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CONSERVATIVE DISCRETE TIME-INVARIANT SYSTEMS AND
BLOCK OPERATOR CMV MATRICES

YURY ARLINSKĬI

Dedicated to the memory of A.Ya. Povzner.

Abstract. It is well known that an operator-valued function Θ from the Schur class
S(M, N), where M and N are separable Hilbert spaces, can be realized as a transfer
function of a simple conservative discrete time-invariant linear system. The known
realizations involve the function Θ itself, the Hardy spaces or the reproducing ker-
nel Hilbert spaces. On the other hand, as in the classical scalar case, the Schur
class operator-valued function is uniquely determined by its so-called ”Schur para-
meters”. In this paper we construct simple conservative realizations using the Schur
parameters only. It turns out that the unitary operators corresponding to the sys-
tems take the form of five diagonal block operator matrices, which are analogs of
Cantero–Moral–Velázquez (CMV) matrices appeared recently in the theory of scalar
orthogonal polynomials on the unit circle. We obtain new models given by truncated
block operator CMV matrices for an arbitrary completely non-unitary contraction.
It is shown that the minimal unitary dilations of a contraction in a Hilbert space and
the minimal Naimark dilations of a semi-spectral operator measure on the unit circle
can also be expressed by means of block operator CMV matrices.

1. Introduction

In what follows the class of all continuous linear operators defined on a complex Hilbert
space H1 and taking values in a complex Hilbert space H2 is denoted by L(H1,H2) and
L(H) := L(H,H). We denote by IH the identity operator in a Hilbert space H and by
PL the orthogonal projection onto the subspace (the closed linear manifold) L. The
notation T �L means the restriction of a linear operator T on the set L. The range and
the null-space of a linear operator T are denoted by ranT and kerT , respectively. We
use the usual symbols C,Z, N, and N0 for the sets of complex numbers, integers, positive
integers, and nonnegative integers, respectively.

Recall that an operator T ∈ L(H1,H2) is said to be
• contractive if ‖T‖ ≤ 1;
• isometric if ‖Tf‖ = ‖f‖ for all f ∈ H1 ⇐⇒ T ∗T = IH1 ;
• co-isometric if T ∗ is isometric ⇐⇒ TT ∗ = IH2 ;
• unitary if it is both isometric and co-isometric.

Given a contraction T ∈ L(H1,H2), the operators

DT := (I − T ∗T )1/2, DT∗ := (I − TT ∗)1/2

are called the defect operators of T , and the subspaces

DT = ranDT , DT∗ = ranDT∗
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the defect subspaces of T . The dimensions dim DT , dim DT∗ are known as the defect
numbers of T . The defect operators satisfy the following intertwining relations

(1.1) TDT = DT∗T, T ∗DT∗ = DTT
∗.

It follows from (1.1) that TDT ⊂ DT∗ , T ∗DT∗ ⊂ DT , and T (kerDT ) = kerDT∗ ,
T ∗(kerDT∗) = kerDT . Moreover, the operators T � kerDT and T ∗� kerDT∗ are isome-
tries and T �DT and T ∗�DT∗ are pure contractions, i.e., ||Tf || < ||f || for f ∈ H \ {0}.

The Schur class S(H1,H2) is the set of all holomorphic and contractive L(H1,H2)-
valued functions on the unit disk D = {λ ∈ C : |λ| < 1}. This class is a natural
generalization of the Schur class S of scalar analytic functions mapping the unit disk
D into the closed unit disk D [62] and is intimately connected with spectral theory
and models for Hilbert space contraction operators [71], [24], [25], [26], [27], [28], the
Lax-Phillips scattering theory [55], [1], [21], the theory of scalar and matrix orthogonal
polynomials on the unit circle T = {ξ ∈ C : |ξ| = 1} [37], [66], [39], [40], the theory of
passive (contractive) discrete time-invariant linear systems [51], [52], [12], [13], [14], [20].
One of the characterization of the operator-valued Schur class is that any Θ ∈ S(M,N)
can be realized as a transfer (characteristic) function of the form

Θ(λ) = D + λC(IH − λA)−1B, λ ∈ D,

of a discrete time-invariant system (colligation)

τ =
{[
D C
B A

]
;M,N,H

}
with the input space M, the output space N, and some state space H. Moreover, if the
operator Uτ is given by the block operator matrix

Uτ =
[
D C
B A

]
:

M
⊕
H

→
N
⊕
H

,

then the system τ can be chosen (a) passive (Uτ is contractive) and minimal, (b) co-
isometric (Uτ is co-isometry) and observable, (c) isometric (Uτ is isometry) and control-
lable, (d) conservative (Uτ is unitary) and simple (see Section 3). The corresponding
models of the systems τ and the state space operators A are well-known. We mention
the de Branges–Rovnyak functional model of a co-isometric system [25], [6], [56], the Sz.-
Nagy–Foias [71], the Pavlov [58], [59], [60], and the Nikol’skĭi–Vasyunin [57] functional
models of completely non-unitary contractions, the Brodskĭi [28] functional model of a
simple unitary colligation, the Arov–Kaashoek–Pik [14] functional model of a passive
minimal and optimal system. All these models involve the Schur class function and/or
the Hardy spaces, the de Branges–Rovnyak reproducing kernel Hilbert space.

The main goal of the present paper is constructions of models for simple conservative
systems and completely non-unitary contractions by means of the operator analogs of the
scalar CMV matrices, which recently appeared in the theory of orthogonal polynomials
on the unit circle [30], [66], [68], [37].

In the paper of M. J. Cantero, L. Moral, and L. Velázquez [30] it is established that
the semi-infinite matrices of the form

(1.2) C = C({αn}) =



ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
...

...
...

...
...

...
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and

(1.3) C̃ = C̃({αn}) =



ᾱ0 ρ0 0 0 0 . . .
ᾱ1ρ0 −ᾱ1α0 ᾱ2ρ1 ρ2ρ1 0 . . .
ρ1ρ0 −ρ1α0 −ᾱ2α1 −ρ2α1 0 . . .

0 0 ᾱ3ρ2 −ᾱ3α2 ᾱ4ρ3 . . .
0 0 ρ3ρ2 −ρ3α2 −ᾱ4α3 . . .
...

...
...

...
...

...


give representations of the unitary operator (Uf)(ζ) = ζf(ζ) in L2(T, dµ), where the
dµ is a nontrivial probability measure on the unite circle, with respect to the orthonor-
mal systems obtained by orthonormalization of the sequences {1, ζ, ζ−1, ζ2, ζ−2, . . .} and
{1, ζ−1, ζ, ζ−2, ζ2, . . .}, respectively. The Verblunsky coefficients {αn}, |αn| < 1, arise in
the Szegő recurrence formula

ζΦn(ζ) = Φn+1(ζ) + ᾱnζ
nΦn(1/ζ̄), n = 0, 1, . . .

for monic orthogonal with respect to dµ polynomials {Φn}, and ρn :=
√

1− |αn|2. The
matrices C({αn}) and C̃({αn}) are called the CMV matrices. The matrix C̃ is transpose
to C. Notice that it has been shown by Berezansky and Dudkin in [22] and [43] that the
operator (Uf)(ζ) = ζf(ζ) admits a three-diagonal block matrix representation.

Given a probability measure µ on T, define the Carathéodory function by

F (λ) = F (λ, µ) :=
∫

T

ζ + λ

ζ − λ
dµ(ζ) = 1 + 2

∞∑
n=1

βnλ
n, βn =

∫
T
ζ−ndµ

the moments of µ. F is an analytic function in D which obeys ReF > 0, F (0) = 1. The
Schur class function f(λ) is then defined by

f(λ) = f(λ, µ) :=
1
λ

F (λ)− 1
F (λ) + 1

.

Given a Schur function f(λ), which is not a finite Blaschke product, define inductively

f0(λ) = f(λ), fn+1(λ) =
fn(λ)− fn(0)

λ(1− fn(0)fn(λ))
, n ∈ N0.

It is clear that {fn} is an infinite sequence of Schur functions called the n-th Schur
iterates and neither of its terms is a finite Blaschke product. The numbers γn := fn(0)
are called the Schur parameters

Sf = {γ0, γ1, . . .}.

Note that

fn(λ) =
γn + λfn+1(λ)
1 + γ̄nλfn+1

= γn + (1− |γn|2)
λfn+1(λ)

1 + γ̄nλfn+1(λ)
, n ∈ N0.

The method of labeling f ∈ S by its Schur parameters is known as the Schur algorithm
and is due to I. Schur [62]. In the case when

f(λ) = eiϕ
N∏

k=1

λ− λk

1− λ̄kλ

is a finite Blaschke product of order N , the Schur algorithm terminates at the N -th step.
The sequence of Schur parameters {γn}N

n=0 is finite, |γn| < 1 for n = 0, 1, . . . , N − 1, and
|γN | = 1.

Due to Geronimus theorem for the function f(λ, µ) the relations γn = αn hold true
for all n = 0, 1, . . ..
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There is a nice multiplicative structure of the CMV matrices. In the semi-infinite case
C and C̃ are the products of two matrices: C = LM, C̃ = ML, where

L = Ψ(α0)⊕Ψ(α2)⊕ . . .Ψ(α2m)⊕ . . . ,

M = 11×1 ⊕Ψ(α1)⊕Ψ(α3)⊕ . . .⊕Ψ(α2m+1)⊕ . . . ,

and Ψ(α) =
(
ᾱ ρ
ρ −α

)
. The finite (N + 1) × (N + 1) CMV matrices C and C̃ obey

α0, α1, . . . , αN−1 ∈ D and |αN | = 1, and also C = LM, C̃ = ML, where in this case
Ψ(αN ) = (ᾱN ).

In the paper [11] it is established that the truncated CMV matrices

T0 =


−ᾱ1α0 −ρ1α0 0 0 . . .
ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .

0 0 ᾱ4ρ3 −ᾱ4α3 . . .
...

...
...

...
...

 ,

T̃0 =


−ᾱ1α0 ᾱ2ρ1 ρ2ρ1 0 . . .
−ρ1α0 −ᾱ2α1 −ρ2α1 0 . . .

0 ᾱ3ρ2 −ᾱ3α2 ᾱ4ρ3 . . .
0 ρ3ρ2 −ρ3α2 −ᾱ4α3 . . .
...

...
...

...
...


obtained from the “full” CMV matrices

C = C({αn}) and C̃ = C̃({αn})

by deleting the first row and the first column, provide models of completely non-unitary
contractions with rank one defect operators.

As pointed out by Simon in [68], the history of CMV matrices is started with the
papers of Bunse-Gerstner and Elsner [29] (1991) and Watkins [73] (1993), where unitary
semi-infinite five-diagonal matrices were introduces and studied. In [30] Cantero, Moral,
and Velazquez (CMV) re-discovered them. In a context different from orthogonal poly-
nomials on the unit circle, Bourget, Howland, and Joye [23] introduced a set of doubly
infinite family of matrices with three sets of parameters which for special choices of the
parameters reduces to two-sided CMV matrices on `2(Z).

The Schur algorithm for matrix valued Schur class functions and its connection with
the matrix orthogonal polynomials on the unit circle have been considered in the paper
of Delsarte, Genin, and Kamp [40] and in the book of Dubovoj, Fritzsche, and Kirstein
[42]. The CMV matrices, connected with matrix orthogonal polynomials on the unit
circle with respect to nontrivial matrix-valued measures are considered in [68], [37]. If
the k × k matrix-valued non-trivial measure µ on T, µ(T) = Ik×k is given, then there
are the left and the right orthonormal matrix polynomials. The Szegő recursions take
slightly different form than in the scalar case and the Verblunsky k×k matrix coefficients
(the Schur parameters of the corresponding matrix-valued Schur function) {αn} satisfy
the inequality ||αn|| < 1 for all n. The latter condition is in fact equivalent to the non-
triviality of the measure. The entries of the corresponding CMV matrix have the size
k × k and the numbers ρn are replaced by the k × k defect matrices

ρL
n = Dαn = (I − α∗nαn)1/2 and ρR

n = Dα∗n = (I − αnα
∗
n)1/2,
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where α∗ is the adjoint matrix. In these notations the CMV matrix is of the form [37]

(1.4) C = C({αn}) =



α∗0 ρL
0 α

∗
1 ρL

0 ρ
L
1 0 0 . . .

ρR
0 −α0α

∗
1 −α0ρ

L
1 0 0 . . .

0 α∗2ρ
R
1 −α∗2α1 ρL

2 α
∗
3 ρL

2 ρ
L
3 . . .

0 ρR
2 ρ

R
1 −ρR

2 α1 −α2α
∗
3 −α2ρ

L
3 . . .

0 0 0 α∗4ρ
R
3 −α∗4α3 . . .

...
...

...
...

...
...


.

Notice that the spectral problems for CMV matrices with scalar and matrix elements
and truncated CMV matrices with scalar elements were considered in [66], [67], [37], [22],
[32], [47], [72], [11], [48], [49], [50], [54].

The operator extension of the Schur algorithm was developed by T. Constantinescu in
[34] and with numerous applications is presented in the monographs [19], [36], [42], [44].
The next theorem goes back to Shmul’yan [63], [64] and T. Constantinescu [34] (see also
[19], [7], [8]) and plays a key role in the operator Schur algorithm.

Theorem 1.1. Let M and N be separable Hilbert spaces and let the function Θ be
from the Schur class S(M,N). Then there exists a function Z from the Schur class
S(DΘ(0),DΘ∗(0)) such that

(1.5) Θ(λ) = Θ(0) +DΘ∗(0)Z(λ)(I + Θ∗(0)Z(λ))−1DΘ(0), λ ∈ D.

The representation (1.5) of a function Θ from the Schur class is called the Möbius
representation of Θ and the function Z is called the Möbius parameter of Θ (see [7], [8]).
Clearly, Z(0) = 0 and by Schwartz’s lemma we obtain that

||Z(λ)|| ≤ |λ|, λ ∈ D.
The operator Schur’s algorithm [19]. Fix Θ ∈ S(M,N), put Θ0(λ) = Θ(λ) and let Z0

be the Möbius parameter of Θ. Define

Γ0 = Θ(0), Θ1(λ) =
Z0(λ)
λ

∈ S(DΓ0 ,DΓ∗0
), Γ1 = Θ1(0) = Z ′0(0).

If Θ0, . . . ,Θn and Γ0, . . . ,Γn have been chosen, then let Zn+1 ∈ S(DΓn ,DΓ∗n) be the
Möbius parameter of Θn. Put

Θn+1(λ) =
Zn+1(λ)

λ
, Γn+1 = Θn+1(0).

The contractions Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1
), n ∈ N, are called the Schur

parameters of Θ and the function Θn ∈ S(DΓn−1 ,DΓ∗n−1
) we will call the n-th Schur

iterate of Θ(λ).
Formally we have

Θn+1(λ)� ranDΓn =
1
λ
DΓ∗n(IDΓ∗n

−Θn(λ)Γ∗n)−1(Θn(λ)− Γn)D−1
Γn

� ranDΓn .

Clearly, the sequence of Schur parameters {Γn} is infinite if and only if all operators
Γn are non-unitary. The sequence of Schur parameters consists of a finite number of
operators Γ0, Γ1, . . . ,ΓN if and only if ΓN ∈ L(DΓN−1 ,DΓ∗N−1

) is unitary. If ΓN is
isometric (co-isometric) then Γn = 0 for all n > N . The following generalization of the
classical Schur result is proved in [34] (see also [19]).

Theorem 1.2. There is a one-to-one correspondence between the Schur class functions
S(M,N) and the set of all sequences of contractions {Γn}n≥0 such that

(1.6) Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1
), n ∈ N.

A sequence of contractions of the form (1.6) is called the choice sequence [31]. Such
objects are used for the indexing of contractive intertwining dilations, of positive Toeplitz
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forms, and of the Naimark dilations of semi-spectral measures on the unit circle (see
[31], [33], [35], [19], [36], [44]). Observe that the Naimark dilation and the model of a
simple conservative system are given in [33], [34], and [19] by an infinite in all sides block
operator matrix whose entries are expressed by means of the choice sequence or the Schur
parameters.

Let us describe the main results of our paper. Given a choice sequence (1.6), we con-
struct the Hilbert spaces H0 = H0({Γn}n≥0), H̃0 = H̃0({Γn}n≥0) , the unitary operators

U0 = U0({Γn}n≥0) =
[
Γ0 G0

F0 T0

]
:

M
⊕
H0

→
N
⊕
H0

,

Ũ0 = Ũ0({Γn}n≥0) =

[
Γ0 G̃0

F̃0 T̃0

]
:

M
⊕
H̃0

→
N
⊕
H̃0

,

and the unitarily equivalent simple conservative systems

ζ0 =
{[

Γ0 G0

F0 T0

]
;M,N,H0

}
, ζ̃0 =

{[
Γ0 G̃0

F̃0 T̃0

]
;M,N, H̃0

}
,

such that the Schur parameters of the transfer function Θ of the systems ζ0 and ζ̃0 are
precisely {Γn}n≥0. Moreover, the operators U0 and Ũ0 in such constructions are given
by the operator analogs of the CMV matrices. In the case when the operators Γn are
neither isometric nor co-isometric for each n = 0, 1, . . ., the Hilbert spaces H0 and H̃0 are
of the form

H0 =
∑
n≥0

⊕ DΓ2n

⊕
DΓ∗2n+1

, H̃0 =
∑
n≥0

⊕ DΓ∗2n

⊕
DΓ2n+1

,

and the operators U0 and Ũ0 are given by the products of unitary diagonal operator
matrices

U0 = (JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2n
⊕ . . .)

×
(
IM ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2n−1 ⊕ . . .

)
: M⊕ H0 → N⊕ H0,

Ũ0 =
(
IN ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2n−1 ⊕ . . .

)
× (JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2n ⊕ . . .) : M⊕ H̃0 → N⊕ H̃0,

where

JΓ0 =
[

Γ0 DΓ∗0
DΓ0 −Γ∗0

]
:

M
⊕
DΓ∗0

→
N
⊕
DΓ0

, JΓk
=

[
Γk DΓ∗k
DΓk

−Γ∗k

]
:

DΓk−1

⊕
DΓ∗k

→
DΓ∗k−1

⊕
DΓk

,

k ∈ N

are the unitary operators called ”elementary rotations” [19]. The operators U0 and Ũ0

take the form of five-diagonal block operator matrices

U0 =



Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
0 0 0 0 0 . . .

DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 0 0 0 0 . . .

0 Γ2DΓ1 −Γ2Γ∗1 DΓ∗2
Γ3 DΓ∗2

DΓ∗3
0 0 0 . . .

0 DΓ2DΓ1 −DΓ2Γ
∗
1 −Γ∗2Γ3 −Γ∗2DΓ∗3

0 0 0 . . .
0 0 0 Γ4DΓ3 −Γ4Γ∗3 DΓ∗4

Γ5 DΓ∗4
DΓ∗5

0 . . .
...

...
...

...
...

...
...

...
...
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and

Ũ0 =



Γ0 DΓ∗0
0 0 0 0 0 . . .

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2 DΓ∗1

DΓ∗2
0 0 0 . . .

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 −Γ∗1DΓ∗2

0 0 0 . . .
0 0 Γ3DΓ2 −Γ3Γ∗2 DΓ∗3

Γ4 DΓ∗3
DΓ∗4

0 . . .
0 0 DΓ3DΓ2 −DΓ3Γ

∗
2 −Γ∗3Γ4 −Γ∗3DΓ∗4

0 . . .
...

...
...

...
...

...
...

...


.

Notice that the relation Ũ0({Γn}n≥0) = (U0({Γ∗n}n≥0)
∗ holds true. Hence the CMV

matrix (1.4) corresponds to the case

M = N = DΓ0 = DΓ∗0
= DΓ1 = DΓ∗1

= · · · = DΓn = DΓ∗n = · · · = Ck,

αn = Γ∗n, n ∈ N0.

The block operator truncated CMV matrices

T0 = T0({Γn}n≥0) := PH0U0�H0 and T̃0 = T̃0({Γn}n≥0) := PeH0
Ũ0� H̃0

are given by

T0 = (−Γ∗0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2n ⊕ . . .)
(
JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2n−1 ⊕ . . .

)
: H0 → H0,

T̃0 =
(
JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2n−1 ⊕ . . .

)
(−Γ∗0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2n ⊕ . . .) : H̃0 → H̃0

and can be rewritten in the three diagonal block operator matrix form with 2× 2 entries

T0 =


B1 C1 0 0 0 ·
A1 B2 C2 0 0 ·
0 A2 B3 C3 0 ·
...

...
...

...
...

...

 , T̃0 =


B̃1 C̃1 0 0 0 ·
Ã1 B̃2 C̃2 0 0 ·
0 Ã2 B̃3 C̃3 0 ·
...

...
...

...
...

...

 .
The constructions above and the corresponding results are presented in Section 5.

We essentially rely on the constructions of simple conservative realizations of the Schur
iterates {Θn}n≥1 by means of a given simple conservative realization of the function
Θ ∈ S(M,N) [8]. A brief survey of the results in [8] is given in Section 4. The cases
when the Schur parameter Γm ∈ L(DΓm−1 ,DΓ∗m−1

) of the function Θ ∈ S(M,N) is iso-
metric, co-isometric, unitary are considered in detail in Section 6. Observe that in fact
we give another prove of Theorem 1.2 (the uniqueness of the function from S(M,N) with
given its Schur parameters is proved in Section 2). In Section 7 we obtain in the block
operator CMV matrix form the minimal unitary dilations of a contraction and the min-
imal Naimark dilations of a semi-spectral measure on the unit circle. Another and more
complicated constructions of the minimal Naimark dilation and a simple conservative re-
alization for a function Θ ∈ S(M,N) by means of its Schur parameters are given in [33]
and in [53], respectively (see also [19]). Simple conservative realizations of scalar Schur
functions with operators A,B, C, and D expressed via corresponding Schur parameters
have been obtained by V. Dubovoj [41].

We also prove in Section 7 that a unitary operator U in a separable Hilbert space
K having a cyclic subspace M (span {UnM, n ∈ Z} = K) is unitarily equivalent to
the block operator CMV matrices U0 and Ũ0 constructed by means of the Schur pa-

rameters of the function Θ(λ) =
1
λ

(F ∗M(λ̄) − IM)(F ∗M(λ̄) + IM)−1, where FM(λ) =

PM(U + λIK)(U − λIK)−1�M, λ ∈ D. In the last Section 8 we prove that the Sz.-Nagy–
Foias [71] characteristic functions of truncated block operator CMV matrices T0 and T̃0,
constructing by means of the Schur parameters {Γn}n≥0 of a purely contractive function
Θ ∈ S(M,N), coincide with Θ in the sense of [71].
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2. The Schur class functions and their iterates

In the sequel we need the well known fact [71], [19] that if T ∈ L(H1,H2) is a contrac-
tion which is neither isometric nor co-isometric, then the operator (elementary rotation
[19]) JT given by the operator matrix

JT =
[
T DT∗

DT −T ∗
]

:
H1

⊕
DT∗

→
H2

⊕
DT

is unitary. Clearly, J−1
T = J∗T = JT∗ . If T is isometric or co-isometric, then the corre-

sponding unitary elementary rotation takes the row or the column form

J(r)
T =

[
T IDT∗

]
:

H1

⊕
DT∗

→ H2, J(c)
T =

[
T
DT

]
: H1 →

H2

⊕
DT

,

and
(
J(r)

T

)∗
= J(c)

T∗ . In Section 5 we will need the following statement.

Proposition 2.1. [10]. Let T be a contraction. Then Th = DT∗g if and only if there
exists a vector ϕ ∈ DT such that h = DTϕ and g = Tϕ.

Recall that if Θ ∈ S(H1,H2) then there is a uniquely determined decomposition [71,
Proposition V.2.1]

Θ(λ) =
[
Θp(λ) 0

0 Θu

]
:

DΘ(0)

⊕
kerDΘ(0)

→
DΘ∗(0)

⊕
kerDΘ∗(0)

,

where Θp ∈ S(DΘ(0),DΘ∗(0)), Θp is a pure contraction and Θu is a unitary constant.
The function Θp is called the pure part of Θ (see [19]). If Θ(0) is isometric (respect.,
co-isometric) then the pure part is of the form Θp(λ) = 0 ∈ S({0},DΘ∗(0)) (respect.,
Θp(λ) = 0 ∈ S(DΘ(0), {0})) for all λ ∈ D. The function Θ is called purely contractive if
kerDΘ(0) = {0}. Two operator-valued functions Θ ∈ S(M,N) and Ω ∈ S(K,L) coincide
[71] if there are two unitary operators V : N → L and U : K → M such that

(2.1) VΘ(λ)U = Ω(λ), λ ∈ D.
For the corresponding Schur parameters and the Schur iterates relation (2.1) yields the
equalities

(2.2)
Gn = V ΓnU,
DGn = U∗DΓn , DG∗

n
= VDΓ∗n

, DGn = U∗DΓnU, DG∗
n

= V DΓ∗n
V ∗,

VΘn(λ)U = Ωn(λ), λ ∈ D
for all n ∈ N0.

In what follows we give a proof of Theorem 1.6 different from the original one in [34].
First of all we will prove the uniqueness. The existence will be proved in Section 5.

Theorem 2.2. Any choice sequence

Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1
), n ≥ 1

uniquely determines a function from the Schur class S(M,N).

Proof. Let Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1
), n ≥ 1 be a choice sequence. Suppose

the functions Θ0(λ) and Θ̂0(λ) from the Schur class S(M,N) have {Γn}∞0 as their Schur
parameters. Then, for every n = 0, 1, . . ., we have the relations

Θn(λ) = Γn + λDΓ∗n(I + λΘn+1(λ)Γ∗n)−1Θn+1(λ)DΓn
,

Θ̂n(λ) = Γn + λDΓ∗n(I + λΘ̂n+1(λ)Γ∗n)−1Θ̂n+1(λ)DΓn , λ ∈ D,
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where {Θn} and {Θ̂n} are the Schur iterates of Θ and Θ̂, respectively. Then one has for
every n the equalities

(2.3)
Θn(λ)− Θ̂n(λ) = λDΓ∗n(I + λΘn+1(λ)Γ∗n)−1(Θn+1(λ)

− Θ̂n+1(λ))(I + λΘ̂n+1(λ)Γ∗n)−1DΓn , λ ∈ D.

Since ||Θn+1(λ) − Θ̂n+1(λ)|| ≤ 2 for all λ ∈ D and Θn+1(0) = Θ̂n+1(0) = Γn+1, by
Schwartz’s lemma we get ||Θn+1(λ)− Θ̂n+1(λ)|| ≤ 2 |λ|, λ ∈ D. Further

||(I + λΘn+1(λ)Γ∗n)f || ≥ (1− |λ|)||f ||,
||(I + λΘ̂n+1(λ)Γ∗n)f || ≥ (1− |λ|)||f ||

for all λ ∈ D and for all f ∈ DΓ∗n−1
. These relations imply

||(I + λΘn+1(λ)Γ∗n)−1|| ≤ 1
1− |λ|

, ||(I + λΘ̂n+1(λ)Γ∗n)−1|| ≤ 1
1− |λ|

for all λ ∈ D and for all n = 0, 1, . . . . Hence, from (2.3) we have

||Θn(λ)− Θ̂n(λ)|| ≤ 2|λ| |λ|
(1− |λ|)2

, λ ∈ D.

Then applying (2.3) to Θn−1 and Θ̂n−1 in the left-hand side, we see that

||Θn−1(λ)− Θ̂n−1(λ)|| ≤ 2|λ|
(

|λ|
(1− |λ|)2

)2

, λ ∈ D,

and finally

(2.4) ||Θ0(λ)− Θ̂0(λ)|| ≤ 2|λ|
(

|λ|
(1− |λ|)2

)n+1

, λ ∈ D,

for all n ∈ N0. Let |λ| < (3−
√

5)/2. Then

|λ|
(1− |λ|)2

< 1.

Letting n → ∞ in (2.4) we get Θ0(λ) = Θ̂0(λ) for |λ| < (3 −
√

5)/2. Since Θ0 and Θ̂0

are holomorphic in D, they are equal on D. �

3. Conservative discrete-time linear systems and their transfer functions

Let M,N, and H be separable Hilbert spaces. A linear system

τ =
{[
D C
B A

]
;M,N,H

}
with bounded linear operators A, B, C, D of the form

(3.1)
{
σk = Chk +Dξk,
hk+1 = Ahk +Bξk,

k ∈ N0,

where {ξk} ⊂ M, {σk} ⊂ N, {hk} ⊂ H is called a discrete time-invariant system. The
Hilbert spaces M and N are called the input and the output spaces, respectively, and the
Hilbert space H is called the state space. The operators A, B, C, and D are called the
state space operator, the control operator, the observation operator, and the feedthrough
operator of τ , respectively. Put

Uτ =
[
D C
B A

]
:

M
⊕
H

→
N
⊕
H

.

If Uτ is contractive, then the corresponding discrete-time system is said to be passive
[12]. If the operator Uτ is isometric (respect., co-isometric, unitary), then the system
is said to be isometric (respect., co-isometric, conservative). Isometric, co-isometric,
conservative, and passive discrete time-invariant systems have been studied in [24], [25],
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[6], [71], [51], [52], [26], [28], [20], [5], [12], [13], [14], [15], [16], [17], [69], [70], [9], [7], [8],
[45]. It is relevant to remark that a brief history of System Theory is presented in the
recent preprint of B. Fritzsche, V. Katsnelson, and B. Kirstein [45].

The subspaces

(3.2) Hc := span {AnBM, n ∈ N0} and Ho := span {A∗nC∗N, n ∈ N0}
are said to be the controllable and observable subspaces of the system τ , respectively. The
system τ is said to be controllable (respect., observable) if Hc = H (respect., Ho = H),
and it is called minimal if τ is both controllable and observable. The system τ is said to
be simple if

H = clos {Hc + Ho} = span {AkBM, A∗lC∗N, k, l ∈ N0}.
It follows from (3.2) that

(Hc)⊥ =
∞⋂

n=0

ker(B∗A∗n), (Ho)⊥ =
∞⋂

n=0

ker(CAn),

and therefore there are the following alternative characterizations:

(a) τ is controllable ⇐⇒
∞⋂

n=0
ker(B∗A∗n) = {0};

(b) τ is observable ⇐⇒
∞⋂

n=0
ker(CAn) = {0};

(c) τ is simple ⇐⇒
( ∞⋂

n=0
ker(B∗A∗n)

)
∩

( ∞⋂
n=0

ker(CAn)
)

= {0}.

A contraction A acting in a Hilbert space H is called completely non-unitary [71] if there
is no nontrivial reducing subspace of A, on which A generates a unitary operator. Given a
contraction A in H then there is a canonical orthogonal decomposition [71, Theorem I.3.2]

H = H0 ⊕ H1, A = A0 ⊕A1, Aj = A�Hj , j = 0, 1,

where H0 and H1 reduce A, the operator A0 is a completely non-unitary contraction, and
A1 is a unitary operator. Moreover,

H1 =
( ⋂

n≥1

kerDAn

) ⋂ ( ⋂
n≥1

kerDA∗n

)
.

Since
n−1⋂
k=0

ker(DAA
k) = kerDAn ,

n−1⋂
k=0

ker(DA∗A
∗k) = kerDA∗n ,

we get ⋂
n≥1

kerDAn = H	 span {A∗nDAH, n ∈ N0} ,⋂
n≥1

kerDA∗n = H	 span {AnDA∗H, n ∈ N0} .
(3.3)

It follows that

(3.4)
A is completely non-unitary ⇐⇒

( ⋂
n≥1

kerDAn

) ⋂ ( ⋂
n≥1

kerDA∗n

)
= {0}

⇐⇒ span {A∗nDA, A
mDA∗ , n,m ∈ N0} = H.

If τ =
{[
D C
B A

]
;M,N,H

}
is a conservative system then τ is simple if and only if the

state space operator A is a completely non-unitary contraction [28], [20].
The transfer function

Θτ (λ) := D + λC(IH − λA)−1B, λ ∈ D,
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of a passive system τ belongs to the Schur class S(M,N) [12]. Conservative systems are
also called the unitary colligations and their transfer functions are called the characteristic
functions [28].

The examples of conservative systems are given by

Σ =
{[
−A DA∗

DA A∗

]
;DA,DA∗ ,H

}
, Σ∗ =

{[
−A∗ DA

DA∗ A

]
;DA∗ ,DA,H

}
.

The transfer functions of these systems

ΦΣ(λ) =
(
−A+ λDA∗(IH − λA∗)−1DA

)
�DA, λ ∈ D

and
ΦΣ∗(λ) =

(
−A∗ + λDA(IH − λA)−1DA∗

)
�DA∗ , λ ∈ D

are precisely the Sz.-Nagy–Foias characteristic functions [71] of A and A∗, correspond-
ingly.

It is well known that every operator-valued function Θ from the Schur class S(M,N)
can be realized as a transfer function of some passive system, which can be chosen as
controllable isometric (respect., observable co-isometric, simple conservative, minimal
passive); cf. [25], [71], [28], [6] [12], [14], [5]. Moreover, two controllable isometric
(respect., observable co-isometric, simple conservative) systems with the same transfer
function are unitarily equivalent : two discrete-time systems

τ1 =
{[

D C1

B1 A1

]
;M,N,H1

}
and τ2 =

{[
D C2

B2 A2

]
;M,N,H2

}
are said to be unitarily equivalent if there exists a unitary operator V from H1 onto H2

such that

(3.5)
A1 = V −1A2V, B1 = V −1B2, C1 = C2V

⇐⇒
[
IN 0
0 V

] [
D C1

B1 A1

]
=

[
D C2

B2 A2

] [
IM 0
0 V

]
cf. [24], [25], [6], [28], [5].

4. Conservative realizations of the Schur iterates

Let A be a completely non-unitary contraction in a separable Hilbert space H. Suppose
kerDA 6= {0}. Define the subspaces and operators (see [8])

(4.1)

 H0,0 := H
Hn,0 = kerDAn , H0,m := kerDA∗m ,
Hn,m := kerDAn ∩ kerDA∗m , m, n ∈ N,

(4.2) An,m := Pn,mA�Hn,m ∈ L(Hn,m),

where Pn,m are the orthogonal projections in H onto Hn,m. The next results have been
established in [8].

Theorem 4.1. [8]. The operators {An,m} are completely non-unitary contractions and
the following relations are valid:

kerDAk
n,m

= Hn+k,m, kerDA∗k
n,m

= Hn,m+k, m, n ∈ N, k ∈ N,{
AHn,m = Hn−1,m+1, n ∈ N, m ∈ N0,
A∗Hn,m = Hn+1,m−1, m ∈ N, n ∈ N0,

(4.3) (An,m)k,l = An+k,m+l, n,m ∈ N0, k, l ∈ N,

An−1,m+1Af = AAn,mf, f ∈ Hn,m, n ∈ N, n ∈ N0.

Therefore, the operators

An,0, An−1,1, . . . , An−k,k, . . . , A0,n, n ∈ N,
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are unitarily equivalent.

The relation (4.3) yields the following picture for the creation of the operators An,m:
The process terminates at the N -th step if and only if

kerDAN = {0} ⇐⇒ kerDAN−1 ∩ kerDA∗ = {0} ⇐⇒ · · ·
kerDAN−k ∩ kerDA∗k = {0} ⇐⇒ · · · kerDA∗N = {0}.

Theorem 4.2. [8]. Let A be a completely non-unitary contraction in a separable Hilbert
space H. Assume kerDA 6= {0} and let the contractions An,m be defined by (4.1) and
(4.2). Then for each n ∈ N the characteristic functions of the operators

An,0, An−1,1, . . . , An−m,m, . . . A1,n−1, A0,n

coincide with the pure part of the n-th Schur iterate of the Sz.-Nagy–Foias [71] char-
acteristic function ΦA(λ) =

(
−A+ λDA∗(IH − λA∗)−1DA

)
�DA of A. Moreover, each

operator from the set {An−k,k}n
k=0 is

(1) a unilateral shift (respect., co-shift) if and only if the n-th Schur parameter Γn

of Φ is isometric (respect., co-isometric),
(2) the orthogonal sum of a unilateral shift and co-shift if and only if

(4.4) DΓn−1 6= {0}, DΓ∗n−1
6= {0} and Γm = 0 for all m ≥ n.

Each subspace from the set {Hn−k,k}n
k=0 is trivial if and only if Γn is unitary.

Notice that constructions of simple conservative realizations for the Schur iterates of
a function Θ ∈ S(M,N) by means of a simple conservative realization

τ0 =
{[

Γ0 C
B A

]
;M,N,H

}
are given in [8]. We mention the following equivalences:

the n-th Schur parameter Γn of Θ is isometric (respect., co-isometric) ⇐⇒ each
operator from the set {An−k,k}n

k=0 is a co-shift (respect., a shift).
The statement below is established in [8] and is needed in the sequel.

Theorem 4.3. [8]. Let Θ ∈ S(M,N), Γ0 = Θ(0), and let

τ0 =
{[

Γ0 C
B A

]
;M,N,H

}
be a simple conservative realization of Θ. Then the systems

(4.5)
ζ0,1 =

{[
D−1

Γ∗0
C(D−1

Γ0
B∗)∗ D−1

Γ∗0
C

AP1,0D
−1
A∗B A0,1

]
;DΓ0 ,DΓ∗0

,H0,1

}
,

ζ1,0 =
{[
D−1

Γ∗0
C(D−1

Γ0
B∗)∗ D−1

Γ∗0
CA

P1,0D
−1
A∗B A1,0

]
;DΓ0 ,DΓ∗0

,H1,0

}
are unitarily equivalent, conservative and simple and their transfer function is equal to
the first Schur iterate Θ1 of Θ.

Here the operators D−1
Γ0
, D−1

Γ∗0
, and D−1

A∗ are the Moore–Penrose pseudo-inverses. In
the sequel the transformations of the conservative system

τ 7→ ζ0,1, τ 7→ ζ1,0

will be denoted by Ω0,1(τ) and Ω1,0(τ), respectively.

Remark 4.4. The problem of isometric, co-isometric, and conservative realizations of the
Schur iterates for a scalar function from the generalized Schur class has been studied in
[2], [3], [4]. For a scalar finite Blaschke product the realizations of the Schur iterates are
constructed in [45].
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5. Block operator CMV matrices and conservative realizations of the
Schur class function (the case when the operator Γn is neither an

isometry nor a co-isometry for each n)

Let
Γ0 ∈ L(M,N), Γn ∈ L(DΓn−1 ,DΓ∗n−1

), n ∈ N,
be a choice sequence. In this and next Section 6 we are going to construct by means of
{Γn}n≥0 two unitary equivalent simple conservative systems with such a transfer function
Θ ∈ S(M,N) that {Γn}n≥0 are its Schur parameters. In particular, this leads to the
existence part of Theorem 1.2 and to the well known result that any Θ ∈ S(M,N)
admits a realization as a transfer function of a simple conservative system. We begin
with constructions of block operator CMV matrices for a given choice sequence {Γn}n≥0

and will suppose that all the operators Γn are neither isometries nor co-isometries. We
will use the well known constructions of finite and infinite orthogonal sums of Hilbert
spaces. Namely, if {Hk}∞k=1 is a given sequence of Hilbert spaces, then

H =
N∑

k=1

⊕
Hk

is a Hilbert space with the inner product (f, g) =
N∑

k=0

(fk, gk)Hk
for f = (f1, . . . , fN )T

and g = (g1, . . . , gN )T , fk, gk ∈ Hk, k = 1, . . . , N and the norm ||f ||2 =
N∑

k=0

||fk||2Hk
. The

Hilbert space

H =
∞∑

k=0

⊕
Hk

consists of all vectors of the form f = (f1, f2, . . .)T , fk ∈ Hk, k = 1, 2, . . . , such that

||f ||2 =
∞∑

k=1

||fk||2Hk
<∞.

The inner product is given by (f, g) =
∞∑

k=1

(fk, gk)Hk
.

5.1. Block operator CMV matrices. Define the Hilbert spaces

(5.1)

H0 = H0({Γn}n≥0) :=
∑
n≥0

⊕ DΓ2n

⊕
DΓ∗2n+1

,

H̃0 = H̃0({Γn}n≥0) :=
∑
n≥0

⊕ DΓ∗2n

⊕
DΓ2n+1

.

From these definitions it follows that

H̃0({Γ∗n}n≥0) = H0({Γn}n≥0), H0({Γ∗n}n≥0) = H̃0({Γn}n≥0).

The spaces N
⊕

H0 and M
⊕

H̃0 represent in the form

N
⊕

H0 =
M
⊕
DΓ0

⊕ ∑
n≥1

⊕ DΓ∗2n−1

⊕
DΓ2n

,

M
⊕

H̃0 =
M
⊕
DΓ∗0

⊕ ∑
n≥1

⊕ DΓ2n−1

⊕
DΓ∗2n

.
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Let

JΓ0 =
[

Γ0 DΓ∗0
DΓ0 −Γ∗0

]
:

M
⊕
DΓ∗0

→
N
⊕
DΓ0

,

JΓk
=

[
Γk DΓ∗k
DΓk

−Γ∗k

]
:

DΓk−1

⊕
DΓ∗k

→
DΓ∗k−1

⊕
DΓk

,

k ∈ N.
be the elementary rotations. Define the following unitary operators

(5.2)

M0 = M0({Γn}n≥0) := IM
⊕ ∑

n≥1

⊕
JΓ2n−1 : M

⊕
H0 → M

⊕
H̃0,

M̃0 = M̃0({Γn}n≥0) := IN
⊕ ∑

n≥1

⊕
JΓ2n−1 : N

⊕
H0 → N

⊕
H̃0,

L0 = L0({Γn}n≥0) := JΓ0

⊕ ∑
n≥1

⊕
JΓ2n : M

⊕
H̃0 → N

⊕
H0.

Observe that (L0({Γn}n≥0))
∗ = L0({Γ∗n}n≥0). Let

(5.3) V0 = V0({Γn}n≥0) :=
∑
n≥1

⊕
JΓ2n−1 : H0 → H̃0.

Clearly, the operator V0 is unitary and

(5.4) M0 = IM
⊕

V0, M̃0 = IN
⊕

V0.

It follows that
(
M̃0({Γn}n≥0)

)∗
= M0({Γ∗n}n≥0), (M0({Γn}n≥0))

∗ = M̃0({Γ∗n}n≥0).
Finally, define the unitary operators

(5.5)
U0 = U0({Γn}n≥0) := L0M0 : M

⊕
H0 → N

⊕
H0,

Ũ0 = Ũ0({Γn}n≥0) := M̃0L0 : M
⊕

H̃0 → N
⊕

H̃0.

Calculations give

U0 =



Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
0 0 0 0 0 . . .

DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 0 0 0 0 . . .

0 Γ2DΓ1 −Γ2Γ∗1 DΓ∗2
Γ3 DΓ∗2

DΓ∗3
0 0 0 . . .

0 DΓ2DΓ1 −DΓ2Γ
∗
1 −Γ∗2Γ3 −Γ∗2DΓ∗3

0 0 0 . . .
0 0 0 Γ4DΓ3 −Γ4Γ∗3 DΓ∗4

Γ5 DΓ∗4
DΓ∗5

0 . . .
...

...
...

...
...

...
...

...
...


and

Ũ0 =



Γ0 DΓ∗0
0 0 0 0 0 . . .

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2 DΓ∗1

DΓ∗2
0 0 0 . . .

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 −Γ∗1DΓ∗2

0 0 0 . . .
0 0 Γ3DΓ2 −Γ3Γ∗2 DΓ∗3

Γ4 DΓ∗3
DΓ∗4

0 . . .
0 0 DΓ3DΓ2 −DΓ3Γ

∗
2 −Γ∗3Γ4 −Γ∗3DΓ∗4

0 . . .
...

...
...

...
...

...
...

...


.

Let

C0 =
[
DΓ∗0

Γ1 DΓ∗0
DΓ∗1

]
:

DΓ0

⊕
DΓ∗1

→ N, A0 =
[
DΓ0

0

]
: M →

DΓ0

⊕
DΓ∗1

,
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(5.6)



Bn =
[
−Γ∗2n−2Γ2n−1 −Γ∗2n−2DΓ∗2n−1

Γ2nDΓ2n−1 −Γ2nΓ∗2n−1

]
:

DΓ2n−2

⊕
DΓ∗2n−1

→
DΓ2n−2

⊕
DΓ∗2n−1

,

Cn =
[

0 0
DΓ∗2n

Γ2n+1 DΓ∗2n
DΓ∗2n+1

]
:

DΓ2n

⊕
DΓ∗2n+1

→
DΓ2n−2

⊕
DΓ∗2n−1

,

An =
[
DΓ2n

DΓ2n−1 −DΓ2n
Γ∗2n−1

0 0

]
:

DΓ2n−2

⊕
DΓ∗2n−1

→
DΓ2n

⊕
DΓ∗2n+1

,

C̃0 =
[
DΓ∗0

0
]

:
DΓ∗0
⊕
DΓ1

→ N, Ã0 =
[

Γ1DΓ0

DΓ1DΓ0

]
: M →

DΓ∗0
⊕
DΓ1

,

(5.7)



B̃n =
[
−Γ2n−1Γ∗2n−2 DΓ∗2n−1

Γ2n

−DΓ2n−1Γ
∗
2n−2 −Γ∗2n−1Γ2n

]
:

DΓ∗2n−2

⊕
DΓ2n−1

→
DΓ∗2n−2

⊕
DΓ2n−1

,

C̃n =
[
DΓ∗2n−1

DΓ∗2n
0

−Γ∗2n−1DΓ∗2n
0

]
:

DΓ∗2n

⊕
DΓ2n+1

→
DΓ∗2n−2

⊕
DΓ2n−1

,

Ãn =
[
0 Γ2n+1DΓ2n

0 DΓ2n+1DΓ2n

]
:

DΓ∗2n−2

⊕
DΓ2n−1

→
DΓ∗2n

⊕
DΓ2n+1

.

It is easy to see that the operators U0 and Ũ0 take the following three-diagonal block
operator matrix form

U0 =


Γ0 C0 0 0 0 · ·
A0 B1 C1 0 0 · ·
0 A1 B2 C2 0 · ·
...

...
...

...
...

...
...

 , Ũ0 =


Γ0 C̃0 0 0 0 · ·
Ã0 B̃1 C̃1 0 0 · ·
0 Ã1 B̃2 C̃2 0 · ·
...

...
...

...
...

...
...

 .
The block operator matrices U0 and Ũ0 will be called block operator CMV matrices.
Observe that

(5.8) M̃0U0 = Ũ0M0,

and

(5.9) (U0({Γn}n≥0))
∗ = Ũ0({Γ∗n}n≥0),

(
Ũ0({Γn}n≥0)

)∗
= U0({Γ∗n}n≥0).

Therefore the matrix Ũ0 can be obtained from U0 by passing to the adjoint U∗0 and then
by replacing Γn (respect., Γ∗n) by Γ∗n (respect., Γn) for all n. In the case when the choice
sequence consists of complex numbers from the unit disk the matrix Ũ0 is the transpose
to U0, i.e., Ũ0 = U t

0.

Remark 5.1. The three-diagonal block form of the CMV matrices with scalar entries has
been established in [22] (see also [43]).

5.2. Truncated block operator CMV matrices. Define two contractions,

(5.10) T0 = T0({Γn}n≥0) := PH0U0�H0 : H0 → H0,

(5.11) T̃0 = T̃0({Γn}n≥0) := PeH0
Ũ0� H̃0 : H̃0 → H̃0.
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The operators T0 and T̃0 take on the three-diagonal block operator matrix forms

T0 =


B1 C1 0 0 0 ·
A1 B2 C2 0 0 ·
0 A2 B3 C3 0 ·
...

...
...

...
...

...

 , T̃0 =


B̃1 C̃1 0 0 0 ·
Ã1 B̃2 C̃2 0 0 ·
0 Ã2 B̃3 C̃3 0 ·
...

...
...

...
...

...

 ,

where An,Bn, Cn, Ãn, B̃n, and C̃n are given by (5.6) and (5.7). Since the matrices T0 and
T̃0 are obtained from U0 and Ũ0 by deleting the first rows and the first columns, we will
call them truncated block operator CMV matrices. Observe that from the definitions of
L0, M0, M̃0, T0, and T̃0 it follows that T0 and T̃0 are products of two block-diagonal
matrices
(5.12)
T0 = T0({Γn}n≥0) = (−Γ∗0 ⊕ JΓ2 ⊕ · · · ⊕ JΓ2n ⊕ · · · )

(
JΓ1 ⊕ JΓ3 ⊕ · · · ⊕ JΓ2n−1 ⊕ · · ·

)
(5.13)
T̃0 = T̃0({Γn}n≥0) =

(
JΓ1 ⊕ JΓ3 ⊕ · · · ⊕ JΓ2n−1 ⊕ · · ·

)
(−Γ∗0 ⊕ JΓ2 ⊕ · · · ⊕ JΓ2n ⊕ · · · ) .

In particular, it follows that

(5.14) (T0({Γn}n≥0))
∗ = T̃0({Γ∗n}n≥0).

From (5.12) and (5.13) we have V0T0 = T̃0V0, where the unitary operator V0 is defined
by (5.3). Therefore, the operators T0 and T̃0 are unitarily equivalent.

Proposition 5.2. Let Θ ∈ S(M,N) and let {Γn}n≥0 be the Schur parameters of Θ.
Suppose Γn is neither isometric nor co-isometric for each n. Let the function Ω ∈ S(K,L)
coincide with Θ and let {Gn}n≥0 be the Schur parameters of Ω. Then the truncated
block operator CMV matrices T0({Γn}n≥0) and T0({Gn}n≥0) (respect., T̃0({Γn}n≥0) and
T̃0({Gn}n≥0)) are unitarily equivalent.

Proof. Since Ω(λ) = VΘ(λ)U, where U ∈ L(K,M) and V ∈ L(N,L) are unitary opera-
tors, we get relations (2.2). It follows that DGn 6= {0} and DG∗

n
6= {0} for all n. Hence,

we have

(5.15) JGn

[
U∗ 0
0 V

]
=

[
V 0
0 U∗

]
JΓn , n = 0, 1, . . . .

Define the Hilbert space

HΩ
0 = H0({Gn}n≥0) :=

∑
n≥0

⊕ DG2n

⊕
DG∗

2n+1

and the truncated block operator CMV matrix

T0({Gn}n≥0) :=



−G∗0
JG2

JG4

. . .
JG2n

. . .





JG1

JG3

. . .
JG2n+1

. . .


,
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Define the unitary operator

W =


U∗

V
U∗

V
. . .

 : H0 → HΩ
0 .

From (5.12) and (5.15) we obtain WT0({Γn}n≥0) = T ({Gn}n≥0)W. Thus, T0({Γn}n≥0)
and T ({Gn}n≥0) are unitarily equivalent. �

Now we are going to find the defect operators and defect subspaces for T0 and T̃0. Let
f = (~f0, ~f1, . . .)T ∈ H0, where

~fn =
[
hn

gn

]
∈

DΓ2n

⊕
DΓ∗2n+1

, n ∈ N0.

Then

(5.16)
||f ||2 − ||T0f ||2 = ||PNU0f ||2 =

∥∥∥∥C0

[
h0

g0

]∥∥∥∥2

= ||DΓ∗0
(Γ1h0 +DΓ∗1

g0)||2,

||f ||2 − ||T ∗0 f ||2 = ||PMU∗0 f ||2 =
∥∥∥∥A∗0 [

h0

g0

]∥∥∥∥2

= ||DΓ0h0||2.

Let x = (x0, x1, . . .)T ∈ H̃0, where

xn =
[
hn

gn

]
∈

DΓ∗2n

⊕
DΓ∗2n+1

, n ∈ N0.

Then

||x||2 − ||T̃0x||2 = ||PNŨ0x||2 =
∥∥∥∥C̃0

[
h0

g0

]∥∥∥∥2

= ||DΓ∗0
h0||2,

||x||2 − ||T̃ ∗0 x||2 = ||PMŨ∗0x||2 =
∥∥∥∥Ã∗0 [

h0

g0

]∥∥∥∥2

= ||DΓ0(Γ
∗
1h0 +DΓ1g0)||2.

Now from Proposition 2.1 it follows that

(5.17)



kerDT0 =
{[

DΓ1ϕ
−Γ1ϕ

]
, ϕ ∈ DΓ1

} ⊕ ∑
n≥1

⊕ DΓ2n

⊕
DΓ∗2n+1

,

kerDT ∗0 = DΓ∗1

⊕ ∑
n≥1

⊕ DΓ2n

⊕
DΓ∗2n+1

,

DT0 =
{[

Γ∗1ψ
DΓ∗1

ψ

]
, ψ ∈ DΓ∗0

} ⊕
~0, ~0 ∈

∑
n≥1

⊕ DΓ2n

⊕
DΓ∗2n+1

,

DT ∗0 = DΓ0

⊕
~0, ~0 ∈ DΓ∗1

⊕ ∑
n≥1

⊕ DΓ2n

⊕
DΓ∗2n+1

,
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(5.18)



kerDeT0
= DΓ1

⊕ ∑
n≥1

⊕ DΓ∗2n

⊕
DΓ2n+1

,

kerDeT ∗0 =
{[

DΓ∗1
ϕ

−Γ∗1ϕ

]
, ϕ ∈ DΓ∗0

} ⊕ ∑
n≥1

⊕ DΓ∗2n

⊕
DΓ2n+1

,

DeT0
= DΓ∗0

⊕
~0, ~0 ∈ DΓ1

⊕ ∑
n≥1

⊕ DΓ∗2n

⊕
DΓ2n+1

,

DeT ∗0 =
{[

Γ1ψ
DΓ1ψ

]
, ψ ∈ DΓ0

} ⊕
~0, ~0 ∈

∑
n≥1

⊕ DΓ∗2n

⊕
DΓ2n+1

.

5.3. Simple conservative realizations of the Schur class function by means of
its Schur parameters. Let

G0 = G0({Γn}n≥0) :=
[
DΓ∗0

Γ1 DΓ∗0
DΓ∗1

0 0 . . .
]

= DΓ∗0

[
Γ1 DΓ∗1

0 0 . . .
]

: H0 → N,

G̃0 = G̃0({Γn}n≥0) :=
[
DΓ∗0

0 0 . . .
]

= DΓ∗0

[
IN 0 0 0 . . .

]
: H̃0 → N,

F0 = F0({Γn}n≥0) :=


DΓ0

0
0
...

 : M → H0,

F̃0 = F̃0({Γn}n≥0) :=


Γ1DΓ0

DΓ1DΓ0

0
0
...

 : M → H̃0.

The operators U0 and Ũ0 can be represented by 2× 2 block operator matrices

U0 =
[
Γ0 G0

F0 T0

]
:

M
⊕
H0

→
N
⊕
H0

, Ũ0 =

[
Γ0 G̃0

F̃0 T̃0

]
:

M
⊕
H̃0

→
N
⊕
H̃0

.

Define the following conservative systems

(5.19)

ζ0 =
{[

Γ0 G0

F0 T0

]
;M,N,H0

}
= {U0({Γn}n≥0);M,N,H0({Γn}n≥0)} ,

ζ̃0 =

{[
Γ0 G̃0

F̃0 T̃0

]
;M,N, H̃0

}
=

{
Ũ0({Γn}n≥0);M,N, H̃0({Γn}n≥0)

}
.

Equalities (5.4) and (5.8) yield that systems ζ0 and ζ̃0 are unitarily equivalent. Hence,
ζ0 and ζ̃0 have equal transfer functions.

Theorem 5.3. The unitarily equivalent conservative systems ζ0 and ζ̃0 given by (5.19)
are simple and the Schur parameters of the transfer function of ζ0 and ζ̃0 are {Γn}n≥0.

Proof. The main step is a proof that the systems Ω0,1(ζ0) and Ω1,0(ζ̃0) given by (4.5)
take the form

(5.20)
Ω0,1(ζ0) =

{
Ũ0 ({Γn}n≥1) ,DΓ0 ,DΓ∗0

, H̃0 ({Γn}n≥1)
}
,

Ω1,0(ζ̃0) =
{
U0 ({Γn}n≥1) ,DΓ0 ,DΓ∗0

,H0 ({Γn}n≥1)
}
.
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First of all we will prove that the systems ζ0 and ζ̃0 are simple.
Define the subspaces

H2k−1 =
∑
n≥k

⊕ DΓ∗2n−1

⊕
DΓ2n

, H2k =
∑
n≥k

⊕ DΓ2n

⊕
DΓ∗2n+1

, k ∈ N.

Clearly, H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hm ⊃ · · · . From (5.1) it follows the equality⋂
m≥0

Hm = {0}.

Let Γ−1 = 0 : M → N. Then DΓ−1 = M, DΓ∗−1
= N. We can consider U0 as acting from

DΓ−1 ⊕H0 onto DΓ∗−1
⊕H0 and Ũ0 as acting from DΓ−1 ⊕ H̃0 onto DΓ∗−1

⊕ H̃0. Fix m ∈ N
and define

Γ(m)
n = Γn+m, n = −1, 0, 1, . . .

Then {Γ(m)
n }n≥0 = {Γk}k≥m, and

H2k−1 = H̃0({Γ(2k−1)
n }n≥0) = H̃0 ({Γn}n≥2k−1) ,

H2k = H0({Γ(2k)
n }n≥0) = H0 ({Γn}n≥2k) .

Let

W2k−1 = Ũ0({Γ(2k−1)
n }n≥0) = Ũ0({Γn}n≥2k−1) :

DΓ2k−2

⊕
H2k−1

→
DΓ∗2k−2

⊕
H2k−1

,

W2k = U0({Γ(2k)
n }n≥0) = U0({Γn}n≥2k) :

DΓ2k−1

⊕
H2k

→
DΓ∗2k−1

⊕
H2k

, k ∈ N.

Define the operators

(5.21) Tm = PHm
Wm�Hm, m ∈ N.

Then

(5.22)
T2k−1 = T̃0({Γ(2k−1)

n }n≥0) = T̃0({Γn}n≥2k−1),
T2k = T0({Γ(2k)

n }n≥0) = T0({Γn}n≥2k).

From (5.17), (5.18), (5.21), and (5.22) we get

kerDT ∗0 = H1, kerDT1 = H2, . . . , kerDT ∗2k
= H2k+1, kerDT2k−1 = H2k, . . . .

From (5.12), (5.13), and (5.22) it follows that

Pker DT ∗0
T0� kerDT ∗0 = T1, Pker DT1

T1� kerDT1 = T2, . . . ,

Pker DT2k−1
T2k−1� kerDT2k−1 = T2k, Pker DT ∗2k

T2k� kerDT ∗2k
= T2k+1, . . . .

Thus,
H2k−1 = kerDT ∗k

0
∩ kerDT k−1

0
, H2k = kerDT ∗k

0
∩ kerDT k

0
.

In notations of Section 4 the operators T2k−1 and T2k coincide with the operators
(T0)k−1,k and (T0)k,k, respectively. From the definition of H0 we get( ⋂

k≥1

kerDT ∗k
0

) ⋂ ( ⋂
k≥1

kerDT k
0

)
=

⋂
k≥1

(
kerDT ∗k

0
∩ kerDT k

0

)
=

⋂
k≥1

H2k = {0}.

So, the operators T0, T̃0, and {Tk}k≥1 are completely non-unitary. It follows that the
conservative systems

ζ0 =
{[

Γ0 G0

F0 T0

]
;M,N,H

}
and ζ̃0 =

{[
Γ0 G̃0

F̃0 T̃0

]
;M,N, H̃0

}
are simple.
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The operators Wm take the following 2× 2 block operator matrix form

Wm =
[
Γm Gm

Fm Tm

]
:

DΓm−1

⊕
Hm

→
DΓ∗m−1

⊕
Hm

,

where

G2k−1 = G̃0({Γn}n≥2k−1) =
[
DΓ∗2k−1

0 0 . . .
]

: H2k−1 → DΓ∗2k−2
,

G2k = G0({Γn}n≥2k) =
[
DΓ∗2k

Γ2k+1 DΓ∗2k
DΓ∗2k+1

0 0 . . .
]

: H2k → DΓ∗2k−1
,

F2k−1 = F̃0({Γn}n≥2k−1) =


Γ2kDΓ2k−1

DΓ2kDΓ2k−1

0
0
...

 : DΓ2k−2 → H2k−1,

F2k = F0({Γn}n≥2k) =


DΓ2k

0
0
...

 : DΓ2k−1 → H2k.

Suppose that the system ζ0 has transfer function Ψ, i.e.,

Ψ(λ) = Γ0 + λG0(IH0 − λT0)−1F0, λ ∈ D.

Then Ψ(0) = Γ0. Let Ψ1 be the first Schur iterate of Ψ. By (4.5) the transfer function
of the simple conservative system

Ω0,1(ν) =
{[
D−1

Γ∗0
C(D−1

Γ0
B∗)∗ D−1

Γ∗0
C� kerDA∗

APker DA
D−1

A∗B Pker DA∗A� kerDA∗

]
;DΓ0 ,DΓ∗0

, kerDA∗

}
is the first Schur iterate of the transfer function of the simple conservative system

ν =
{[

Γ0 C
B A

]
;M,N,H

}
.

We will construct the system ζ1 = Ω0,1(ζ0) from the system ζ0. In our case

ζ1 = Ω0,1(ζ0) =

{[
D−1

Γ∗0
G0(D−1

Γ0
F∗0 )∗ D−1

Γ∗0
G0� kerDT ∗0

T0Pker DT0
D−1
T ∗0
F0 Pker DT ∗0

T0� kerDT ∗0

]
;DΓ0 ,DΓ∗0

, kerDT ∗0

}
.

Clearly,

D−1
Γ∗0
G0 =

[
Γ1 DΓ∗1

0 0 . . .
]

: H0 → DΓ∗0
, (D−1

Γ0
F∗0 )∗ =


IM
0
0
...

 : DΓ0 → H0.

Therefore, D−1
Γ∗0
G0(D−1

Γ0
F∗0 )∗ = Γ1. Thus, the first Schur parameter of Ψ is equal to Γ1.

From (5.17) it follows that kerDT ∗0 = H1 and DT ∗0 = DΓ0PDΓ0
. Hence,

D−1
T ∗0
F0 =


IDΓ0

0
0
...

 : DΓ0 → H0.

As has been proved above Pker DT ∗0
T0� kerDT ∗0 = T1. Let h ∈ DΓ0 . Let us find the

projection Pker DT0
h. According to (5.17) we have to find the vectors ϕ ∈ DΓ1 and
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ψ ∈ DΓ∗0
such that [

h
0

]
=

[
DΓ1ϕ
−Γ1ϕ

]
+

[
Γ∗1ψ
DΓ∗1

ψ

]
.

We have h = DΓ1ϕ+ Γ∗1ψ and Γ1ϕ = DΓ∗1
ψ. From the second equation and Proposition

2.1 it follows ϕ = DΓ1g, ψ = Γ1g, where g ∈ DΓ0 . Therefore, h = D2
Γ1
g + Γ∗1Γ1g, i.e.,

g = h. Hence,

Pker DT0
D−1
T ∗0
F0h = Pker DT0

h =


D2

Γ1
h

−Γ1DΓ1h
0
0
...

 , T0Pker DT0
D−1
T ∗0
F0h =



0
Γ2DΓ1h
DΓ2DΓ1h

0
0
...


∈ H1.

Thus,
ζ1 = Ω0,1(ζ0)

=
{[

Γ1 G1

F1 T1

]
;DΓ0 ,DΓ∗0

,H1

}
=

{
Ũ0 ({Γn}n≥1) ,DΓ0 ,DΓ∗0

, H̃0 ({Γn}n≥1)
}
.

Similarly
Ω1,0(ζ̃0) =

{
U0 ({Γn}n≥1) ,DΓ0 ,DΓ∗0

,H0 ({Γn}n≥1)
}
.

The transfer functions of these systems are equal to Ψ1 (see Section 4), and Γ1 is exactly is
the first Schur parameter of Ψ(λ). Let Ψ2 be the second Schur iterate of Ψ. Constructing
the simple conservative system ζ2 = Ω1,0(ζ1) of the form (4.5) with the transfer function
Ψ2 we will get the system

ζ2 =
{[

Γ2 G2

F2 T2

]
;DΓ1 ,DΓ∗1

,H2

}
=

{
U0({Γn}n≥2);DΓ1 ,DΓ∗1

,H0({Γn}n≥2)
}
.

Let Ψm(λ) be the m-th Schur iterate of Ψ. Arguing by induction we get that Ψm(λ) is
transfer function of the system

ζm =
{[

Γm Gm

Fm Tm

]
;DΓm−1 ,DΓ∗m−1

,Hm

}

=


{
Ũ0({Γn}n≥2k−1);DΓ2k−2 ,DΓ∗2k−2

, H̃0({Γn}n≥2k−1)
}
, m = 2k − 1,{

U0({Γn}n≥2k);DΓ2k−1 ,DΓ∗2k−1
,H0({Γn}n≥2k)

}
, m = 2k,

for all m. Observe that

ζ2k−1 = Ω0,1(ζ2k−2), ζ2k = Ω1,0(ζ2k−1), k ∈ N.
Thus, {Γn}n≥0 are the Schur parameters of Ψ. �

From Theorem 5.3 and Theorem 2.2 we immediately arrive at the following result.

Theorem 5.4. Let Θ ∈ S(M,N) and let {Γn}n≥0 be the Schur parameters of Θ. Then
the systems (5.19) are simple conservative realizations of Θ.

Observe that in fact we have proved Theorem 1.2 differently than in [34] and [19].

Remark 5.5. A more complicated construction of the state Hilbert space and a simple
conservative realization for a Schur function Θ ∈ S(M,N) by means of a block operator
matrix are given in [53] (see [19]). These constructions also involve Schur parameters
of Θ and some additional Hilbert spaces and operators. One more model based on the
Schur parameters of a scalar Schur class function Θ is obtained in [41]. In terms of this
model there we given in [41] necessary and sufficient conditions in order for Θ to have
a meromorphic pseudocontinuation of bounded type to the exterior of the unit disk. In
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recent preprint [45] a construction of a minimal conservative realization of a scalar finite
Blaschke product in terms of the Hessenberg matrix is given.

6. Block operator CMV matrices (other cases)

Let {Γn} be the Schur parameters of the function Θ ∈ S(M,N). Suppose Γm is an
isometry (respect., co-isometry, unitary) for some m ≥ 0. Then Θm(λ) = Γm for all
λ ∈ D and

Θm−1(λ) = Γm−1 + λDΓ∗m−1
Γm(IDΓm−1

+ λΓ∗m−1Γm)−1DΓm−1 ,

Θm−2(λ) = Γm−2 + λDΓ∗m−2
Θm−1(λ)(IDΓm−2

+ λΓ∗m−2Θm−1(λ))−1DΓm−2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
Θ(λ) = Γ0 + λDΓ∗0

Θ1(λ)(IDΓ0
+ λΓ∗0Θ1(λ))−1DΓ0 , λ ∈ D.

In this case the function Θ also is the transfer function of the simple conservative systems
constructed similarly to the situation in Section 5 by means of its Schur parameters and
the corresponding block operator CMV matrices U0 and Ũ0. Observe that if Γm is
isometric (respect., co-isometric) then Γn = 0, DΓ∗n = DΓ∗m , DΓ∗n = IDΓ∗m

(respect.,
DΓn = DΓm , DΓn = IDΓm

) for n > m. The constructions of the state spaces H0 =
H0({Γn}n≥0) and H̃0 = H̃0({Γn}n≥0) are similar to (5.1) but one has to replace DΓn by
{0} (respect., DΓ∗n by {0}) for n ≥ m, and DΓ∗n by DΓ∗m (respect., DΓn by DΓm) for
n > m. The relation

H̃0({Γ∗n}n≥0) = H0({Γn}n≥0)

remains true. If, in addition, the operator Γm is isometry ( ⇐⇒ the operator DΓ∗m
is an orthogonal projection in DΓm−1 onto ker Γ∗m) or co-isometry ( ⇐⇒ the operator
DΓm is an orthogonal projection in DΓ∗m−1

onto ker Γm), then the corresponding unitary
elementary rotation takes the row or the column form,

J(r)
Γm

=
[
Γm IDΓ∗m

]
:

DΓm−1

⊕
DΓ∗m

→ DΓ∗m−1
, J(c)

Γm
=

[
Γm

DΓm

]
: DΓm−1 →

DΓ∗m−1

⊕
DΓm

.

Therefore, in definitions (5.2) of the block diagonal operator matrices

L0 = L0({Γn}n≥0), M0 = M0({Γn}n≥0), and M̃0 = M̃0({Γn}n≥0)

one should replace

• JΓm by J(r)
Γm

and JΓn by IDΓ∗m
for n > m, when Γm is isometry,

• JΓm by J(c)
Γm

, and JΓn by IDΓm
for n > m, when Γm is co-isometry,

• JΓm by Γm, when Γm is unitary.

As in Section 5 in all these cases the block operators CMV matrices U0 = U0({Γn}n≥0)
and Ũ0 = Ũ0({Γn}n≥0) are given by the products U0 = L0M0, Ũ0 = M̃0L0. These
matrices are five block-diagonal. In the case when the operator Γm is unitary the block
operator CMV matrices U0 and Ũ0 are finite and otherwise they are semi-infinite.

As in Section 5 the truncated block operator CMV matrices T0 = T0(({Γn}n≥0) and
T̃0 = T̃0({Γn}n≥0) are defined by (5.10) and (5.11) T0 = PH0U0�H0, T̃0 = PeH0

Ũ0� H̃0. As
before the operators T0 and T̃0 are unitarily equivalent completely non-unitary contrac-
tions and, moreover, the equalities (5.9), (5.14), and Proposition 5.2 hold true. Unlike
Section 5 the operators given by the truncated block operator CMV matrices Tm and T̃m

obtaining from U0 and Ũ0 by deleting first m+ 1 rows and m+ 1 columns are
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• co-shifts of the form

Tm = T̃m =


0 IDΓ∗m

0 0 . . .

0 0 IDΓ∗m
0 . . .

0 0 0 IDΓ∗m
. . .

...
...

...
...

...

 :

DΓ∗m
⊕
DΓ∗m
⊕
...

→

DΓ∗m
⊕
DΓ∗m
⊕
...

,

when Γm is isometry,
• the unilateral shifts of the form

Tm = T̃m =


0 0 0 0 . . .

IDΓm
0 0 0 . . .

0 IDΓm
0 0 . . .

...
...

...
...

...

 :

DΓm

⊕
DΓm

⊕
...

→

DΓm

⊕
DΓm

⊕
...

,

when Γm is co-isometry.
One can see that Proposition 5.2 remains true.

Similarly to (5.19) let us consider the conservative systems

ζ0 = {U0;M,N,H0}, ζ̃0 = {Ũ0;M,N, H̃0}.

One can check that the systems ζ0 and ζ̃0 are simple and unitarily equivalent. More-
over, relations (5.20) and, therefore, Theorem 5.3 and Theorem 5.4 remain valid for the
situations considered here.

In order to obtain precise forms of U0 and Ũ0 one can consider the following cases:
(1) Γ2N is isometric (co-isometric) for some N ,
(2) Γ2N+1 is isometric (co-isometric) for some N ,
(3) the operator Γ2N is unitary for some N ,
(4) the operator Γ2N+1 is unitary for some N .

We shall give several examples.

Example 6.1. The operator Γ4 is isometric. Define the state spaces

H0 :=
DΓ0

⊕
DΓ∗1

⊕ DΓ2

⊕
DΓ∗3

⊕
DΓ∗4

⊕
DΓ∗4

⊕
. . .

⊕
DΓ∗4

⊕
. . . ,

H̃0 :=
DΓ∗0
⊕
DΓ1

⊕ DΓ∗2
⊕
DΓ3

⊕
DΓ∗4

⊕
DΓ∗4

⊕
. . .

⊕
DΓ∗4

⊕
. . . .

Then the spaces M
⊕

H̃0 and N
⊕

H0 can be represented as follows:

M
⊕

H̃0 =
M
⊕
DΓ∗0

⊕ DΓ1

⊕
DΓ∗2

⊕ DΓ3

⊕
DΓ∗4

⊕
DΓ∗4

⊕
DΓ∗4

⊕
. . . ,

N
⊕

H0 =
N
⊕
DΓ0

⊕ DΓ∗1
⊕
DΓ2

⊕
DΓ∗3

⊕
DΓ∗4

⊕
. . .

⊕
DΓ∗4

⊕
. . . .

Define the unitary operators

M0 = IM
⊕

JΓ1

⊕
JΓ3

⊕
IDΓ∗4

⊕
IDΓ∗4

⊕
. . . : M

⊕
H0 → M

⊕
H̃0,

M̃0 = IN
⊕

JΓ1

⊕
JΓ3

⊕
IDΓ∗4

⊕
IDΓ∗4

⊕
. . . : N

⊕
H0 → N

⊕
H̃0,

L0 = JΓ0

⊕
JΓ2

⊕
J(r)

Γ4

⊕
IDΓ∗4

⊕
IDΓ∗4

⊕
. . . : M

⊕
H̃0 → N

⊕
H0.
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Then
U0 = L0M0

=



Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
0 0 0 0 0 0 . . .

DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 0 0 0 0 0 . . .

0 Γ2DΓ1 −Γ2Γ∗1 DΓ∗2
Γ3 DΓ∗2

DΓ∗3
0 0 0 0 . . .

0 DΓ2DΓ1 −DΓ2Γ
∗
1 −Γ∗2Γ3 −Γ∗2DΓ∗3

0 0 0 0 . . .
0 0 0 Γ4DΓ3 −Γ4Γ∗3 IDΓ∗4

0 0 0 . . .

0 0 0 0 0 0 IDΓ∗4
0 0 . . .

0 0 0 0 0 0 0 IDΓ∗4
0 . . .

...
...

...
...

...
...

...
...

...
...


,

Ũ0 = M̃0L0

=



Γ0 DΓ∗0
0 0 0 0 0 0 0 . . .

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2 DΓ∗1

DΓ∗2
0 0 0 0 0 . . .

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 −Γ1DΓ∗2

0 0 0 0 0 . . .
0 0 Γ3DΓ2 −Γ3Γ∗2 DΓ∗3

Γ4 DΓ∗3
0 0 0 . . .

0 0 DΓ3DΓ2 −DΓ3Γ
∗
2 −Γ∗3Γ4 −Γ∗3 0 0 0 . . .

0 0 0 0 0 0 IDΓ∗4
0 0 . . .

0 0 0 0 0 0 0 IDΓ∗4
0 . . .

...
...

...
...

...
...

...
...

...
...


.

Example 6.2. The operator Γ2 is co-isometric. In this case,

H0 =
DΓ0

⊕
DΓ∗1

⊕
DΓ2

⊕
DΓ2

⊕
. . .

⊕
DΓ2

⊕
. . . ,

H̃0 =
DΓ∗0
⊕
DΓ1

⊕
DΓ2

⊕
DΓ2

⊕
. . .

⊕
DΓ2

⊕
. . . ,

U0 = L0M0 =
(
JΓ0 ⊕ J(c)

Γ2
⊕ IDΓ2

⊕ IDΓ2
⊕ . . .

) (
IM ⊕ JΓ1 ⊕ IDΓ2

⊕ IDΓ2
⊕ . . .

)

=



Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
0 0 0 . . .

DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 0 0 . . .

0 Γ2DΓ1 −Γ2Γ∗1 0 0 0 . . .
0 DΓ2DΓ1 −DΓ2Γ

∗
1 0 0 0 . . .

0 0 0 IDΓ2
0 0 . . .

0 0 0 0 IDΓ2
0 . . .

...
...

...
...

...
...

...


,

Ũ0 = M̃0L0 =
(
IN ⊕ JΓ1 ⊕ IDΓ2

⊕ IDΓ2
⊕ . . .

) (
JΓ0 ⊕ J(c)

Γ2
⊕ IDΓ2

⊕ IDΓ2
⊕ . . .

)

=



Γ0 DΓ∗0
0 0 0 0 . . .

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2 0 0 0 . . .

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 0 0 0 . . .

0 0 DΓ2 0 0 0 . . .
0 0 0 IDΓ2

0 0 . . .
0 0 0 0 IDΓ2

0 . . .
...

...
...

...
...

...
...


.



BLOCK OPERATOR CMV MATRICES 225

Example 6.3. The operator Γ1 is isometric. In this case,

H0 =
DΓ0

⊕
DΓ∗1

⊕
DΓ∗1

⊕
DΓ∗1

⊕
. . .

⊕
DΓ∗1

⊕
. . . ,

H̃0 = DΓ∗0

⊕
DΓ∗1

⊕
DΓ∗1

⊕
. . .

⊕
DΓ∗1

⊕
. . . ,

U0 = L0M0 =
(
JΓ0 ⊕ IDΓ∗1

⊕ IDΓ∗1
⊕ . . .

) (
IM ⊕ J(r)

Γ1
⊕ IDΓ∗1

⊕ IDΓ∗1
⊕ . . .

)

=



Γ0 DΓ∗0
Γ1 DΓ∗0

0 0 0 0 0 . . .
DΓ0 −Γ∗0Γ1 −Γ∗0 0 0 0 0 0 . . .
0 0 0 IDΓ∗1

0 0 0 0 . . .

0 0 0 0 IDΓ∗1
0 0 0 . . .

0 0 0 0 0 IDΓ∗1
0 0 . . .

...
...

...
...

...
...

...
...

...


,

Ũ0 = M̃L0 =
(
IN ⊕ J(r)

Γ1
⊕ IDΓ∗1

⊕ IDΓ∗1
⊕ . . .

) (
JΓ0 ⊕ IDΓ∗1

⊕ IDΓ∗1
⊕ IDΓ∗1

⊕ . . .
)

=


Γ0 DΓ∗0

0 0 0 0 0 0 . . .
Γ1DΓ0 −Γ1Γ∗0 IDΓ∗1

0 0 0 0 0 . . .

0 0 0 IDΓ∗1
0 0 0 0 . . .

0 0 0 0 IDΓ∗1
0 0 0 . . .

...
...

...
...

...
...

...
...

...

 .

Example 6.4. The operator Γ5 is co-isometric.

H0 =
DΓ0

⊕
DΓ∗1

⊕ DΓ2

⊕
DΓ∗3

⊕
DΓ4

⊕
DΓ5

⊕
. . .

⊕
DΓ5

⊕
. . . ,

H̃0 =
DΓ∗0
⊕
DΓ1

⊕ DΓ∗2
⊕
DΓ3

⊕ DΓ∗4
⊕
DΓ5

⊕
DΓ5

⊕
DΓ5

⊕
. . .

⊕
DΓ5

⊕
. . . ,

L0 = JΓ0

⊕
JΓ2

⊕
JΓ4

⊕
IDΓ5

⊕
IDΓ5

⊕
. . . ,

M0 = IM
⊕

JΓ1

⊕
JΓ3

⊕
J(c)

Γ5

⊕
IDΓ5

⊕
IDΓ5

⊕
. . . ,

M̃0 = IN
⊕

JΓ1

⊕
JΓ3

⊕
J(c)

Γ5

⊕
IDΓ5

⊕
IDΓ5

⊕
. . . .

U0 = L0M0

=



Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
0 0 0 0 0 0 . . .

DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 0 0 0 0 0 . . .

0 Γ2DΓ1 −Γ2Γ∗1 DΓ∗2
Γ3 DΓ∗2

DΓ∗3
0 0 0 0 . . .

0 DΓ2DΓ1 −DΓ2Γ
∗
1 −Γ∗2Γ3 −Γ∗2DΓ∗3

0 0 0 0 . . .
0 0 0 Γ4DΓ3 −Γ4Γ∗3 DΓ∗4

Γ5 0 0 0 . . .
0 0 0 DΓ4DΓ3 −DΓ4Γ

∗
3 −Γ∗4Γ5 0 0 0 . . .

0 0 0 0 0 DΓ5 0 0 0 . . .
0 0 0 0 0 0 IDΓ5

0 0 . . .
0 0 0 0 0 0 0 IDΓ5

0 . . .
...

...
...

...
...

...
...

...
...

...


,
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Ũ0 = M̃0L0

=



Γ0 DΓ∗0
0 0 0 0 0 0 0 . . .

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2 DΓ∗1

DΓ∗2
0 0 0 0 0 . . .

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 −Γ∗1DΓ∗2

0 0 0 0 0 . . .
0 0 Γ3DΓ2 −Γ3Γ∗2 DΓ∗3

Γ4 DΓ∗3
DΓ∗4

0 0 0 . . .
0 0 DΓ3DΓ2 −DΓ3Γ

∗
2 −Γ∗3Γ4 −Γ∗3DΓ∗4

0 0 0 . . .
0 0 0 0 Γ5DΓ4 −Γ5Γ∗4 0 0 0 . . .
0 0 0 0 DΓ5DΓ4 −DΓ5Γ

∗
4 0 0 0 . . .

0 0 0 0 0 0 IDΓ5
0 0 . . .

0 0 0 0 0 0 0 IDΓ5
0 . . .

...
...

...
...

...
...

...
...

...
...


.

Example 6.5. The operator Γ2N is unitary. In this case,

H0 =
N−1∑
n=0

⊕ DΓ2n

⊕
DΓ∗2n+1

, H̃0 =
N−1∑
n=0

⊕ DΓ∗2n

⊕
DΓ2n+1

,

U0 =
(
JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2(N−1) ⊕ Γ2N

) (
IM ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2N−1

)
,

Ũ0 =
(
IN ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2N−1

) (
JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2(N−1) ⊕ Γ2N

)
.

If N = 1 (Γ2 is unitary) then we have

U0 =

 Γ0 DΓ∗0
Γ1 DΓ∗0

DΓ∗1
DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1
0 Γ2DΓ1 −Γ2Γ∗1

 , Ũ0 =

 Γ0 DΓ∗0
0

Γ1DΓ0 −Γ1Γ∗0 DΓ∗1
Γ2

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2

 .
Example 6.6. The operator Γ2N+1 is unitary.

H0 = DΓ0 , H̃0 = DΓ∗0
if N = 0,

H0 =
N−1∑
n=0

⊕ DΓ2n

⊕
DΓ∗2n+1

⊕
DΓ2N

, H̃0 =
N−1∑
n=0

⊕ DΓ∗2n

⊕
DΓ2n+1

⊕
DΓ∗2N

if N ≥ 1,

U0 =
[

Γ0 DΓ∗0
DΓ0 −Γ∗0

] [
IM 0
0 Γ1

]
=

[
Γ0 DΓ∗0

Γ1

DΓ0 −Γ∗0Γ1

]
,

Ũ0 =
[
IN 0
0 Γ1

] [
Γ0 DΓ∗0
DΓ0 −Γ∗0

]
=

[
Γ0 DΓ∗0

Γ1DΓ0 −Γ1Γ∗0

]
if N = 0,

U0 = (JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2N
)
(
IM ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2N−1 ⊕ Γ2N+1

)
,

Ũ0 =
(
IN ⊕ JΓ1 ⊕ JΓ3 ⊕ . . .⊕ JΓ2N−1 ⊕ Γ2N+1

)
(JΓ0 ⊕ JΓ2 ⊕ . . .⊕ JΓ2N

) if N ≥ 1.

If N = 1 (Γ3 is unitary), then

U0 =


Γ0 DΓ∗0

Γ1 DΓ∗0
DΓ∗1

0
DΓ0 −Γ∗0Γ1 −Γ∗0DΓ∗1

0
0 Γ2DΓ1 −Γ2Γ∗1 DΓ∗2

Γ3

0 DΓ2DΓ1 −DΓ2Γ
∗
1 −Γ∗2Γ3

 ,

Ũ0 =


Γ0 DΓ∗0

0 0
Γ1DΓ0 −Γ1Γ∗0 DΓ∗1

Γ2 DΓ∗1
DΓ∗2

DΓ1DΓ0 −DΓ1Γ
∗
0 −Γ∗1Γ2 −Γ∗1DΓ∗2

0 0 Γ3DΓ2 −Γ3Γ∗2

 .
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7. Unitary operators with cyclic subspaces, dilations, and block
operator CMV matrices

7.1. Carathéodory class functions associated with conservative systems.

Definition 7.1. Let M be a separable Hilbert space. The class C(M) of L(M)-valued
functions holomorphic on the unit disk D and having positive real part for all λ ∈ D is
called the Carathéodory class.

Consider a conservative systems τ =
{[
D C
B A

]
;M,M,H

}
whose input and output

spaces coincide. Put
H = M⊕ H

and let the function Fτ (z) be defined as follows

(7.1) Fτ (λ) = PM(Uτ + λIH)(Uτ − λIH)−1�M, λ ∈ D,
where

Uτ =
[
D C
B A

]
:

M
⊕
H

→
M
⊕
H

is the unitary operator in H associated with the system τ . The function Fτ (z) is holo-
morphic in D and

Fτ (λ) + F ∗τ (λ) = 2(1− |λ|2)PM(U∗τ − λ̄IH)−1(Uτ − λIH)−1�M.

It follows that Fτ (λ) + F ∗τ (λ) ≥ 0 for all λ ∈ D.
The function Fτ (λ) defined by (7.1) belongs to the Carathéodory class C(M) and, in

addition, Fτ (0) = IM. We also shall consider the function

F̃τ (λ) := F ∗τ (λ̄) = PM(IH + λUτ )(IH − λUτ )−1, λ ∈ D.

The functions Fτ and F̃τ will be called the Carathéodory functions associated with the

conservative system τ =
{[
D C
B A

]
;M,M,H

}
.

Proposition 7.2. Let

τ =
{[
D C
B A

]
;M,M,H

}
be a conservative system. Then the transfer function Θτ and the Carathéodory function
Fτ are connected by the following relations

(7.2) Θ∗τ (λ̄) =
1
λ

(Fτ (λ)− IM)(Fτ (λ) + IM)−1,

Fτ (λ) = (IM + λΘ∗τ (λ̄))(IM − λΘ∗τ (λ̄))−1, λ ∈ D.
Proof. We use the well known Schur–Frobenius formula for the inverse of block operators.
Let Φ be a bounded linear operator given by the block operator matrix

Φ =
(
X Y
Z W

)
:

M
⊕
H

→
M
⊕
H

.

Suppose that W−1 ∈ L(H) and (X−YW−1Z)−1 ∈ L(M). Then Φ−1 ∈ L(M⊕H,M⊕H)
and

Φ−1 =
(

K−1 −K−1YW−1

−W−1ZK−1 W−1 +W−1ZK−1YW−1

)
,

where K = X − YW−1Z. Applying this formula for

Φ = IH − λUτ =
(
IM − λD −λC
−λB IH − λA

)
, λ ∈ D,
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we get K = IM − λD − λ2C(IH − λA)−1B = IM − λΘτ (λ). Therefore,

PM(IH − λUτ )−1�M = (IM − λΘτ (λ))−1, λ ∈ D.

Hence
PM(IH − λU∗τ )−1�M = (IM − λΘ∗τ (λ̄))−1, λ ∈ D.

Since Uτ is unitary, from (7.1) we get

Fτ (λ) = PM(IH + λU∗τ )(IH − λU∗τ )−1�M

= −IM + 2PM(IH − λU∗τ )−1�M = −IM + 2(IM − λΘ∗τ (λ̄))−1

= (IM + λΘ∗τ (λ̄))(IM − λΘ∗τ (λ̄))−1, λ ∈ D.

�

The following theorem is well known (see [28]).

Theorem 7.3. Let M be a separable Hilbert space and let F ∈ C(M). Then
(1) F admits the integral representation

F (λ) =
1
2
(F (0)− F ∗(0)) +

2π∫
0

eit + λ

eit − λ
dΣ(t), λ ∈ D,

where Σ(t) is a non-decreasing and nonnegative L(M)-valued function on [0, 2π];
(2) under the condition F (0) = IM there exists a Hilbert space H containing M as a

subspace, and a unitary operator U in H such that

F (λ) = PM(U + λIH)(U − λIH)−1�M, λ ∈ D;

moreover, the pair {H, U} can be chosen minimal in the sense

span {UnM, n ∈ Z} = H.

Proposition 7.4. [41]. The conservative system

τ =
{[
D C
B A

]
;M,M,H

}
is simple if and only if span {Un

τ M, n ∈ Z} = H.

Proof. Let τ be a simple conservative system. Suppose h ∈ H and h is orthogonal to
Un

τ M for all n ∈ Z. Then the vectors U∗nτ h are orthogonal to M in H for all n ∈ Z. It
follows that h ∈ H and

(7.3)
Ch = CAh = CA2h = · · · = CAnh = · · · = 0,

B∗h = B∗A∗h = B∗A∗2h = · · ·B∗A∗nh = · · · = 0.

Hence, h ∈
(⋂

n≥0 ker(CAn)
)
∩

(⋂
n≥0 ker(B∗A∗n)

)
. Since τ is simple we get h = 0,

i.e.,
span {Un

τ M, n ∈ Z} = H.
Conversely, let span {Un

τ M, n ∈ Z} = H. Suppose that relations (7.3) hold for some
h ∈ H. Then h ⊥ Un

τ M for all n ∈ Z. Hence, h = 0 and τ is simple. �

7.2. Unitary operators with cyclic subspaces. Let U be a unitary operator in a
separable Hilbert space K and let M be a subspace of K. Put H = K	M. Then U takes
the block operator matrix form

U =
[
D C
B A

]
:

M
⊕
H

→
M
⊕
H

.
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Since U is unitary, the system η = {U ;M,M,H} is conservative. By Proposition 7.4 the
system η is simple if and only if

(7.4) span {UnM, n ∈ Z} = K.

A subspace M of K is called cyclic for U if the condition (7.4) is satisfied.
Define the Carathéodory function

FM(λ) = PM(U + λIH)(U − λIH)−1�M, λ ∈ D,
and a Schur function

EM(λ) =
1
λ

(FM(λ)− IM)(FM(λ) + IM)−1, λ ∈ D.

According to Proposition 7.2 the transfer function Θ(λ) of the system η and the function
EM(λ) are connected by the relation

Θ(λ) = E∗M(λ̄), λ ∈ D.

Theorem 7.5. Let U be a unitary operator in a separable Hilbert space and let M
be a cyclic subspace for U . Then U is unitarily equivalent to the block operator CMV
matrices U0({Γn}n≥0) and Ũ0({Γn}n≥0) in the Hilbert spaces H = M ⊕ H0({Γn}n≥0)
and H̃ = M⊕ H̃0({Γn}n≥0), respectively, where {Γn}n≥0 are the Schur parameters of the
function

Θ(λ) =
1
λ

(F ∗M(λ̄)− IM)(F ∗M(λ̄) + IM)−1, λ ∈ D.

Proof. Because M is a cyclic subspace for U , the conservative system η is simple. By
Theorem 5.4 the system η is unitarily equivalent to the systems ζ0 and ζ̃0 given by (5.19).
From (3.5) it follows that U is unitarily equivalent to U0({Γn}n≥0) and Ũ0({Γn}n≥0). �

Suppose that the cyclic subspace M for unitary operator U in K is one-dimensional.
Let ϕ ∈ M, ||ϕ|| = 1, and let µ(ζ) = (E(ζ)ϕ,ϕ)K, where E(ζ), ζ ∈ T, is the resolution of
the identity for U . Then the scalar Carathéodory function F (λ) is of the form

F (λ) =
(
(U + λIH)(U − λIH)−1ϕ,ϕ

)
K

=
∫

T

ζ + λ

ζ − λ
dµ(ζ) , λ ∈ D.

Thus, the function F is associated with the probability measure µ on T. The Schur
function associated with µ [66] is the function

E(λ) =
1
λ

F (λ)− 1
F (λ) + 1

, λ ∈ D.

By Geronimus theorem [46] the Schur parameters of the function E coincide with Verblun-
sky coefficient {αn}n≥0 of the measure µ (see [66]). Let Θ(λ) := E(λ̄), λ ∈ D, and let
{γn}n≥0 be the Schur parameters of Θ. Then ᾱn = γn for all n and the CMV matrices
U0 = U0({γn}n≥0) and Ũ0 = Ũ0({γn}n≥0) coincide with the CMV matrices C and C̃ given
by (1.2) and (1.3), correspondingly. Observe that dim K = m ⇐⇒ the function E is
the Blaschke product of the form

E(λ) = eiϕ
m∏

k=1

λ− λk

1− λ̄kλ
.

7.3. Unitary dilations of a contraction. Let T be a contraction acting in a Hilbert
space H. A unitary operator U in a Hilbert space H containing H as a subspace is called
a unitary dilation of T if Tn = PHU

n�H for all n ∈ N [71]. Two unitary dilations U in H
and U ′ in H′ of T are called isomorphic if there exists a unitary operator W ∈ L(H,H′)
such that W �H = IH and WU = U ′W. It is established in [71] that for every contraction
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T in the Hilbert space H there exists a unitary dilation U in a space H such that U is
minimal [71], i.e.,

span {UnH, n ∈ Z} = H.
Moreover, two minimal unitary dilations of T are isomorphic [71]. The minimal unitary
dilation by means of the infinite matrix form is constructed in [71] on the base of Schäffer
paper [61]. Below we show that the minimal unitary dilations can be given by the operator
CMV matrices.

Theorem 7.6. Let T be a contraction in a Hilbert space H. Define the Hilbert spaces

(7.5) H0 :=
DT

⊕
DT∗

⊕ DT

⊕
DT∗

⊕
· · · , H̃0 :=

DT∗

⊕
DT

⊕ DT∗

⊕
DT

⊕
· · · ,

and the Hilbert spaces H0 := H ⊕ H0, and H̃0 := H ⊕ H̃0. Let

J0 =
[

0 IDT∗

IDT
0

]
:

DT

⊕
DT∗

→
DT∗

⊕
DT

.

Define operators

(7.6)
M0 = IH

⊕
J0

⊕
J0

⊕
· · · : H0 → H̃0,

L0 = JT

⊕
J0

⊕
J0

⊕
· · · : H̃0 → H0,

and

(7.7) U0 = L0M0 : H0 → H0, Ũ0 = M0L0 : H̃0 → H̃0.

Then {H0,U0} and {H̃0, Ũ0} are unitarily equivalent minimal unitary dilations of the
operator T .

Proof. Define the L(H)-valued function

F̃ (λ) = (IH + λT )(IH − λT )−1, λ ∈ D.

Then the function F̃ belongs to the Carathéodory class C(H) and

Θ(λ) :=
1
λ

(F̃ (λ)− IH)(F̃ (λ) + IH)−1 = T, λ ∈ D,

belongs to the Schur class S(H,H). The Schur parameters of Θ is the sequence

Γ0 = T, Γn = 0 ∈ S(DT ,DT∗), n ∈ N.

Let H0 and H̃0 be defined by (7.5), H0 = H ⊕ H0, H̃0 = H ⊕ H̃0. Then the operators
U0 and Ũ0 defined by (7.7) are the block operator CMV matrices constructed by means
of the Schur parameters of Θ. Let ζ0 = {U0,M,M,H0} and ζ̃0 = {Ũ0,M,M, H̃0} be the
corresponding conservative systems. By Theorem 5.4 the systems ζ0 and ζ̃0 are simple,
unitary equivalent, and their transfer functions are equal Θ. By Proposition 7.2 we have

(IH + λT )(IH − λT )−1 = F̃ (λ) = (IH + λΘ(λ))(IH − λΘ(λ))−1

= PH(IH0 + λU0)(IH0 − λU0)−1�H, λ ∈ D.

Hence Tn = PHUn
0 �H, n ∈ N. Therefore U0 is a unitary dilation of T in H0. By

Proposition 7.4 this dilation is minimal. Similarly, the operator Ũ0 is a minimal unitary
dilation of T in H̃0. �
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Taking into account (7.6), (5.6), and (5.7) we obtain the following operator matrix
forms for the minimal unitary dilations U0 and Ũ0:

U0 =



T 0 DT∗ 0 0 0 0 0 0 . . .
DT 0 −T ∗ 0 0 0 0 0 0 . . .
0 0 0 0 IDT∗ 0 0 0 0 . . .
0 IDT

0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 IDT∗ 0 0 . . .
0 0 0 IDT

0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 IDT∗ . . .
...

...
...

...
...

...
...

...
...

...


,

Ũ0 =



T DT∗ 0 0 0 0 0 0 0 . . .
0 0 0 IDT∗ 0 0 0 0 0 . . .
DT −T ∗ 0 0 0 0 0 0 0 . . .
0 0 0 0 0 IDT∗ 0 0 0 . . .
0 0 IDT

0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 IDT∗ 0 . . .
0 0 0 0 IDT

0 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...


.

7.4. The Naimark dilation. Let M be a separable Hilbert space. Denote by B(T)
the σ-algebra of Borelian subsets of the unit circle T = {ξ ∈ C : |ξ| = 1}. Let µ be a
L(M)-valued Borel measure on B(T), i.e.,

(a) for any δ ∈ B(T) the operator µ(δ) is nonnegative,
(b) µ(∅) = 0,
(c) µ is σ-additive with respect to the strong operator convergence.

Denote by M(T,M) the set of all L(M)-valued Borel measures.

Definition 7.7. [33], [44], [19], [41]. Let µ ∈ M(T,M) be a probability measure (µ(T) =
IM) and let the operators {Sn}n∈Z be the sequence of Fourier coefficients of µ, i.e.,

Sn =
∫
T

ξ−nµ(dξ), n ∈ Z.

A Naimark dilation of µ is a pair {H,U}, where H is a separable Hilbert space containing
M as a subspace, U is unitary operator in H such that

Sn = PMUn�M, n ∈ Z.

A Naimark dilation is called minimal if span {UnM, n ∈ Z} = H.

Proposition 7.8. [33], [44], [19], [41]. Let {H1,U1} and {H2,U2} be two minimal
Naimark dilations of a probability measure µ ∈ M(T,M). Then there exists a unitary
operator W ∈ L(H1,H2) such that WU1 = U2W and W�M = IM.

Notice that S0 = IM, Sn = S∗n for all n ∈ Z and the sequence {Sn}n∈Z is positive [33],
[35], [19], [44], i.e.,

∞∑
i,j=0

(Si−jhi, hj)M ≥ 0

for all sequences {hi}i≥0 ⊂ M with finite support. If ν is the spectral measure of a
minimal Naimark dilation of µ, then µ = PMν�M. The minimal Naimark dilation was
constructed by T. Constantinescu in [33] (see also ([44]) by means of an infinite in both
sides block operator matrix whose entries depend on the choice sequence determined by
{Sn}n∈Z (see [35]), the Hessenberg matrix representation of a minimal isometric dilation
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of {Sn}n≥0 is obtained in [44]. Here we construct the minimal Naimark dilations in the
form of block operator CMV matrices.

Theorem 7.9. Let M be a separable Hilbert space and let µ ∈ M(T,M) be a probability
measure. Define the functions

F (λ) =
∫
T

ξ + λ

ξ − λ
µ(dξ), E(λ) =

1
λ

(F (λ)− IM)(F (λ) + IM)−1, λ ∈ D.

Then E ∈ S(M,M). Let {Gn}n≥0 be the Schur parameters of E. Define the Hilbert
spaces H0 = H0({Gn}n≥0), H̃0 = H̃0({Gn}n≥0) and the Hilbert spaces H0 = M ⊕ H0,
H̃0 = M⊕ H̃0. Let

U0 = U0({Gn}n≥0), Ũ0 = Ũ0({Gn}n≥0)
be the block operator CMV matrices constructed by means of {Gn}. Then the pairs
{H0,U0} and {H̃0, Ũ0} are unitarily equivalent minimal Naimark dilations of the mea-
sure µ.

Proof. Clearly

F (λ) = IM + 2
∞∑

n=1

λn

∫
T

ξ−nµ(dξ) = IM + 2
∞∑

n=1

λnSn, λ ∈ D.

Then

F ∗(λ̄) = IM + 2
∞∑

n=1

λnS−n.

Because F (λ) + F ∗(λ) ≥ 0 for λ ∈ D, the L(M)-valued function E belongs to the Schur
class S(M,M). Construct the Hilbert spaces H0 = H0({Gn}n≥0), H0 = M ⊕ H0 and
let U0 = U0({Gn}n≥0) = (U0({Gn}n≥0))

∗ be the block operator CMV matrix. Then
U0 is a unitary operator in the Hilbert space H0. The system ζ0 = {U0;M,M,H0} is
conservative and simple, and its transfer function is equal to E(λ) (see Subsection 5.3,
(5.19), Theorem 5.4). Hence the transfer of the adjoint system ζ∗0 = {U∗0 ;M,M,H0} is
equal to Θ(λ) = E∗(λ̄). By definition of F (λ) and E(λ), and by Proposition 7.2, and
(7.2) we have

F (λ) = (IM + λE(λ))(IM − λE(λ))−1 = (IM + λΘ∗(λ̄))(IM − λΘ∗(λ̄))−1

= PM(U∗0 + λIH0)(U∗0 − λIH0)
−1�M.

Hence,

F (λ) = IM + 2
∞∑

n=1
λnPMUn

0 �M,

F ∗(λ̄) = IM + 2
∞∑

n=1
λnPMU−n

0 �M.

Thus, the pair {H0,U0} is the minimal Naimark dilation of the measure µ. The same is
true for the pair {H̃0, Ũ0}. �

8. The block operator CMV matrix models for completely non-unitary
contractions

Theorem 8.1. Let T be a completely non-unitary contraction in a separable Hilbert
space H. Let

ΦT (λ) = (−T + λDT∗(IH − λT ∗)−1DT )�DT , λ ∈ D,
be the Sz.-Nagy–Foias characteristic function of T [71]. If {Γn}n≥0 are the Schur para-
meters of ΦT , then the operator T is unitarily equivalent to the truncated block operator
CMV matrices T0({Γ∗n}n≥0) and T̃0({Γ∗n}n≥0).
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Proof. The transfer function of the simple conservative system

η =
{[
−T ∗ DT

DT∗ T

]
;DT∗ ,DT ,H

}
is given by

Θη(λ) =
(
−T ∗ + λDT (IH − λT )−1DT∗

)
�DT∗ , λ ∈ D.

It follows that ΦT (λ) = Θ∗η(λ̄), λ ∈ D. Hence, if {Γn}n≥0 are the Schur parameters
of ΦT (λ), then {Γ∗n}n≥0 are the Schur parameters of Θη(λ). Construct the Hilbert
spaces H0 = H0({Γ∗n}n≥0), H̃0 = H̃0({Γ∗n}n≥0), the block operator CMV matrices U0 =
U0({Γ∗n}n≥0), Ũ0 = Ũ0({Γ∗n}n≥0), truncated block CMV matrices T0 = T0({Γ∗n}n≥0) and
T̃0 = T̃0({Γ∗n}n≥0). Consider the corresponding conservative systems

ζ0 = {U0;DT∗ ,DT ,H0} , ζ̃0 =
{
Ũ0;DT∗ ,DT , H̃0

}
.

By Theorem 5.4 the systems ζ0 and ζ̃0 are simple conservative realizations of the function
Θ. It follows that the operator T is unitarily equivalent to the operators T0({Γ∗n}n≥0)
and T̃0({Γ∗n}n≥0). �

Observe that T0({Γ∗n}n≥0) =
(
T̃0({Γn}n≥0)

)∗
and T̃0({Γ∗n}n≥0) = (T0({Γn}n≥0))

∗.
The results of Sz.-Nagy–Foias [71, Theorem VI.3.1] states that if a function Θ ∈

S(M,N) is purely contractive (||Θ(0)f || < ||f || for all f ∈ M \ {0}), then there exists
a completely non-unitary contraction T whose characteristic function coincides with Θ.
Here we give another proof of this result.

Theorem 8.2. Let a function Θ ∈ S(M,N) be purely contractive. If {Γn}n≥0 are the
Schur parameters of Θ then the characteristic functions of completely non-unitary con-
tractions given by the truncated block operator CMV matrices T0({Γ∗n}n≥0) and T̃0({Γ∗n}n≥0)
coincide with Θ.

Proof. Let Θ̃(λ) := Θ∗(λ̄). Then {Γ∗n}n≥0 are the Schur parameters of Θ̃. Construct
the Hilbert spaces H0 = H0({Γ∗n}n≥0), H̃0 = H̃0({Γ∗n}n≥0), the block operator CMV
matrices U0 = U0({Γ∗n}n≥0), Ũ0 = Ũ0({Γ∗n}n≥0), the truncated block CMV matrices T0 =
T0({Γ∗n}n≥0), T̃0 = T̃0({Γ∗n}n≥0), and consider the corresponding conservative systems

ζ0 = {U0;M,N,H0} , ζ̃0 =
{
Ũ0;M,N, H̃0

}
.

Then the transfer functions of ζ0 and ζ̃0 are equal to Θ̃(λ). Since the operator

U0 =
[
Γ∗0 G0

F0 T0

]
:

M
⊕
H0

→
N
⊕
H0

is a contraction, there exist contractions (see [18], [38], [65]) K ∈ L(DT0 ,N), M ∈
L(M,H0), X ∈ L(DM,DK∗) such that

G0 = KDT0 , F0 = DT ∗0 M, Γ∗0 = −KT ∗0 M+DK∗XDM.

Because U0 is unitary, the operators K, M∗ are isometries and X is unitary (see [7],[8]),
the characteristic function of T ∗0 and the transfer function of the system ζ0 are connected
by the relation (see [9], [8])

Θ̃(λ) = KΦT ∗0 (λ)M+ XDM.

Since DM is an orthogonal projection in M onto kerM, and Θ̃(λ)� kerM = X , λ ∈ D,
we have, for f ∈ kerM,

||Γ∗0f || = ||Θ̃(0)f || = ||Xf || = ||f ||.
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Since Γ∗0 is a pure contraction, we obtain kerM = {0}. Similarly, kerK∗ = {0}, i.e., K
and M are unitary operators, and Θ̃(λ) = KΦT ∗0 (λ)M, λ ∈ D. Thus, the characteristic
function ΦT0 of T0 coincides with Θ. Similarly, the characteristic function ΦeT0

of T̃0

coincides with Θ. �

Remark 8.3. For completely non-unitary contractions with one-dimensional defect op-
erators and for a scalar Schur class functions, Theorem 8.1 and Theorem 8.2 have been
established in [11].
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Adv. Appl., Vol. 82, Bikhäuser Verlag, Basel, 1996.

37. D. Damanik, A. Pushnitskii, and B. Simon, The analytical theory of matrix orthogonal poly-
nomials, Surv. Approx. Theory 4 (2008), 1–85.

38. Ch. Davis, W. M. Kahan, and H. F. Weinberger, Norm preserving dilations and their appli-
cations to optimal error bounds, SIAM J. Numer. Anal. 19 (1982), 445–469.

39. Ph. Delsarte, Y. Genin, and Y. Kamp, Orthogonal polynomial matrices on the unit circle,
IEEE Trans. Circuits and Systems 25 (1978), no. 3, 149–160.

40. Ph. Delsarte, Y. Genin, and Y. Kamp, Schur parametrization of positive definite block-
Toeplitz systems. SIAM J. Appl. Math. 36 (1979), no. 1, 34–46.

41. V. K. Dubovoy, Shift operators contained in contractions, Schur parameters and pseudocon-
tinuable Schur functions, Oper. Theory Adv. Appl. 165 (2006), 175–250.

42. V. K. Dubovoj, B. Fritzsche, and B. Kirstein, Matricial Version of the Classical Schur Prob-
lem, Teubner-Texte zur Mathematik, Vol. 129, B. G. Teubner, Verlagsgesellschaft, Stuttgart,
1992.

43. M. E. Dudkin, The inner structure of the block Jacobi type unitary matrices connected with
the corresponding direct and inverse spectral problems, Methods Funct. Anal. Topology 14
(2008), no. 2, 168–176.

44. C. Foias and A. E. Frazho, The Commutant Lifting Approach to Interpolation Problems,
Oper. Theory Adv. Appl., Vol. 44, Birkhäuser Verlag, Basel, 1990.
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