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A CHARACTERIZATION OF CLOSURE OF THE SET OF
COMPACTLY SUPPORTED FUNCTIONS IN DIRICHLET

GENERALIZED INTEGRAL METRIC AND ITS APPLICATIONS

A. G. BRUSENTSEV

Dedicated to the blessed memory of A. Ya. Povzner

Abstract. We obtain conditions under which a function u(x) with finite Dirichlet
generalized integral over a domain G (u(x) ∈ H(G)) belongs to the closure of the
set C∞0 (G) in the metrics of this Dirichlet integral (i.e., to the space H0(G)). In
the case where G = Rn (n ≥ 2) using these conditions we construct examples of
Dirichlet integrals such that H(Rn) 6= H0(Rn). For n = 2 these examples show
that in the known Mazia theorem uniform positivity of the Dirichlet integral matrix
cannot be replaced with its pointwise positivity. The characterization of the space
H0(G) is also applied to the problem of relative equivalence of the spaces H(G)
and H0(G) concerning the part of the boundary Γ(Γ ⊆ ∂G). This problem in fact
coincides with the problem of possibility to set boundary conditions of corresponding
boundary-value problems.

1. Introduction

One of A. Ya. Povzner’s remarkable achievements is a proof of essential self-adjointness
of a Shrödinger semibounded operator with a continuous potential, which acts on the
space L2(R3) with the domain of definition C∞0 (R3) [18]. Later Yu. M. Berezansky [1]
has generalized this result to elliptic operators of a general form, subordinated to the
condition of global finiteness of propagation velocity (GFVP-condition). This condition
is sufficient for coincidence of the closure of C∞0 (Rn) in the metric of the Dirichlet
generalized integral with a set of functions for which this integral is finite. The aim of
this paper is to study the closure of C∞0 (G) in this metric when the domain G, generally
speaking, does not coincide with Rn. The quadratic functional

(1) D(u, u) =
∫
G

[(A(x)(∇u− i
−→
b (x)u), (∇u− i

−→
b (x)u) + q(x)|u|2]dx

is called the Dirichlet generalized integral. Here G is an open set in Rn, A(x) is a positive
Hermitian matrix-valued function,

−→
b (x) is a n-component vector-valued function with

real components, q(x) is a real function satisfying the condition q(x) ≥ δ > 0, u(x) is a
complex-valued function, and (·, ·), |·, ·| is the scalar product and the norm in the unitary
space E(dimE <∞).

Denote the closure in norm ‖u‖ = (D(u, u))1/2 of the set C∞0 (G) by H0(G) and by
H(G) denote the set of functions from W 1

2loc(G) for which the integral D(u, u) is finite.
It is easy to show that when elements of the matrices A(x) and A−1(x), the components
−→
b (x), and q(x) are functions measurable and locally bounded in G then definitions of

the spaces H(G), H0(G) are reasonable and the inclusion H0(G) ⊆ H(G) is true. In
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doing so, H(G) is Hilbert space with the scalar product 〈u, v〉H = D(u, v) and H0(G) is
its subspace.

In the present work, the behavior of a function from H0(G) at the boundary of a do-
main G is studied. There are new necessary, sufficient and in some cases necessary and
sufficient conditions to claim that a function from H(G) belongs to the subset H0(G).
These conditions may help to solve some of the problems discussed in publications re-
peatedly. Thus in some cases any function of H(G) coincides with a function from H0(G)
at the boundary or at its fixed part. Hence it is impossible to set boundary conditions
for the corresponding boundary-value problems. Impossibility to set boundary condi-
tions on a part of dimension ≤ n − 2 of the boundary for some elliptic equations was
considered in [20]. For some degenerate elliptic equations, criteria of impossibility to set
boundary conditions were considered in [22, 23], [13–15] (see also [16], pp. 157–160). A
characterization of the spaces H0(G) derived in the present work is used for a study of an
equivalent problem of relative equivalence of the spaces H(G) and H0(G) for Dirichlet
integral of a general form for an arbitrary domain G.

A similar problem is the problem of the equality H0(G) = H(G). For some Dirichlet
integrals in the case of G = Rn, this problem was studied in [10–12], [19]. In his work
[11] V. G. Mazia proved (for

−→
b (x) =

−→
0 , q(x) = const) that sufficient smoothness and

uniform positivity of the matrix A(x) (A(x) ≥ εI, ε = const) provide the equality
H0(Rn) = H(Rn) if n = 1 or n = 2. As it is well known (see [12], p. 133; [10]) this
statement is wrong if n ≥ 3. It is easy to prove that for n = 1 in the theorem of
V. G. Mazia the uniform positivity condition may be replaced by the ordinary pointwise
positivity. Thus a natural question arises: is it true for n = 2 ? Our characterization of
the space H0(G) gives a negative answer to this question (Example 2).

For a bounded domain G, conditions of the equality H0(G) = H(G) were considered
in [17]. Conditions of essential self-adjointness of the minimal operator M corresponding
to the functional (1) derived in [4] give criteria of the equality H0(G) = H(G) for an
unbounded domain G too. The characterization of the space H0(G)) obtained in the
present work is used for stating such conditions for an arbitrary domain G, specifically,
in a case when a suitable operator M may not be essentially self-adjoint (or when the
operator M makes no sense at all ). In addition, this characterization permits to answer
the question about coincidence of the space H0(G) and H(G) for Dirichlet integrals for
which the reduction to one-dimensional case used in [17] is impossible.

If the minimal operatorM is defined then the characterization of the spaceH0(G) gives
in fact a description of the definition domain H0(G)

⋂
DM∗ of Friedrichs extension of

this operator. Friedrichs extension for some types of the semibounded elliptical operators
(under a less strict requirement on q(x) than here) were considered in [7], [8].

The problem of density of the set C∞0 (G) in a Sobolev weight space with the order of
the derivative derivative ≥ 1 was considered in some works (e.g., see [2]). Though the
results given there don’t include the case with Dirichlet integral of type (1). The results
of present work are partially announced in [3].

2. Characterization of the spaces H0(G)

Denote by DΩ(u, u) the integral (1) over the open subset Ω of the domain G (Ω ⊂
G). Sometimes Ω is supposed to be a bounded set and its boundary is supposed to be
composed of a finite number of closed piecewise smooth hypersurfaces. Then Ω is called
a domain with piecewise-smooth boundary. In doing so, the boundary integrals are taken
over external surface of the boundary ∂Ω. By Lip(r)

loc(G) denote the set of r-component
vector-valued functions

−→
f (x) defined on G and satisfying the condition

(∗) |
−→
f (x0 + y)−

−→
f (x0)| = O(|y|) as |y| → 0
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for any point x0 ∈ G. In this case the constant in O(·), generally speaking, depends on x0.
The set of vector-valued functions, for each of which (*) is satisfied with a constant in O(·)
independent of x0 is denoted by Lipr(G). The set of functions from C1(G) the gradients
of which belong to Lip(n)

loc (G) is denoted by C(1,1)(G). Let us note that for components of
the vector-valued function

−→
f ∈ Lip(r)

loc(G) the first order partial derivatives exist almost
everywhere in G and for r = n the divergence ∇

−→
f also exists almost everywhere in G

(see [21], p. 295). The following statement is a generalization of the theorem obtained in
[5] (see also [6]).

Theorem 1. Let in Dirichlet integral (1) elements of the matrices A(x), A−1(x), com-
ponents

−→
b (x), and q(x) be measurable and locally bounded in G. Then the inequalities

(2)
∫

Ω

(
∇
−→
f − (A−1−→f ,

−→
f )
)
|u|2dx ≤ DΩ(u, u) +

∫
∂Ω

|u|2(
−→
f ,
−→
ds),

(3) 2
∣∣∣∣Re

∫
Ω

(
∇u, u

−→
f
)
dx

∣∣∣∣ ≤ DΩ(u, u) +
∫

Ω

(
A−1−→f ,

−→
f
)
|u|2dx

hold true. Here, in formula (2 ),
−→
f (x) ∈ Lip(n)

loc (G) (
−→
f (x) : G → Rn), the function

u(x) ∈ Lip(1)
loc(G), the bounded domain Ω (Ω ⊂ G) has piecewise smooth boundary ∂Ω; in

formula (3 ), the vector field
−→
f (x) is measurable and locally bounded in G, u(x) is an

arbitrary function from W 1
2loc(G), Ω is an open set such that Ω ⊆ G.

Proof. In the inequality (3) it is possible to consider terms in the right-hand side as finite,
otherwise this inequality is formally satisfied. We consider the integral

J =
∫

Ω

∣∣∣A 1
2 (∇u− i

−→
b u)±A−

1
2 (u

−→
f )
∣∣∣2 dx

=
∫

Ω

(∣∣∣A 1
2 (∇u− i

−→
b u)

∣∣∣2 +
∣∣∣A− 1

2u
−→
f
∣∣∣2 ± 2Re

(
(∇u, u

−→
f )− i(

−→
b ,
−→
f )|u|2

))
dx

=
∫

Ω

(
A
(
∇u− i

−→
b u
)
,
(
∇u− i

−→
b u
))

dx+
∫

Ω

(
A−1−→f ,

−→
f
)
|u|2dx

±
∫

Ω

2Re
(
∇u, u

−→
f
)
dx

for any u(x) ∈W 1
2loc(G). Taking into account that J ≥ 0, q(x) ≥ 0 we obtain validity of

the inequality (3).
Further for u(x) ∈ Lip(n)

loc (G),
−→
f (x) ∈ Lip(n)

loc (G) and for a bounded domain Ω with
piecewise smooth boundary ∂Ω,∫

Ω

2Re
(
∇u, u

−→
f
)
dx =

∫
Ω

(
∇(|u|2

−→
f )−∇

−→
f |u|2

)
dx.

From this equality and according to the Gauss-Ostrogradsky theorem it follows validity
of the inequality (2) if we take into consideration that the integral J in which the plus
sign is chosen is non-negative. Theorem 1 is proved. �

The following necessary conditions for a function from H(G) to belong to the subspace
H0(G) result from Theorem 1.

Theorem 2. Let in Dirichlet integral (1) elements of the matrices A(x), A−1(x), the
components of

−→
b (x), and q(x) be measurable and locally bounded in G. Let −→g (x) ∈

Lip(n)
loc (G) (−→g (x) : G→ Rn) be a vector field such that for some ε > 0 almost everywhere

in G the inequality

(4) ∇−→g ≥ ε(A−1−→g ,−→g )− const
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holds. If u(x) ∈ H0(G), then

(5)
∫
G

(∇−→g )|u|2dx,
∫
G

(
A−1−→g ,−→g

)
|u|2dx < +∞.

Proof. For u(x) ∈ H0(G) there exists a sequence {ϕk}∞k=1, ϕk ∈ C∞0 (G) such that ϕk → u

in L2(G) and D(ϕk, ϕk) → D(u, u). We take
−→
f (x) = (ε/2)−→g (x) in Theorem 1, where

the constant ε > 0 is taken from (4). Under the condition (4) almost everywhere in G
the following inequalities hold true:

∇
−→
f − (A−1−→f ,

−→
f ) ≥ (ε2/4)(A−1−→g ,−→g )− const,

∇
−→
f − (A−1−→f ,

−→
f ) ≥ (ε/4)∇(−→g )− const.

Under the inequality (2) with Ω = suppϕk, u = ϕk passing to the limit as k → ∞ we
obtain (5). The theorem is proved. �

Corollary 1. Let in Dirichlet integral (1) elements of the matrices A(x), A−1(x),
components of

−→
b (x), and q(x) be measurable and locally bounded in G. Let −→g ∈

Lip(n)
loc (G) (−→g (x) : G→ Rn) be a vector field such that for some ε > 0 almost everywhere

in G the inequality (4) is valid. If the u(x) ∈ H0(G)
⋂

Lip(1)
loc(G) then the inequality

(6)
∫
∂Ω

|u|2(−→g ,
−→
ds) ≤ Cu

is true. Here Ω is an arbitrary bounded domain with piecewise smooth boundary ∂Ω (Ω ⊂
G), Cu is a constant independent of Ω.

Proof. Using the Gauss-Ostrogradsky theorem, supposing that
−→
f (x) = −→g (x) in the

inequality (3) and taking into account Theorem 2 we obtain∫
∂Ω

|u|2(−→g ,
−→
ds) =

∫
Ω

∇(|u|2−→g )dx = 2Re
∫

Ω

(∇u, u−→g )dx+
∫

Ω

∇−→g |u|2dx

≤ DΩ(u, u) +
∫

Ω

(A−1−→g ,−→g )|u|2dx+
∫

Ω

∇−→g |u|2dx ≤ const.

Corollary 1 is proved. �

Now we pass to finding sufficient, and in certain cases necessary and sufficient con-
ditions for a function u(x) ∈ H(G) to satisfy u(x) ∈ H0(G). Below for a function η(x)
defined in G, we sometimes require that the condition

(7) 0 ≤ η(x) →∞, as x→ ∂G

be satisfied. This means that for any N > 0 there is a compact set <N ⊂ G that for
x ∈ G \ <N the inequality η(x) > N is true.

Theorem 3. Let in Dirichlet integral (1) elements of the matrices A(x), A−1(x), com-
ponents of

−→
b (x) and q(x) be measurable and locally bounded functions in G, and the

matrix-valued function A(x) be symmetric (real).
10. In order that an element u ∈ H(G) belongs to H0(G), it is sufficient that there

exists a function η(x) satisfying (7), and at least one of the conditions:

i) η(x) ∈ Lip(1)
loc(G), τ−2

∫
Ωτ

(A∇η,∇η)|u|2dx ≤ C;

ii) η(x) ∈ C(1,1)(G), aij(x) ∈ Lip(1)
loc(G), τ−2

∫
Ωτ

(τ − η)(∇(A∇η)) · |u|2dx ≤ C.

Here Ωτ = {x : x ∈ G, η(x) < τ} and C is a constant independent of τ ≥ τ0 > 0.
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20. If aij(x) ∈ Lip(1)
loc(G) and the function η(x) ∈ C(1,1)(G) satisfies almost everywhere

in G the inequality

(8) ∇(A∇η) +K ≥ ε(A∇η,∇η)

with constants K ≥ 0, ε ≥ 0 then for each function u(x) ∈ H0(G)

iii)
∫
G

(A∇η,∇η)|u|2dx < +∞,

iv)
∫
G

(∇(A∇η))|u|2dx < +∞.

If the function η(x) in addition satisfies the condition (7) then convergence of either of
the integrals iii), iv) is necessary and sufficient for an element u(x) ∈ H(G) to belong
to the subspace H0(G).

Proof. 10. Consider the Dirichlet integral as a closed symmetric semibounded quadratic
form in the space L2(G) with the domain of definition H0(G). If for some element
u ∈ L2(G) there exists a sequence {uk} of elements from H0(G) such that uk → u
in L2(G) and the number sequence D(uk, uk) is bounded then the element u ∈ L2(G)
belongs to the domain of this quadratic form (see [9], p. 395, Theorem 1.16). Let ψ ∈
C0(G)

⋂
Lip(1)

loc(G). If u ∈ H(G) then ψ · u ∈ H0(G). The latter results from that
averaging ϕt(x) = ((ψ · u) ∗ ωt)(x) with sufficiently small radius t enters in H0(G). This
averaging is uniformly bounded for t > 0 in the metric of the space W 1

2 (Ω1) for a fixed
bounded domain Ω1 ⊃ suppψ = Ω. Since, under our conditions,

D(ϕt, ϕt) ≤ CΩ1‖ϕt‖2W 1
2 (Ω1)

and also ϕt → ψ · u as t → 0 in L2(G), we have ψ · u ∈ H0(G). For a real function
ψ(x) ∈ Lip1(G) the equality

(9) D(ψu, ψu) = Dψ(u, u) +
∫
G

(A∇ψ,∇ψ)|u|2dx+ 2Re
∫
G

(∇u, uψA∇ψ)dx

is true. Here

Dψ(u, u) =
∫
g

ψ2[(A(∇ψ − i
−→
b u), (∇ψ − i

−→
b u)) + q|u|2]dx,

u ∈ H(Ω), and Ω is a subdomain of G such that ψ(x) = 0 for x ∈ G \Ω. Letting, in the
inequality (3) of Theorem 1,

−→
f = ψA∇ψ we obtain from (9) that for such a subdomain

Ω, the inequality

(10) D(ψu, ψu) ≤ Dψ(u, u) +DΩ(u, u) +
∫

Ω

(1 + ψ2)(A∇ψ,∇ψ)|u|2dx

is true. Let ψ = ψ(x, τ) = (1 − η(x)/τ)+. Here η(x) ∈ Lip(1)
loc(G) satisfies (7) and the

parameter τ > τ0 > 0. It is obvious that ψ(x) ∈ C0(G)
⋂

Lip(1)
loc(G) and ψ · u ∈ H0(G).

As (A∇ψ,∇ψ) = τ−2(A∇η,∇η) for x ∈ Ωτ = {x : x ∈ G, η(x) < τ}, from the last
inequality and condition i) taking into account that u ∈ H(G) we obtain validity of
the inequality D(ψu, ψu) ≤ const for all τ > τ0 > 0. Since ψ(x, τ)u(x) → u(x) as
τ → ∞ in L2(G), we have u(x) ∈ H0(G). Sufficiency of condition i) is proved. For
ψ ∈ C0(G)

⋂
C(1,1)(G) taking into account that

2Re(∇u, uψA∇ψ) = (∇|u|2, ψA∇ψ)

and integrating by parts the equality (9) we obtain

(11) D(ψu, ψu) = Dψ(u, u)−
∫

Ω

ψ(∇(A∇ψ))|u|2dx.

If we select ψ just as above then supp ψ = Ωτ = {x : x ∈ G, η(x) < τ}. Therefore,

−
∫

Ωτ

ψ(∇(A∇ψ))|u|2dx = τ−2

∫
Ωτ

(τ − η)(∇(A∇η)) · |u|2dx.
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Boundedness of D(ψu, ψu) results from the equality (11) and condition ii) and so does
the inclusion u(x) ∈ H0(G). Item 10 of the theorem is proved.

20. We use Theorem 2 with −→g (x) = A∇η. Condition (8) implies validity of (4). If
u ∈ H0(G) then validity of conditions iii), iv) results from Theorem 2. If the condition
(7) is valid then sufficiency of each of these conditions results from the proved item 10.
Theorem 3 is proved. �

Corollary 2. Let in Dirichlet integral (1) elements of the real matrices A(x), aij(x) ∈
Lip(1)

loc(G), all the rest of its coefficients be locally bounded in G, η(x) ∈ C(1,1)(G) and
satisfies the condition (8). Then for each function u(x) ∈ H0(G)

⋂
Lip(1)

loc(G) the inequal-
ity

(12)
∫
∂Ω

|u|2(A∇η,
−→
ds) ≤ Cu

is true. Here Ω is an arbitrary bounded domain with piecewise smooth boundary ∂Ω (Ω ⊂
G), and Cu is a constant independent of Ω. If the function η(x) in addition satisfies
the condition (7) then validity of the inequality (12) for a sequence of bounded domains
{Ωk}∞k=1 with piecewise smooth boundaries exhausting the domain G is a necessary and
sufficient condition for the function u(x) ∈ H(G)

⋂
Lip(1)

loc(G) to belong to the subspace
H0(G).

Proof. We use Corollary 1 with −→g = A∇η. Condition (8) implies validity of (4) and
finiteness of the integral over ∂Ω under consideration. Let now the condition (7) be also
satisfied. We use the inequality (2) of Theorem 1 for the domain Ωk with

−→
f = (ε/2)A∇η

where the constant ε > 0 is taken from (8). From the inequality (2), and also from the
condition (8) it follows that both conditions iii), iv) of Theorem 3 are satisfied and,
therefore, u(x) ∈ H0(G). Sufficiency is established. Necessity, as shown earlier, directly
results from Corollary 1. �

Remark 1. It is possible to construct a function η(x) possessing only one of properties (7)
or (8) for any domain G and the matrix-valued function A(x) > 0. However, existence
of such a function satisfying both these conditions simultaneously is possible only when
special restrictions on the matrix-valued function A(x) and the domain G are imposed.

While applying Theorem 3 the following obvious remark is often useful.

Remark 2. For two Dirichlet integrals that are different only in the matrices A1(x) and
A2(x), the statement

C1A2(x) ≤ A1(x) ≤ C2A2(x) ⇒ H1(G) = H2(G),H01(G) = H02(G)

is valid. Here the matrix inequalities are assumed to hold true almost everywhere in G
with constants C1, C2 > 0, and the subspaces corresponding to Dirichlet integrals are
understood as sets of functions in L2(G).

Example 1. Let us consider the Dirichlet integral in the case when the domain G is
a bounded open set in Rn and the coefficients are locally bounded in G. The following
statement results from Theorem 3.

Let ∂G be a closed hypersurface of the class C2 and In be the identity matrix. If the
matrix of the Dirichlet integral satisfies the inequalities C1In ≤ A(x) ≤ C2In (x ∈ G)
for some C1, C2 > 0, then a function u(x) ∈ H(G) belongs to the subspace H0(G) if and
only if

N =
∫
G

(d(x))−2|u(x)|2dx < +∞.

Here d(x) is the distance from the point x to the set Rn \G.
Indeed, consider the Dirichlet integral with the matrix A(x) = In. If G is an ar-

bitrary bounded open set then it is possible to assume that η(x) = − ln(δ(x)/R) in
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Theorem 3, where δ(x) is a regularized distance from the point x ∈ G to the set Rn \G
(see [21], p. 203), R is a sufficiently large constant guaranteeing nonnegativity of the
functions η(x), satisfying the condition (7). It is obvious that (A∇η,∇η) = |∇η|2 =
|∇δ|2/δ2, ∇(A∇η) = ∆η = (|∇δ|2 − δ∆δ)/δ2. The condition (8) is equivalent to the
inequality |∇δ|2 ≥ (1 + ε)δ∆δ − Cδ2 where ε, C > 0. As it is shown in [6, Lem-
mas 6.1, 6.2] in the case when ∂G is a closed hypersurface of the class C2, the usual
distance d(x) from the point x to set Rn \ G in some neighborhood ∂G belongs to C2

and |∇d(x)| = 1, |∆d(x)| ≤ const. Thus the regularized distance can be chosen to
coincide with d(x) in some neighborhood ∂G. In this case for η(x) the condition (8) is
satisfied. Applying item 20 of Theorem 3, we obtain that convergence of the integral
N completely characterizes the subspace H0(G) for the case when A(x) = In, and ∂G
is a closed hypersurface of the class C2. From here and from Remark 2 validity of our
statement results.

3. The example of the necessary conditions application

It is convenient to use Corollary 1 for establishing noncoincidence of the spaces H0(Rn)
and H(Rn). The following example shows that the uniform positivity condition can not
be replaced by pointwise positivity in V. G. Mazia’ result [11].

Example 2. Consider the Dirichlet integral for the domain G = Rn (n ≥ 2) with
A(x) = diag{a1(x), a2(x), . . . , an(x)},

−→
b (x) =

−→
0 , q(x) = 1. Introduce two unbounded

domains,

D1,l = {x ∈ Rn : x1 > 1; r < x−l1 }, D2,l = {x ∈ Rn : x1 > 1;x−l1 < r < 2x−l1 }.

Here r =
√
x2

2 + x2
3 + . . .+ x2

n, l is a number such that l > 1/(n− 1). We will show that
the following.

Statement. If ai(x) and a−1
i (x) are functions positive, locally bounded in Rn and, for

x ∈ D1,l, the inequalities

(13) a1(x) ≥ δxα1 (1− rxl1); ai(x) ≥ δxα−2l−2
1 (1− rxl1), i = 2, n

are satisfied with constants α > (n− 1)l + 1, δ > 0 and for x ∈ D2,l the inequalities

(14) a1(x) ≤ Cxβ1 ; ai(x) ≤ Cx−γ1 , i = 2, n,

hold with constants β < (n−1)l+ 1, γ > (3−n)l+ 1 and C > 0, then H0(Rn) 6= H(Rn).

Note that we do not impose additional constraints on the behavior of the functions
ai(x) in the set D1,l

⋃
D2,l. As it follows from (14), the condition of uniform positivity

can not be satisfied for n = 2 and n = 3 for the matrix A(x).
In order to prove our statement we employ Corollary 1 with a vector field −→g (x) defined

by −→g (x) = θ(x1)
−→
f (x) on the domain G1,l = {x ∈ Rn : x1 > 1/2; r < x−l1 }, where

−→
f (x) = {xα−1

1 (1− rxl1); −lxα−2
1 x2(1− rxl1); . . . ;−lxα−2

1 xi(1− rxl1) . . . ;

−lxα−2
1 xn(1− rxl1)}

and 0 ≤ θ(x1) ≤ 1 is a smooth function such that θ(x1) = 1 for x1 > 1, θ(x1) = 0 for
x1 ≤ 1/2. Suppose that −→g (x) = 0 for x ∈ Rn \G1,l. The vector field −→g (x) ∈ Lip(n)

loc (Rn)
is defined similarly. We show that for some ε > 0, for the matrix-valued function A(x)
described above almost everywhere in Rn the inequality ∇−→g ≥ ε(A−1−→g ,−→g ) − const
holds true. It is sufficient to prove this inequality for the domain D1,l.

For x ∈ D1,l, on the one hand,

∇−→g = ∇
−→
f

= (α− 1)xα−2
1 (1− rxl1)− lrxα+l−2

1 + Σni=2

[
−lxα−2

1 (1− rxl1) + lxα−2
1 xi

xi
r
xl1

]
= (α− (n− 1)l − 1)xα−2

1 (1− rxl1).
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On the other hand owing to conditions (13), for x ∈ D1,l,

(A−1−→g ,−→g ) = a−1
1 (x)x2α−2

1 (1− rxl1)2 + Σni=2a
−1
i (x)l2x2α−4

1 x2
i (1− rxl1)2

≤ 1 + l2

δ
xα−2

1 (1− rxl1).

Thus, our inequality is valid for ε = δ(α− (n− 1)l − 1)/(l2 + 1).
We construct a function u(x) ∈ H(Rn) that does not belong to H0(Rn). Together

with the domain G1,l and the function θ(x1) defined above, we consider the domain

G2,l = {x ∈ Rn : x1 > 1/2;xl1 < r < 2xl1}

and let

u(x) =

 θ(x1), x ∈ G1,l,
θ(x1)(2− rxl1), x ∈ G2,l,
0, x ∈ Rn \ (G1,l

⋃
G2,l).

It is obvious that u(x) ∈ Lip(1)
loc(Rn). Let us show that u(x) ∈ H(Rn).

D(u, u) ≤
∫
D1,l

S
D2,l

(
n∑
i=1

ai(x)
∣∣∣∣ ∂u∂xi

∣∣∣∣2 + |u|2
)
dx+ const.

Recalling that ∂u
∂xi

= 0 for x ∈ D1,l and ∂u
∂x1

= −lrxl−1
1 , ∂u

∂xi
= −xl1 xl

r , (i > 1) for
x ∈ D2,l and using conditions (14) we then obtain that

I =
∫
D1,l

S
D2,l

(
n∑
i=1

ai(x)
∣∣∣∣ ∂u∂xi

∣∣∣∣2 + |u|2
)
dx

=
∫
D2,l

(
a1(x)l2r2x2l−2

1 +
n∑
i=2

ai(x)x2l
1

x2
i

r2

)
dx+

∫
D1,l

S
D2,l

|u|2dx

≤ C

∫ ∞

1

dx1

∫
x−l
1 ≤r≤2x−l

1

(
l2r2x2l+β−2

1 + x2l−γ
1

)
dvn−1 +

∫ ∞

1

dx1

∫
r≤2x−l

1

dvn−1.

Here dvn−1 is a volume element in Rn−1.
Denote the area of the hypersphere of radius r in Rn−1 by Srn−2. S

r
n−2 = rn−2S1

n−2 =
rn−2 2π(n−1)/2

Γ((n−1)/2) . We do not eliminate the case n = 2 taking Sr0 = 2 for all r. We obtain
the following estimate:

I ≤ CS1
n−2

∫ ∞

1

dx1

∫ 2x−l
1

x−l
1

(l2r2x2l+β−2
1 + x2l−γ

1 )rn−2dr

+ S1
n−2

∫ ∞

1

dx1

∫ 2x−l
1

0

rn−2dr =
CS1

n−2l
2(2n+1 − 1)
n+ 1

∫ ∞

1

x
2l+β−2−l(n+1)
1 dx1

+
CS1

n−2(2n−1 − 1)
n− 1

∫ ∞

1

x
2l−γ−l(n−1)
1 dx1 +

S1
n−22n−1

n− 1

∫ ∞

1

x
−l(n−1)
1 dx1.

Three integrals in the right-hand side in the last equality converge, since the conditions
imposed on the constants l, β, and γ guarantee that 2l+ β − 2− l(n+ 1), 2l− γ − l(n−
1),−l(n− 1) < −1. Thus u(x) ∈ H(Rn).
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Let Ωt = {x ∈ Rn : −t < xi < t, i = 1, n} be a hypercube with the edge length 2t.
Consider the integral

J(t) =
∫
∂Ωt

|u|2(−→g ,
−→
ds) =

∫
r≤t−l

tα−1(1− rtl)dvn−1

= S1
n−2

(
tα−1

∫ t−l

0

rn−2dr − tα+l−1

∫ t−l

0

rn−1dr

)

=
S1
n−2

n(n− 1)
tα−(n−1)l−1

for t > 2l. Since α > (n− 1)l + 1, we have J(t) →∞ as t→∞. Owing to Corollary 1,
H0(Rn) 6= H(Rn) and the statement of Example 2 is proved.

Remark 3. The matrix A(x) in Example 2 can be constructed as to satisfy the inequality
|A(x)| ≤ Cx2+ε

1 + C1 with arbitrary constants C,C1, ε > 0. For ε = 0, this inequality
means that the GFVP-condition is satisfied, it guarantees that H0(Rn) = H(Rn) if the
coefficients of the Dirichlet integral are sufficiently smooth.

4. Relative equivalence of the spaces H(G) and H0(G)

We call a subdomain F ⊂ G adjacent to a part of the boundary Γ ⊆ ∂G if for
each point x ∈ Γ (including the infinite point) there exists a neighborhood U such that
U
⋂
G ⊂ F .

Definition 1. We call the space H(G) and the space H0(G) relatively equivalent with
respect to the given part of the boundary Γ ⊆ ∂G and we write

(15) H(G) = H0(G) (mod Γ)

if there exists a subdomain F adjacent to Γ such that any function from H(G) coincides
almost everywhere in F with some function from H0(G).

In the case where Γ = ∂G, it is possible to consider that F = G. Therefore, the
equality H(G) = H0(G) (mod ∂G) is equivalent to the simple equality H(G) = H0(G).

Let F1, F (F1 ⊆ F ) be a subdomain of G. Suppose there exists a function µ(x) such
that µ(x) ∈ Lip1(G), 0 ≤ µ(x) ≤ 1, µ(x) ≡ 1 for x ∈ F1 and µ(x) ≡ 0 for x ∈ G\F , and
for µ(x)-almost everywhere in G,

(A∇µ,∇µ) ≤ Const.

Definition 2. A subdomain F adjacent to Γ is called a subdomain separating Γ if there
exist one more subdomain F1 ⊆ F adjacent to Γ and the function µ(x) defined above.

It is obvious that if the subdomain F separates Γ it also separates any its part Γ1 ⊂ Γ.
Note also that if the matrix-valued function A(x) of the Dirichlet integral is locally
bounded, then the whole boundary ∂G is automatically separated by any adjacent sub-
domain, in particular by the whole domain G.

Corollary 3. Assume that, in the Dirichlet integral (1), elements of the matrices
A(x), A−1(x), components of

−→
b (x), and q(x) are measurable and locally bounded in

G and the matrix-valued function A(x) is symmetric (real).
10. Suppose there exists a function η(x) such that η(x) satisfies the condition (7) and

for η(x) at least one of conditions

(16) η(x) ∈ Lip(1)
loc, q(x) +K ≥ ετ−2(A∇η,∇η);

(17) η(x) ∈ C(1,1)(G), aij(x) ∈ Lip(1)
loc, q(x) +K ≥ ετ−2(τ − η)(∇(A∇η))

is satisfied almost everywhere in Ωτ
⋂
F = {x : x ∈ G, η(x) < τ}

⋂
F with constants

K ≥ 0, ε > 0 independent of τ ≥ τ0 > 0. Here F is a subdomain of G adjacent to Γ and
separating Γ. Then the equality (15) holds.



246 A. G. BRUSENTSEV

20. If the equality (15) with the subdomain F separating Γ is valid and the condition

(18)
∫
F

[(A(x)
−→
b (x),

−→
b (x)) + q(x)]dx < +∞

is satisfied then, for any function η(x) satisfying the condition (8),

(19)
∫
F1

(∇(A∇η))dx < +∞.

Here F1 is the subdomain from Definition 2.

Proof. 10. Let µ(x) ∈ Lip1(G) be a function from Definition 2 and let u(x) be an
arbitrary function from H(G). For ψ(x) = µ(x), the inequality (10) implies µu ∈ H(G).
Conditions (16), (17) ensure that the conditions i) or ii) of Theorem 3 are satisfied for
the function µu, i.e., µu ∈ H0(G). But µu = u for x ∈ F1 therefore the equality (15) is
true.

20. Assume the converse, that is, for some function η(x) satisfying the condition (8)
the condition (19) is not valid. From the inequality (10) with u(x) ≡ 1, ψ(x) = µ(x), and
from the condition (18) it follows that µ ∈ H(G). Since the equality (15) holds true, there
is a function ϕ(x) ∈ H0(G) such that ϕ(x) = µ(x) for x ∈ F1 ⊂ F . Let ϕk(x) ∈ C∞0 (G)
be a sequence of functions such that ϕk(x) → ϕ(x) in the metric of the space H0(G).
Then µϕk ∈ H0(G), µϕk → µϕ in the metric of L2(G). Taking into account again the
inequality (10) with u(x) = ϕ(x), ψ(x) = µ(x), and Theorem 1.16 of [9, p. 395], we
conclude that µϕ ∈ H0(G). According to Theorem 3 (item 20),

∫
G

(∇(A∇η))|µϕ|2dx <
+∞, which is impossible since∫

G

(∇(A∇η))|µϕ|2dx ≥
∫
F1

(∇(A∇η))dx− const.

The Corollary 3 is proved. �

Example 3. Denote a linear manifold of the dimension k (0 ≤ k < n) by  Lk. Consider
the case ∂G =  Lk. Let the coordinate system be such that the its origin and k of the
first bases vectors belong to  Lk. Consider the boundary part, Γ = {x : |xi| < ri, i =
1, 2, . . . , k}

⋂
 Lk, and the adjacent domain Uε = {x : |xi| < ri+ε, i = 1, 2, . . . , k; d(x) <

ε}
⋂
G. Here d(x) =

√
x2
k+1 + x2

k+2 + . . . + x2
n is the distance from the point x to the

manifold  Lk. We assume that the matrix A(x) in the Dirichlet integral for x ∈ Uε is a
block-diagonal matrix A(x) = A1(x)

⊕
A2(x). Here A1(x), A2(x) are positive matrix-

valued functions of orders k and n − k accordingly. Note that the case of k = 0 is not
excluded. In this case, A(x) = A2(x). Let the matrix A1(x) be globally bounded and let
the matrix A−1

1 (x) be locally bounded in Uε. The rest of the coefficients of the Dirichlet
integral are assumed to be locally bounded. For some constants C1, C2 > 0 inequalities

C1a(d(x))In−k ≤ A2(x) ≤ C2a(d(x))In−k

are assumed to hold. Here the function a(t) is defined for t ∈ (0, ε] as positive and
continuous. It is obvious that the subdomain Uε separates Γ (F = Uε, F1 = Uε1 = {x :
|xi| < ri, i = 1, 2, . . . , k; d(x) < ε/2}

⋂
G).

Consider the integral

J =
∫ ε

0

tk+1−na−1(t)dt.

The following statements hold true.

10. If the integral J diverges, then H(G) = H0(G) (mod Γ).
20. If the integral J converges and the condition (18) with F = Uε is satisfied, then

the space H(G) is not equivalent to H0(G) with respect to Γ.

We prove statements 10 and 20 for the case A2(x) = a(d(x))In−k. In the general case,
10, 20 directly result from Remark 2.
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Suppose that the integral J diverges. Consider the function

s(t) =
∫ ε

t

τk+1−na−1(τ)dτ

and also the function η1(x) = ln s(d(x))
s(ε/2) for d(x) ≤ ε/2 and η1(x) = 0 for d(x) > ε/2.

Assume η(x) = η1(x) + ρ(x) in Corollary 3. Here the sufficiently smooth nonnegative
function ρ(x) → ∞ as |x| → ∞ and it is equal to 0 in a neighborhood of Uε. By an
immediate calculation subject to |∇d| = 1, ∆d = (n− k − 1)/d(x), we obtain

∇(A∇η) = −(d(x))2(k+1−n)a−1(d(x))s−2(d(x)) for d(x) ≤ ε/2

and ∇(A∇η) = 0 in the other part of the set F = Uε. The condition (17) of Corollary 3
is valid. Whence we conclude that H(G) = H0(G) (mod Γ).

Assume that the integral J converges and the numbers ri, ε > 0 are arbitrarily small.
Consider the function σ(t) =

∫ t
0
τk+1−na−1(τ)dτ and also the function η(x) = − ln σ(d(x))

σ(ε)

for x ∈ Uε that is extended to the domain Rn \Uε to be sufficiently smooth nonnegative
and satisfying the condition (8). For x ∈ Uε the condition (8) is also satisfied, because

∇(A∇η) = (A∇η,∇η) = (d(x))2(k+1−n)a−1(d(x))σ−2(d(x)).

We show that for the chosen function η(x) the condition (19) is not satisfied. We consider
the set Ωε(δ) = Uε1

⋂
{x : d(x) ≥ δ} and calculate the following integral:

I(δ) =
∫

Ωε(δ)

∇(A∇)η)dx

=
(
Πk
i=1ri

) ∫
δ≤d(x)≤ε/2

(d(x))2(k+1−n)a−1(d(x))σ−2(d(x))dvn−k

=
(
Πk
i=1ri

) ∫ ε/2

δ

tk+1−na−1(t)σ−2(t)S1
n−k−1dt

= S1
n−k−1

(
Πk
i=1ri

) ∫ ε/2

δ

σ−2(t)σ′(t)dt = S1
n−k−1

(
Πk
i=1ri

)
(σ−1(δ)− σ−1(ε/2)).

Here dvn−k is a volume element and S1
n−k−1 is the area of the hypersphere in the space

Rn−k. Since I(δ) →∞ as δ → 0, the condition (19) is not satisfied and statement 20 is
proved.

Note that in the work [14] (see also [16], pp. 157–160) for k = n− 1 the convergence
(divergence) of the integral J is considered as a criterion of possibility (impossibility) to
set boundary conditions on a boundary part.

5. Use of the operator M for studying conditions for the equality
H0(G) = H(G)

If the coefficients of the functional (1) are sufficiently smooth then the symmetric
differential expression

(∇− i
−→
b (x))∗(A(x)(∇− i

−→
b (x))u) + q(x)u

can be constructed for the functional (1). This expression defines an operator M defined
on C∞0 (G) in the space L2(G). If such an operator exists then it is possible to weaken
the sufficient conditions of the equality H0(G) = H(G) that are contained in Corollary 3.
The following proposition differs from the known ones (see [12]; p. 133) only by the form
which is convenient for us.

Proposition 1. If, in the Dirichlet integral (1),

(20) aij(x), bj(x) ∈ Lip(1)
loc(G), q(x) ∈ L∞ loc,
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then the space H(G) can be represented in the form of the orthogonal sum H(G) =
H0(G)

⊕
D, where D = { u : u ∈ H(G)

⋂
DM∗ ; M∗u = 0}. Therefore the statements

1) D \ {0} 6= ∅ ⇔ H0(G) 6= H(G),

2) H(G)
⋂
DM∗ ⊆ H0(G) ⇔ H0(G) = H(G)

are valid. From essential self-adjointness of the corresponding operator M the equality
H0(G) = H(G) results.

Proof. Assume that H0(G) 6= H(G). Since H(G) is a Hilbert space with the scalar
product 〈u, v〉H = D(u, v), it follows that H(G) contains a nonzero element u ∈W 1

2loc(G)
such that, for all ϕ ∈ C∞0 (G), the equality 〈ϕ, u〉H = 0 is true. From this it follows that

〈Mϕ, u〉L2(G) = 〈ϕ, u〉H = 0 = 〈ϕ, 0〉L2(G),

i.e., u ∈ DM∗ , M∗u = 0 and u ∈ D. The converse is obvious, u ∈ D ⇒ 〈ϕ, u〉H(G) =
〈Mϕ,u〉L2(G) = 〈ϕ,M∗u〉L2(G) = 0 (ϕ ∈ C∞0 (G)). Therefore the equality H(G) =
H0(G)⊕D and statements 1), 2) hold. Under the condition q(x) ≥ δ > 0 the point λ = 0
is a point of regular type for the operator M . Therefore the equality D = {0} follows
from self-adjointness of this operator. This means that H0(G) = H(G). Proposition 1 is
proved. �

Thus, applying Theorem 3 for proving the equality H0(G) = H(G) with sufficiently
smooth coefficients of Dirichlet integral it is possible to be limited with functions from
H(G)

⋂
DM∗ . Here it is possible to apply Theorem 3.1 of [6], which gives an priori

estimates for functions from DM∗ . Let ρ(x) and σ(x) be functions from Lip(1)
loc(G) such

that

(21) 0 ≤ ρ(x) →∞ as x→ ∂G, 0 ≤ σ(x) ≤ const.

Let the condition

(22) σ2(A∇ρ,∇ρ) + (A∇σ,∇σ) ≤ Cρm · e2αρ

be satisfied. Here the constants C,m > 0, α ≥ 0.

Theorem 4. Assume the coefficients of the Dirichlet integral with a real matrix A(x)
satisfy conditions (20) and functions ρ(x), σ(x) ∈ Lip(1)

loc(G) satisfy requirements (21),
(22). Let also for ϕ ∈ C∞0 (G) the inequality

D(σϕ, σϕ) + C1 ‖ σϕ ‖2L2(G) +C2 ‖ ϕ ‖2L2(G)≥‖ Qα,εϕ ‖
2
L2(G)

be valid. Here the constants C1, C2 ≥ 0, ε > 0 and

Qα,ε(x) = (α+ ε)eσ(A∇ρ,∇ρ)1/2 + (A∇σ,∇σ)1/2,

the constant α ≥ 0 coincides with the corresponding constant in (22) (e is the base of
natural logarithm). If there exists a function η(x) ∈ C(1,1)(G) satisfying the condition
(7) such that at least one of the conditions

(23) σ2(A∇ρ,∇ρ) + q(x) +K ≥ ετ−2(A∇η,∇η),

(24) σ2(A∇ρ,∇ρ) + q(x) +K ≥ ετ−2(τ − η)∇(A∇η)

is satisfied almost everywhere in Ωτ = {x : x ∈ G, η(x) < τ} with constants ε > 0, K ≥ 0
independent of τ for τ ≥ τ0 > 0 then H0(G) = H(G).

Proof. According to Proposition 1, it suffices to prove that H(G)
⋂
DM∗ ⊆ H0(G), where

M is the elliptic operator corresponding to the Dirichlet integral. Under Theorem 3.1
from [6], ∫

G

σ2(A∇ρ,∇ρ)|u|2dx < +∞
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for each u(x) ∈ DM∗ . Therefore, owing to one of the conditions (23) or (24) for u(x) ∈
DM∗ , the conditions i) or ii) of Theorem 3 are satisfied. From here it follows that
H0(G) = H(G). The theorem is proved. �

Note that in the case where σ(x) ≡ 0 and Γ = ∂G if the coefficients of the Dirichlet
integral are sufficiently smooth, then Theorem 4 becomes a special case of item 10 of
Corollary 3.

We give one more criterion of the equality H0(G) = H(G) which also results from
Theorem 3 with the use of existence of the operator M . For a proof of this, the following
lemma is needed.

Lemma. Let the coefficients of the Dirichlet integral (1) with a real matrix A(x) satisfy
conditions (20). If the function u(x) ∈ H(G)

⋂
DM∗ then for any function η(x) ∈

C(1,1)(G) satisfying condition (7) the inequality

(25)
1
τ2

∣∣∣∣∫
Ωτ

[(A∇η,∇η)− (τ − η) · ∇(A∇η)]|u|2dx
∣∣∣∣ ≤ Cu

holds true. Here Ωτ = {x : x ∈ G, η(x) < τ} and Cu is a constant independent of
τ ≥ τ0 > 0.

Proof. Using integration by parts it is easy to show validity of the equality

(26)

∫
Ω

ψ2[(A(∇u− i
−→
b u), (∇u− i

−→
b u)) + q|u|2]dx

= Re
∫

Ω

ψ2uM∗udx+
1
2

∫
Ω

∇(A∇ψ2)|u|2dx,

ψ(x) ∈ C0(G)
⋂
C(1,1)(Ω).

Here Ω = supp ψ, u(x) ∈ H(G)
⋂
DM∗ . Assume η(x) ∈ C(1,1)(G) and satisfies (7). From

(26) it follows that, for ψ = ψ(x, τ) = (1−η(x)/τ)+, the inequality
∣∣∣∫Ωτ

∇(A∇ψ2)|u|2dx
∣∣∣ ≤

Const is true. Therefore taking into account that for x ∈ Ωτ
∇(A∇ψ2) = 2(A∇ψ,∇ψ) + 2ψ(∇(A∇ψ)) = (2/τ2)((A∇η,∇η)− (τ − η)(∇(A∇η)))

we obtain validity of inequality (25). The lemma is proved. �

Theorem 5. Let the coefficients of the Dirichlet integral (1) with a real matrix A(x)
satisfy conditions (20). Suppose there exists a function η(x) ∈ C(1,1)(G) such that η(x)
satisfies the condition (7) and the inequality

(27) Kτ2 + kτ2q(x) + (A∇η,∇η) ≥ (1 + ε)(τ − η)(∇(A∇η))

is true for each τ ≥ τ0 > 0 with constants K, k ≥ 0, ε > 0, which are independent of τ ,
almost everywhere in Ωτ = {x : x ∈ G, η(x) < τ}. Then the equality H0(G) = H(G) is
true.

Proof. Let u(x) be an arbitrary function from H(G)
⋂
DM∗ . Owing to condition (27)

inequality
1
τ2

∫
Ωτ

[(A∇η,∇η)− (τ − η) · ∇(A∇η)]|u|2]dx

≥ 1
τ2

∫
Ωτ

ε(τ − η) · ∇(A∇η)|u|2dx−
∫

Ωτ

(K + kq(x))|u|2dx

is true. According to the lemma, this implies for u(x) that the condition ii) of Theorem 3
is satisfied and, therefore, u(x) ∈ H0(G), i.e., H(G)

⋂
DM∗ ⊆ H0(G). From item 2)

of Proposition 1 we obtain validity of the equality H0(G) = H(G). The theorem is
proved. �
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