(\mathcal{H}^{p}, \mathcal{H}\right)$ is the first row of the operator solution $X_{\lambda}(t)$ of the homogeneous equation (2) with coefficients (10), (11) that is written in the matrix form and such that $X_{\lambda}(0)=I_{p}$,

$$
\begin{equation*}
\varphi(\mu, f)=\int_{\mathcal{I}}\left(\left[X_{\mu}(t)\right]_{1}\right)^{*} m[f] d t \tag{29}
\end{equation*}
$$

if $p^{-1}(t, \mu) \in B(\mathcal{H}) \forall t \in \overline{\mathcal{I}}, \mu \in[\alpha, \beta]$.
Moreover, for $f(t) \in \mathrm{D}\left(\mathcal{L}_{0}^{\prime}\right)$ (see (26)) and with $r>s$ (or with $r<s$, if additionally $\left.\stackrel{\circ}{P}\left(E_{+0}-E_{0}\right) f(t)=0\right)$, the inverse formula in $L_{m}^{2}(\mathcal{I})$

$$
\begin{equation*}
f(t)=\stackrel{\circ}{P} \int_{-\infty}^{\infty}\left[X_{\mu}(t)\right]_{1} d \sigma(\mu) \varphi(\mu, f) \tag{30}
\end{equation*}
$$

and Parceval's equality

$$
\begin{equation*}
m[f(t), g(t)]=(\varphi(\mu, f), \varphi(\mu, g))_{L^{2}(R, d \sigma)} \tag{31}
\end{equation*}
$$

are valid, where $g(t) \in C_{0}^{s}(\overline{\mathcal{I}})$.
Let us explain that, for $r>s$,

$$
\stackrel{\circ}{P} \int_{-\infty}^{\infty}=\lim _{\substack{\alpha \rightarrow-\infty \\ \beta \rightarrow \infty}} \stackrel{\circ}{P} \int_{\alpha}^{\beta}
$$

in (30), and for $r<s$,

$$
\stackrel{\circ}{P} \int_{-\infty}^{\infty}=\lim _{\substack{\alpha \rightarrow-\infty \\ \beta \rightarrow-0}} \stackrel{\circ}{P} \int_{\alpha}^{\beta}+\lim _{\substack{\delta \rightarrow \infty \\ \gamma \rightarrow+0}} \stackrel{\circ}{P} \int_{\gamma}^{\delta},
$$

where the limits exist in $\stackrel{\circ}{L_{m}^{2}}(\mathcal{I})$. Similarly, $\int_{-\infty}^{\infty}=\int_{-\infty}^{-0}+\int_{+0}^{\infty}$ in the right-hand side of (31) for $r<s$.

Proof. Let for definiteness $r \leq s=2 n$ (for $r>s$ the proof becomes simpler due to (10)-(12)).
1^{0}. Let $\Im \lambda \neq 0$. In view of the item 1° of Lemma $3, y_{1}(t, \lambda, f)$ is a solution of (1). Using (10) and Lemmas 1-3 one can show that

$$
\begin{align*}
& \sum_{k=0}^{s} m_{k}\left[y_{1}(t, \lambda, f), y_{1}(t, \lambda, f)\right]-\Im\left(\sum_{k=0}^{s} m_{k}\left[y_{1}(t, \lambda, f), f(t)\right]\right) / \Im \lambda \tag{32}\\
& \quad=\left(W_{\lambda}(t) x(t, \lambda, f), x(t, \lambda, f)\right)_{\mathcal{H}^{s}}-\Im\left(W_{\lambda}(t) x(t, \lambda, f), F_{\bar{\lambda}}(t)\right)_{\mathcal{H}^{s}} / \Im \lambda
\end{align*}
$$

although for $r \leq s$ the corresponding items in the right- and left-hand sides of (32) do not coincide. Therefore ${ }^{1}$

$$
\begin{align*}
& \left\|y_{1}(t, \lambda, f)\right\|_{L_{m}^{2}(\alpha, \beta)}^{2}-\Im\left(y_{1}(t, \lambda, f), f(t)\right)_{L_{m}^{2}(\alpha, \beta)} / \Im \lambda \tag{33}\\
& \quad=\|x(t, \lambda, f)\|_{L_{W_{\lambda}}^{2}(\alpha, \beta)}^{2}-\Im\left(x(t, \lambda, f), F_{\bar{\lambda}}(t)\right)_{L_{W_{\lambda}}^{2}(\alpha, \beta)} / \Im \lambda .
\end{align*}
$$

In view of the item 2° of Lemma 3 a nonnegative limit of the right-hand-side of (33) exists, when $(\alpha, \beta) \uparrow \mathcal{I}$. Consequently

$$
\begin{equation*}
\left\|y_{1}(t, \lambda)\right\|_{L_{m}^{2}(\mathcal{I})}^{2} \leq \Im\left(y_{1}(t, \lambda), f(t)\right)_{L_{m}^{2}(\mathcal{I})} / \Im \lambda \tag{34}
\end{equation*}
$$

Since $M(\lambda)=M^{*}(\bar{\lambda})$, then the operator $\mathcal{R}_{\lambda}(3)$ in $L_{W_{\lambda}}^{2}(\alpha, \beta)$ with finite $(\alpha, \beta) \subseteq \mathcal{I}$ possesses the property $\mathcal{R}_{\lambda}=\mathcal{R}_{\bar{\lambda}}^{*}$. Therefore $\left.\left([\Re Q(t)] R_{\lambda} F, R_{\bar{\lambda}} G\right)\right|_{\alpha} ^{\beta}=0$. It follows from Corollary 1 and (34) that $\forall f(t), g(t) \in C^{s}(\overline{\mathcal{I}}) \bigcap L_{m}^{2}(\mathcal{I})$

$$
m\left[y_{1}(\lambda, f), g\right]=m\left[f, y_{1}(\bar{\lambda}, g)\right] .
$$

Thus the closure of the operator $R_{\lambda} f=y_{1}(t, \lambda, f)$ in $L_{m}^{2}(\mathcal{I})$ possesses a property

$$
\begin{equation*}
R_{\lambda}=R_{\bar{\lambda}}^{*} . \tag{35}
\end{equation*}
$$

Since in view of (34) for any $f(t), g(t) \in C^{s}(\overline{\mathcal{I}}) \bigcap L_{m}^{2}(\mathcal{I})$ and with $(\alpha, \beta) \uparrow \mathcal{I}$,

$$
\left(y_{1}(\lambda, f), g\right)_{L_{m}^{2}(\alpha, \beta)} \rightarrow\left(y_{1}(\lambda, f), g\right)_{L_{m}^{2}(\mathcal{I})}
$$

uniformly in λ from any compact set $\in C / R$, we see that, in view of analyticity of the operator function $M(\lambda)$ and vector-function $W_{\lambda}(t) F_{\bar{\lambda}}(t)$, (17), the operator R_{λ} depends analytically on the non-real λ in view of [15, p. 195].

Finally, similarly to the case $s=0$ [20] using Corollary 1 it is verified that

$$
\begin{equation*}
R_{\lambda}\left(\mathcal{L}_{0}-\lambda\right) \subset \mathbf{I} \tag{36}
\end{equation*}
$$

where \mathbf{I} is the graph of the identical operator in $L_{m}^{2}(\mathcal{I})$.
Taking into account (34)-(36) and analyticity of R_{λ}, we see in view of [10] that R_{λ} is a generalized resolvent of \mathcal{L}_{0}. Item 1° is proved.

$$
\begin{aligned}
& { }^{1} \text { In particular this implies that } \\
& \qquad\left\|y_{1}(t, \lambda, f)\right\|_{L_{m}^{2}(\alpha, \beta)}^{2}-\frac{\Im\left(y_{1}(t, \lambda, f), f(t)\right)_{L_{m}^{2}(\alpha, \beta)}}{\Im \lambda}=\frac{U[x(\beta, \lambda, f)]-U[x(\alpha, \lambda, f)]}{2 \Im \lambda} .
\end{aligned}
$$

2^{0}. Let the vector-functions $f(t), g(t) \in C_{0}^{s}(\mathcal{I}), \lambda=\mu+i \varepsilon, G_{\lambda}(t)$ be defined by (16) with $g(t)$ instead of $f(t)$. In view of the Stieltjes inversion formula,

$$
\begin{aligned}
& \left(E_{\alpha, \beta} f, g\right)_{m}=\lim _{\varepsilon \downarrow 0} \frac{1}{2 \pi i} \int_{\alpha}^{\beta}\left(\left[y_{1}(\lambda, f)-y_{1}(\bar{\lambda}, f)\right], g\right)_{m} d \mu \\
& \quad=\lim _{\varepsilon \downarrow 0} \frac{1}{2 \pi i} \int_{\alpha}^{\beta}\left[\left(x(t, \lambda, f), G_{\lambda}(t)\right)_{L_{W_{\lambda}}^{2}(\mathcal{I})}-\left(x(t, \bar{\lambda}, f), G_{\bar{\lambda}}(t)\right)_{L_{W_{\lambda}}^{2}}(\mathcal{I})\right. \\
& \left.\quad+2 i \int_{\mathcal{I}}\left(\left(\Im p^{-1}(t, \lambda)\right) f^{[n]}(t \mid m), g^{[n]}(t \mid m)\right) d t\right] d \mu \\
& \quad=\lim _{\varepsilon \downarrow 0} \frac{1}{2 \pi i} \int_{\alpha}^{\beta}\left[\left(M(\lambda) \int_{\mathcal{I}} X_{\bar{\lambda}}^{*}(t) W_{\lambda}(t) F_{\bar{\lambda}}(t) d t, \int_{\mathcal{I}} X_{\lambda}^{*}(t) W_{\bar{\lambda}}(t) G_{\lambda}(t) d t\right)\right. \\
& \left.\quad-\left(M^{*}(\lambda) \int_{\mathcal{I}} X_{\lambda}^{*}(t) W_{\bar{\lambda}}(t) F_{\lambda}(t) d t, \int_{\mathcal{I}} X_{\bar{\lambda}}^{*}(t) W_{\lambda}(t) G_{\bar{\lambda}}(t) d t\right)\right] d \mu \\
& \quad=\int_{\alpha}^{\beta}\left(d \sigma(\mu) \int_{\mathcal{I}} X_{\mu}^{*}(t) W_{\mu}(t) F_{\mu}(t) d t, \int_{\mathcal{I}} X_{\mu}^{*}(t) W_{\mu}(t) G_{\mu}(t) d t\right),
\end{aligned}
$$

where the second equality is a corollary of (10), (13), (20), (23), next to last is a corollary of (3), and the last follows from the well-known generalization of the Stieltjes inversion formula [27, proposition (Б), p. 803], [4, Lemma, p. 952]. But for $\mu \in[\alpha, \beta]$

$$
\begin{equation*}
\int_{\mathcal{I}} X_{\mu}^{*}(t) W_{\mu}(t) F_{\mu}(t) d t=\int_{\mathcal{I}}\left(\left[X_{\mu}(t)\right]_{1}\right)^{*} m[f] d t \tag{38}
\end{equation*}
$$

because, in view of (20),

$$
\begin{aligned}
\forall h \in \mathcal{H}^{\mathrm{s}}: & \left(\int_{\mathcal{I}} X_{\mu}^{*}(t) W_{\mu}(t) F_{\mu}(t) d t, h\right) \\
& =\int_{\mathcal{I}}\left(W_{\mu}(t) F_{\mu}(t), X_{\mu}(t) h\right)=\int_{\mathcal{I}}\left(\left(\left[X_{\mu}\right]_{1}\right)^{*} m[f], h\right) d t
\end{aligned}
$$

Due to (37), (38),

$$
\begin{equation*}
\left(E_{\alpha, \beta} f, g\right)_{m}=\int_{\alpha}^{\beta}(d \sigma(\mu) \varphi(\mu, f), \varphi(\mu, g)) \tag{39}
\end{equation*}
$$

Replacing \int_{α}^{β} in (39) by an integral sum and using (20), (38) we obtain that

$$
\begin{aligned}
\left(E_{\alpha, \beta} f, g\right)_{m} & =\left(\int_{\alpha}^{\beta}\left[X_{\mu}(t)\right]_{1} d \sigma(\mu) \varphi(\mu, f), g(t)\right)_{m} \\
& =\left(\stackrel{\circ}{P} \int_{\alpha}^{\beta}\left[X_{\mu}(t)\right]_{1} d \sigma(\mu) \varphi(\mu, f), g(t)\right)_{m}
\end{aligned}
$$

and (28) is proved.
Since $E_{\infty} f(t)=f(t)$ if $f(t) \in D\left(\mathcal{L}_{0}^{\prime}\right)$, passing to the limit in (28), (39) for $\alpha \rightarrow$ $-\infty, \beta \rightarrow-0$ and $\alpha \rightarrow+0, \beta \rightarrow \infty$ we obtain (30) and (31). Item 2° and Theorem 1 are proved.

The following remark follows from [5, 6] and from [20, formula (1.70)].
Remark 1. If $m[y]=w(t) y$ and if for the equation (2) with coefficients (10), (11) that corresponds to the equation (6), the condition

$$
\begin{equation*}
\exists \lambda_{0} \in C, \quad \alpha, \beta, \delta>0:\left(\Delta_{\lambda_{0}}(\alpha, \beta) g, g\right) \geq \delta\|g\|^{2} \quad \forall g \in N^{\perp} \tag{40}
\end{equation*}
$$

holds true, then $R_{\lambda} f$ for any generalized resolvent R_{λ} of \mathcal{L}_{0} and any $f(t) \in C_{0}(\overline{\mathcal{I}})$ have the same representation as in item 1° of Theorem 1.

An analysis of the proof of Theorem 1 shows the following.

Remark 2. If (14) is not assumed to hold, then we have the following: 1) item 1° of Theorem 1 is valid either for $f(t) \in C^{s}(\overline{\mathcal{I}})$, if the interval \mathcal{I} is finite or for $f(t) \in C_{0}^{s}(\mathcal{I})$, if $L_{m}^{2}(\mathcal{I})=L_{m}^{2}(\mathcal{I})$.
2) Identity (28) holds for $L_{m}^{2}(\mathcal{I})$, if one changes it as follows: a) $\sigma(\mu)$ is a spectral function corresponding to $P M(\lambda) P(\Im P M(\lambda) P \geq 0$ as $\Im \lambda>0[20]) ;$ b) remove $\stackrel{\circ}{P}$ from (28); c) $f(t) \in C^{s}(\overline{\mathcal{I}})$ and $\varphi(\mu, f)=\int_{\mathcal{I}} X_{\mu}^{*}(t) W_{\mu}(t) F_{\mu}(t) d t$, if the interval \mathcal{I} is finite or $f(t) \in C_{0}^{s}(\overline{\mathcal{I}})$, if $L_{m}^{2}(\mathcal{I})=L_{m}^{2}(\mathcal{I})$.

The following theorem establishes a relationship between the generalized resolvents of the relations \mathcal{L}_{0} that are given by Theorem 1 , and the boundary value problems for the equation (1) with boundary conditions depending on the spectral parameter. Already in the simplest case, where l and m that generate (1) are self-adjoint differential operators we see that the pair $\{y, f\}$ satisfies the boundary conditions that contain both y derivatives and f derivatives of corresponding orders at the ends of interval.

Theorem 2. Let the interval $\mathcal{I}=(a, b)$ be finite.
Let the operator-functions $\mathcal{M}_{\lambda}, \mathcal{N}_{\lambda} \in B\left(\mathcal{H}^{p}\right)$, depend analytically on the non-real λ,

$$
\begin{equation*}
\mathcal{M}_{\lambda}^{*}[\Re Q(a)] \mathcal{M}_{\lambda}=\mathcal{N}_{\lambda}^{*}[\Re Q(b)] \mathcal{N}_{\lambda} \quad(\Im \lambda \neq 0), \tag{41}
\end{equation*}
$$

where $Q(t)$ is the coefficient of the equation (2) corresponding by Lemma 3 to the equation (1) (see (10), (11)),

$$
\begin{equation*}
\left\|\mathcal{M}_{\lambda} h\right\|+\left\|\mathcal{N}_{\lambda} h\right\|>0 \quad\left(0 \neq h \in \mathcal{H}^{p}, \quad \Im \lambda \neq 0\right) \tag{42}
\end{equation*}
$$

the lineal $\left\{\mathcal{M}_{\lambda} h \oplus \mathcal{N}_{\lambda} h \mid h \in \mathcal{H}^{p}\right\} \subset \mathcal{H}^{2 p}$ is a maximal \mathcal{Q}-nonnegative subspace since $\Im \lambda \neq 0$, where $\mathcal{Q}=(\Im \lambda) \operatorname{diag}(\Re Q(a),-\Re Q(b))$ (and therefore

$$
\begin{equation*}
\left.\Im \lambda\left(\mathcal{N}_{\lambda}^{*}[\Re Q(b)] \mathcal{N}_{\lambda}-\mathcal{M}_{\lambda}^{*}[\Re Q(a)] \mathcal{M}_{\lambda}\right) \leq 0 \quad(\Im \lambda \neq 0)\right) \tag{43}
\end{equation*}
$$

Then for any $f(t) \in C^{s}(\overline{\mathcal{I}})$ the boundary problem that is obtained by adding the boundary conditions
(44)

$$
\exists h=h(\lambda, f) \in \mathcal{H}^{p}: x(a, \lambda, f)=\mathcal{M}_{\lambda} h, \quad x(b, \lambda, f)=\mathcal{N}_{\lambda} h
$$

to the equation (1), where $x(t, \lambda, f)$ is defined by (23), has the unique solution $R_{\lambda} f$ as $\Im \lambda \neq 0$. It is generated by the generalized resolvent R_{λ} of the relation \mathcal{L}_{0} that is constructed, as in item 1° of Theorem 1, using the c.o.

$$
M(\lambda)=-\frac{1}{2}\left(X_{\lambda}^{-1}(a) \mathcal{M}_{\lambda}+X_{\lambda}^{-1}(b) \mathcal{N}_{\lambda}\right)\left(X_{\lambda}^{-1}(a) \mathcal{M}_{\lambda}-X_{\lambda}^{-1}(b) \mathcal{N}_{\lambda}\right)^{-1}(i G)^{-1}
$$

where

$$
\left(X_{\lambda}^{-1}(a) \mathcal{M}_{\lambda}-X_{\lambda}^{-1}(b) \mathcal{N}_{\lambda}\right)^{-1} \in B\left(\mathcal{H}^{p}\right) \quad(\Im \lambda \neq 0)
$$

$X_{\lambda}(t)$ is an operator solution of the homogeneous equation (2) with coefficients (10), (11) and such that $X_{\lambda}(0)=I_{p}$.

Proof. Proof follows from Lemma 3, Theorem 1 and from from [20, Remark 1.1].
For $s=0$, Theorem 2 is known (see $[28,5]$ as $\operatorname{dim} \mathcal{H}<\infty,[20]$ as $r=1$, $\operatorname{dim} \mathcal{H}=\infty$).
Example 2. Let, in the equation (1), $r=4, s=2$.
a) Let $\mathcal{M}_{\lambda}=\mathcal{N}_{\lambda}=I_{p}$. Then the boundary conditions (44) can be represented in the form

$$
\begin{gather*}
y(a)=y(b), \quad y^{\prime}(a)=y^{\prime}(b), \\
y^{[2]}(a \mid l)=y^{[2]}(b \mid l), \tag{45}\\
y^{[3]}(a \mid l-\lambda m)-f^{[1]}(a \mid m)=y^{[3]}(b \mid l-\lambda m)-f^{[1]}(b \mid m) .
\end{gather*}
$$

In particular for the equation

$$
\begin{equation*}
y^{(I V)}-\lambda\left(-y^{\prime \prime}+y\right)=-f^{\prime \prime}+f \tag{46}
\end{equation*}
$$

conditions (45) have the form

$$
\begin{gather*}
y(a)=y(b), \quad y^{\prime}(a)=y^{\prime}(b), \quad y^{\prime \prime}(a)=y^{\prime \prime}(b), \\
y^{\prime \prime \prime}(a)+f^{\prime}(a)=y^{\prime \prime \prime}(b)+f^{\prime}(b) \tag{47}
\end{gather*}
$$

b) If $\operatorname{dim} \mathcal{H}=1$,

$$
\mathcal{M}_{\lambda}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \mathcal{N}_{\lambda}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

then the boundary conditions (44) can be written in the form

$$
\begin{equation*}
y(a)=y(b)=0, \quad y^{\prime}(a)=y^{[2]}(b \mid l), \quad y^{[2]}(a \mid l)=-y^{\prime}(b) . \tag{48}
\end{equation*}
$$

In particular for the equation (46) conditions (48) have the form

$$
\begin{equation*}
y(a)=y(b)=0, \quad y^{\prime}(a)=y^{\prime \prime}(b), \quad y^{\prime \prime}(a)=-y^{\prime}(b) \tag{49}
\end{equation*}
$$

On functions satisfying either the boundary condition (47) with $f(t) \equiv 0$ or the boundary conditions (49), expressions $l[y]=y^{(\mathrm{IV})}$ and $m[y]=-y^{\prime \prime}+y$ define a self-adjoint and symmetric operators correspondingly.

When the boundary conditions are such that $l[y]$ defines a self-adjoint operator and $m[y]$ defines only a symmetric operator on functions satisfying these conditions, then the eigenfunction expansion of the special scalar equation (6) in the regular case is constructed in $[7,14]$. We note that, in the general case, the boundary conditions (44) are not reduced to the boundary condition of $[7,14]$ type, since it is possible that conditions (44) in the case $[7,14]$ do not imply s boundary conditions containing only the derivatives of order up to $s-1$.

In the next theorem, $\mathcal{I}=R$ and condition (14) hold both on the negative semi-axis R_{-}(i.e. as $\mathcal{I}=R_{+}$) and on the positive semi-axis R_{+}(i.e. as $\mathcal{I}=R_{-}$).

Theorem 3. Let $\mathcal{I}=R$, the coefficient of the equation (6) be periodic on each of the semi-axes R_{+}and R_{-}with periods $T_{+}>0$ and $T_{-}>0$ correspondingly. Then the spectrums of the monodromy operators $X_{\lambda}\left(\pm T_{ \pm}\right)\left(X_{\lambda}(t)\right.$ is from Theorem 2) do not intersect the unit circle as $\Im \lambda \neq 0$, the c.o. $M(\lambda)$ of the equation (1) is unique and equal to

$$
\begin{equation*}
M(\lambda)=\left(\mathcal{P}(\lambda)-\frac{1}{2} I_{p}\right) \quad(i G)^{-1} \quad(\Im \lambda \neq 0) \tag{50}
\end{equation*}
$$

where the projection $\mathcal{P}(\lambda)=P_{+}(\lambda)\left(P_{+}(\lambda)+P_{-}(\lambda)\right)^{-1}, P_{ \pm}(\lambda)$ are Riesz projections of the monodromy operators $X_{\lambda}\left(\pm T_{ \pm}\right)$that correspond to their spectrums lying inside the unit circle, $\left(P_{+}(\lambda)+P_{-}(\lambda)\right)^{-1} \in B\left(\mathcal{H}^{p}\right)$ as $\Im \lambda \neq 0$.

Also let $\operatorname{dim} \mathcal{H}<\infty, \mathbf{A}=\left\{\mu \in R: \operatorname{det} p(t, \mu) \neq 0 \forall t \in\left(-T_{-}, T_{+}\right)\right\}$, a finite interval $\Delta \subset \mathbf{A}$. Then in item 2° of Theorem $1 d \sigma(\mu)=d \sigma_{a c}(\mu)+d \sigma_{d}(\mu), \mu \in \Delta$. Here $\sigma_{a c}(\mu) \in A C(\Delta)$ and, for $\mu \in \Delta$,

$$
\begin{equation*}
\sigma_{a c}^{\prime}(\mu)=\frac{1}{2 \pi} G^{-1}\left(Q_{-}^{*}(\mu) G Q_{-}(\mu)-Q_{+}^{*}(\mu) G Q_{+}(\mu)\right) G^{-1} \tag{51}
\end{equation*}
$$

where the projections $Q_{ \pm}(\mu)=q_{ \pm}(\mu)\left(P_{+}(\mu)+P_{-}(\mu)\right)^{-1}, q_{ \pm}(\mu)$ are Riesz projections of the monodromy matrixes $X_{\mu}\left(\pm T_{ \pm}\right)$corresponding to the multiplicators equal to 1 such that they are shifted inside the unit circle as μ is shifted to the upper half plane, $P_{ \pm}(\mu)=$ $\left.P_{ \pm}(\mu+i 0)\right) ; \sigma_{d}(\mu)$ is a jump function.

Let us notice that the sets on which $q_{ \pm}(\mu), P_{ \pm}(\mu),\left(P_{+}(\mu)+P_{-}(\mu)\right)^{-1}$ are not infinitely differentiable do not have finite limit points $\in \mathbf{A}$ as well as the set of points of increase of $\sigma_{d}(\mu)$.

Proof. Let the operator G be indefinite (otherwise the proof is modified in an obvious way). The unitary dichotomy of the operators $X_{\lambda}\left(\pm T_{ \pm}\right)$and the fact that $M(\lambda)(50)$ is a c.o. of the equation (1) on ($-T_{-}, T_{+}$) follow from [20, p. 161, 162]. Since $X_{\lambda}\left(t \pm T_{ \pm}\right)=$ $X_{\lambda}(t) X_{\lambda}\left(\pm T_{ \pm}\right), t \in R_{ \pm}$, and $\Im \lambda U\left[X_{\lambda}(t)\right]$ does not decrease as $\Im \lambda \neq 0$, we have that $M(\lambda)(50)$ is a c.o. of the equation (1) on any finite \mathcal{I} and therefore it is a c.o. on the axis.

Let for some non-real λ_{0} the homogeneous equation (2) with coefficients (10), (11) have a solution $x(t) \in L_{W_{\lambda_{0}}}^{2}\left(R^{1}\right)$.

Since, for $k \in \mathrm{Z}_{+}$,

$$
\begin{aligned}
\|x(t)\|_{L_{W_{\lambda_{0}}}^{2}\left(R^{1}\right)}^{2} & =\sum_{j=-\infty}^{0}\left(\Delta_{\lambda_{0}}\left(-k T_{-}, 0\right) x\left(-j k T_{-}\right), x\left(-j k T_{-}\right)\right) \\
& +\sum_{j=0}^{\infty}\left(\Delta_{\lambda_{0}}\left(0, k T_{+}\right) x\left(j k T_{+}\right), x\left(j k T_{+}\right)\right)
\end{aligned}
$$

and using condition (14) on $\mathcal{I}=R_{ \pm}$and estimates of the type [8, p. 290], we see that $x(0) \in H_{-} \bigcap H_{+}$, where $H_{ \pm}$are the invariant subspaces of the operators $X_{\lambda}\left(\pm T_{ \pm}\right)$that correspond to their spectrums lying inside the unit circle. But $H_{-} \bigcap H_{+}=\{0\}[20$, p. 162]. Therefore in view of Lemma 1.5 from [20] the c.o. $M(\lambda)(50)$ is unique.

Formula (51) follows from [19, Theorem 13]. Decomposition $d \sigma(\mu)=d \sigma_{a c}(\mu)+d \sigma_{d}$, $\mu \in \Delta$ as well as the remark after the formulating of Theorem 3 are proved in the same way as similar statements in [18]. In the proof for $r \leq s$ one should take into account that Krein-Lyubarsky theory [22] for homogeneous periodic system (2) is still valid for $\lambda \in \mathcal{A} \bigcap R$ and when $H_{\lambda}(t)$ contains λ is a Nevanlinna manner; it can be seen analysing the statement of this theory in [29, p. 147-150, 181-183] and the proof of Theorem 1.2 from [12, p. 305]. Theorem is proved.

Example 3. Let $\operatorname{dim} \mathcal{H}=1, l[y]=(i)^{n} y^{(n)}, m[y]=(i)^{2 n} y^{(2 n)}+y, \mathcal{I}=R$ (and therefore $\left.L_{m}^{2}(\mathcal{I})=\stackrel{\circ}{L_{m}^{2}}(\mathcal{I})\right)$. In this case, $E_{0}=E_{+0}$, the spectral matrix $\sigma(\mu) \in A C_{l o c}$, and, in view of Theorem 3 for $n=1,3, \ldots$,

$$
\begin{align*}
\sigma^{\prime}(\mu) & =\frac{1}{2 \pi n\left(k^{2 n}+1\right)}\left\{2 k^{n} A^{n}+\left(1-k^{2 n}\right) I_{2 n}+\sum_{j=1}^{n-1}\left(k^{2 n-j}\right.\right. \tag{52}\\
& \left.\left.+(-1)^{j+1} k^{j}\right)\left(A^{j}+(-1)^{j+1} A^{-j}\right)\right\}(i J)^{-1},
\end{align*}
$$

since $|\mu|<\frac{1}{2}$, where $\sum_{j=1}^{0}=0, \operatorname{rg} \sigma^{\prime}(\mu)=2$, and $\sigma^{\prime}(\mu)=0$ as $|\mu|>\frac{1}{2}$. For $n=$ $2,4,6, \ldots$, one has

$$
\begin{equation*}
\sigma^{\prime}(\mu)=\frac{1}{\pi n\left(k^{2 n}-1\right)} \sum_{j=1}^{n / 2}\left(k^{2 n-2 j+1}-k^{2 j-1}\right)\left(A^{2 j-1}+A^{1-2 j}\right)(i J)^{-1} \tag{53}
\end{equation*}
$$

since $0<\mu<\frac{1}{2}$, where $\operatorname{rg} \sigma^{\prime}(\mu)=4$, and $\sigma^{\prime}(\mu)=0$ as $\mu \notin[0,1 / 2]$. In (52), (53) $k=$ $-i \sqrt[n]{\frac{1+(-1)^{n} \sqrt{1-4 \mu^{2}}}{2 \mu}}, A=(i J)^{-1} H_{\mu}(t)$, where the matrices J and $H_{\mu}(t)$ are independent of t and defined by (10).

In particular, for $n=1,|\mu|<1 / 2$,

$$
\sigma^{\prime}(\mu)=\frac{1}{2 \pi}\left(\begin{array}{cc}
\frac{2}{\sqrt{1-4 \mu^{2}}} & 0 \\
0 & \frac{1}{2} \sqrt{1-4 \mu^{2}}
\end{array}\right) .
$$

And for $n=2,0<\mu<\frac{1}{2}$,

$$
\sigma^{\prime}(\mu)=\frac{1}{\pi} \sqrt{\frac{1+\sqrt{1-4 \mu^{2}}}{2 \mu(1-2 \mu)}} \cdot \frac{1}{\sqrt{1-2 \mu}+\sqrt{1+2 \mu}}\left(\begin{array}{cccc}
1 & 0 & 0 & \mu \\
0 & 1 & \mu & 0 \\
0 & \mu & \mu(1-\mu) & 0 \\
\mu & 0 & 0 & \mu(1-\mu)
\end{array}\right) .
$$

Remark 3. In the case $r \leq s$ in contrast to the case $r>s$, the point spectrum of the relation \mathcal{L}_{0}^{\prime} can be non-empty including the case when \mathcal{L}_{0}^{\prime} corresponds to the scalar equation (1) with periodic coefficients on the axis.

Indeed let $m[y]=-y^{\prime \prime}+y, l[y]=p(t) y$, where $p(t+4)=p(t) \in C(R), p(t)=$ $\left\{\begin{array}{ll}1, & 4 k \leq t \leq 4 k+1 \\ 0, & 4 k+2 \leq t \leq 4 k+3\end{array}\right.$. Then for any function $y(t) \in C_{0}^{2}(R)$ such that $\operatorname{supp} y(t) \subset$ $\bigcup_{k}[4 k+2,4 k+3]$, the pair $\{y(t), 0\} \in \mathcal{L}_{0}^{\prime}$, i.e. the point spectrum of \mathcal{L}_{0}^{\prime} contains $\lambda=0$. Similarly an example for $r=1, r=2, s=2$ is constructed.

The following remark is proved similarly to Theorem 3.
Remark 4. Let $\mathcal{I}=R_{+}$, the coefficients of the equation (6) be periodic with the period $T>0$. Then

1) Any c.o. of the equation (1) is found by combining the formula (4.4) from [20] and the formula (50).
2) If $\infty>\operatorname{dim} \mathcal{H}^{p}=2 k, L$ is a k dimensional G-neutral subspace (see [8]), then the c.o. of the equation (1), which corresponds to a self-adjoint boundary condition in zero, $x(0, \lambda, f) \in L$, is given by the formula (36) from [18]. The corresponding spectral matrix-function $\sigma(\mu)\left(d \sigma_{a c}(\mu), \mu \in \Delta_{+}\right)$is given for $r>s(r \leq s)$ by Theorem 6 from [18], starting from the monodromy matrix $X_{\lambda}(T)$ of the equation (6), where Δ_{+}is an analog of Δ from Theorem 3.

Acknowledgments. The author is grateful to Professor F. S. Rofe-Beketov for his great attention to this work.

References

1. F. Atkinson, Discrete and Continuous Boundary Problems, Acad. Press, New York-London, 1964. (Russian translation: Mir, Moscow, 1988, with supplements by I. S. Kats and M. G. Krein. Supplement I: R-functions-analytic functions mapping the upper half plane into itself (English transl. Amer. Math. Soc. Transl. Ser. 2, 103 (1974), 1-18). Supplement II: On spectral functions of a string).
2. Ju. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, RI, 1968. (Russian edition: Naukova Dumka, Kiev, 1965)
3. Yu. M. Berezanskii, Selfadjoint Operators in Spaces of Functions of Infinitely Many Variables, Amer. Math. Soc., Providence, RI, 1986. (Russian edition: Naukova Dumka, Kiev, 1978)
4. V. M. Bruk, The generalized resolvents and spectral functions of even order differential operators in a space of vector-valued functions, Mat. Zametki 15 (1974), no. 6, 945-954. (Russian); English transl. Math. Notes 15 (1974), 563-568.
5. V. M. Bruk, Linear relations in a space of vector functions, Mat. Zametki 24 (1978), no. 6, 499-511.(Russian); English transl. Math. Notes 24 (1979), 767-773.
6. V. M. Bruk, Generalized resolvents of symmetric relations generated on semi-axis by a differential expression and a nonnegative operator function, J. Math. Phys. Anal. Geom. 2 (2006), no. 4, 372-387.
7. L. Collatz, Eigenwertaufgaben mit Technischen Anwendungen, Geest \& Portig, Leipzig, 1963. (Russian translation: Nauka, Moscow, 1968)
8. Yu. L. Daletskiy and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1986. (Russian edition: Nauka, Moscow, 1970)
9. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1-95.
10. A. Dijksma and H. de Snoo, Self-adjoint extensions of symmetric subspaces, Pacific J. Math. 54 (1974), 71-100.
11. A. Dijksma and H. de Snoo, Eigenfunction expansions associated with pairs of ordinary differential expressions, J. Diff. Equat. 60 (1985), 21-56.
12. I. C. Gohberg and M. G. Krein, Theory of Volterra Operators in Hilbert Space and its Applications, Amer. Math. Soc., Providence, RI, 1970. (Russian edition: Nauka, Moscow, 1967)
13. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991. (Russian edition: Naukova Dumka, Kiev, 1984)
14. E. Kamke, Differentialgleichungen. Lo'sungsmethoden und Lo'sungen. Band I. Gewo'hnliche Differentialgleichungen, Akademische Verlagsgesellschaft, Leipzig, 1944. (Russian translation: Nauka, Moscow, 1976)
15. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966. (Russian translation: Mir, Moscow, 1972)
16. V. I. Khrabustovskiy, The spectral matrix of a periodic symmetric system with a degenerate weight on the axis, Teor. Funktsii Funktsional. Anal. i Prilozhen. 35 (1981), 111-119. (Russian)
17. V. I. Khrabustovskiy, Eigenfunction expansions of periodic systems with weight, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 1984, no. 5, 26-29. (Russian)
18. V. I. Khrabustovskiy, Spectral analysis of periodic systems with degenerate weight on the axis and half-axis, Teor. Funktsii Funktsional. Anal. i Prilozhen. 44 (1985), no. 4, 122-133. (Russian); English transl. J. Soviet Math. 48 (1990), no. 3, 345-355.
19. V. I. Khrabustovskiy, On the characteristic matrix of Weyl-Titchmarsh type for differentialoperator equations with the spectral parameter which contains the spectral parameter in linear or Nevanlinna's manner, Mat. Fiz. Anal. Geom. 10 (2003), no. 2, 205-227. (Russian)
20. V. I. Khrabustovskiy, On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case, J. Math. Phys. Anal. Geom. 2 (2006), no. 2, 149-175; II. Abstract theory, ibid, no. 3, 299-317; III. Separated boundary conditions, ibid, no. 4, 449-473.
21. V. I. Kogan and F. S. Rofe-Beketov, On square integrable solutions of systems of differential equations of arbitrary order, Preprint, Physics and Technical Institute of Low Temperatures of the Academy of Sciences of the Ukrainian SSR, 1973. (Russian); English transl. Proc. Roy. Soc. Edinburgh, Sect. A 74 (1975), 5-40.
22. M. G. Krein and G. Ya. Lyubarskii, Analytic properties of the multipliers of periodic canonical differential systems of positive type, Izv. Akad. Nauk SSSR Ser. Mat., 26 (1962), 549-572; English transl. Amer. Math. Soc. Transl. Ser. 2, 89 (1970), 1-28.
23. V. E. Lyantse and O. G. Storozh, Methods of the Theory of Unbounded Operators, Naukova Dumka, Kiev, 1983. (Russian)
24. V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Oper. Theory Adv. Appl., Vol. 22, Birkhauser Verlag, Basel, 1986. (Russian edition: Naukova Dumka, Kiev, 1977)
25. F. S. Rofe-Beketov and A. M. Khol'kin, Spectral Analysis of Differential Operators. Interplay Between Spectral and Oscillatory Properties, World Scientific Monograph Series in Mathematics, Vol. 7, NJ, 2005.
26. L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Oper. Theory Adv. App., Vol. 107, Birkhauser Verlag, Basel, 1999.
27. A. V. Shtraus, On the generalized resolvents and spectral functions of even-order differential operators, Izv. Akad. Nauk SSSR Ser. Mat., 21 (1957), no. 6, 785-808. (Russian); English transl. Amer. Math. Soc. Transl. Ser. 2, 16 (1960), 462-464.
28. A. V. Shtraus, On spectral functions of even-order differential operator, Dokl. Akad. Nauk SSSR 111 (1956), no. 1, 67-70. (Russian)
29. V. A. Yakubovich and V. M. Starzhinskiy, Linear Differential Equations with Periodic Coefficients and Their Applications, John Wiley and Sons, New York-Toronto; Israel Program for Scientific Translations, Vol. 1, Jerusalem-London, 1975. (Russian edition: Nauka, Moscow, 1972)

Ukrainian State Academy of Railway Transport, 7 Feyerbakh square, Kharkiv, 61050, Ukraine

E-mail address: v_khrabustovskyi@ukr.net

[^0]: 2000 Mathematics Subject Classification. Primary 34B05, 34B07, 34L10.
 Key words and phrases. Relations generated by pair of operator differential expressions, characteristic operator, generalized resolvent, eigenfunction expansion.

