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MORSE FUNCTIONS AND FLOWS ON NONORIENTABLE

SURFACES

D. P. LYCHAK AND A. O. PRISHLYAK

Abstract. The present paper deals with the correspondence between Morse func-
tions and flows on nonorientable surfaces. It is proved that for every Morse flow
with an indexing of saddle points on a nonorientable surface there is a unique Morse
function, up to a fiber equivalence, such that its gradient flow is trajectory equivalent
to the initial flow, and the values of the function in the saddle points are ordered
according to the indexing. The algorithm for constructing the Morse function from a
Morse flow with an indexing is given. Reeb graphs and 3-graphs, which assign Morse
functions and the corresponding Morse flows with the number of the saddle points
less than 3 are presented.

Introduction

In the work smooth functions and smooth vector fields on closed 2-manifolds are
considered.

Sharko in [1] and [2] and Kulinich in [3] have obtained a topological classification of
Morse functions on surfaces. They have used the Reeb graphs. Fomenko has introduced
the notions of atom and molecule and used them for a classification of Morse-Smale flows
and Morse functions on surfaces (see [4]). Oshemkov in [5] has developed this method
and introduced the notion of an f -graph for assigning the atoms.

Peixoto in [6] has introduced a distinguishing graph which is a complete topological
invariant for Morse-Smale flows without closed orbits (Morse flows), and classified them
up to trajectory equivalence. In [7], Sharko and Oshemkov introduced a three colored
graph, which is an invariant for Morse flows on surfaces. In this work, we use it for
assigning the Morse flows.

In [8], Smale proved that Morse flows are gradient flows without separatrices from a
saddle to a saddle. Hence, the class of Morse functions corresponds to a class of Morse
flows. But it is possible that fiber equivalent functions correspond to trajectory nonequiv-
alent Morse flows, and vice versa. Thus the correspondence between the functions and
the flows depends on the metric.

In [9] it was proved that every Morse flow with an indexing of the saddle points on an
orientable surface corresponds uniquely, up to fiber equivalence, to a Morse function. An
algorithm for constructing a Morse function to the flow with indexing was formulated.
The Reeb graph was used for assigning Morse functions. But in the nonorientable case,
the Reeb graph does not assign a Morse function, so the following problems arise: what
additional information is essential for the assignment of a Morse function and how is it
possible to construct a Morse function from a Morse flow with an indexing ? In this work
we use the Reeb graph with signs in saddle points for an assignment of a Morse function
and generalize the results of [9] to the nonorientable case.
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1. Preliminaries

Let M be a smooth closed two-dimensional manifold, f : M → R a smooth function,
v : M → TM a smooth vector field.

Definition 1. A point x ∈ M is called a critical point of the function f : M → R if the

differential of the function f at this point is equal to 0, df(x) = 0, that is, ∂f(x)
∂x1

= ∂f(x)
∂x2

=

0. A critical point x ∈ M is called non-degenerate, if the matrix H =
(

∂2f(x)
∂xi∂xj

)

i, j=1, 2
in

some local coordinates x1, x2 is non-degenerate.

On a two-dimensional manifold there are 3 types of non-degenerate critical points, —
a minimum (local), a saddle, and a maximum (local).

Definition 2. A smooth function f : M → R is called a Morse function, if all its critical
points are non-degenerate. A Morse function is called simple if all its critical points lie
on different levels, f(p) 6= f(q), if the critical points are distinct, p 6= q.

Definition 3. A component of the level line f−1(y) of the Morse function is called a
fiber. Two Morse functions are called fiber equivalent if there is a homeomorphism of the
surface onto itself which maps fibers of one function to fibers of another one, and the
local minima to the local minima. A neighborhood of the critical fiber which is foliated
into level lines of the function and considered to within the fiber equivalence is called an
atom.

We consider only simple Morse functions.

Definition 4. The quotient space M/ ∼ with orientation of edges according to the
direction of the increase of the function is called a Reeb graph, where f : M → R is a
Morse function, x1 ∼ x2 if x1 and x2 belongs to one fiber. Reeb graphs are considered
to within the isomorphism of oriented graphs.

The atom can be one of three types, — trousers, inverted trousers, and a nonorientable
atom. The first atom corresponds to a vertex of the Reeb graph with two edges one of
which is directed toward and the other outwards the vertex. The second atom corresponds
to a vertex of the Reeb graph with one edge directed towards and two edges directed
outwards the vertex. The nonorientable atom corresponds to the vertex of valency 2.

Proposition 1. ([4], Theorem 2.4, p. 71). Two Morse functions on the orientable surface

are fiber equivalent if and only if their Reeb graphs are isomorphic.

Definition 5. A singular point of the vector field v = v1
∂

∂x1

+ v2
∂

∂x2

is called non-

degenerate if the matrix
(

∂vi

∂xj

)

i, j=1, 2
has no eigenvalues the real part of which equals

0.

A vector field on a surface can have three types of non-degenerate singular points, —
a source, a saddle, and a sink.

Definition 6. A smooth vector field v on a two-dimensional manifold M is called a
Morse vector field, if

(1) v has a finite number of singular points and all of them are non-degenerate;
(2) each trajectory starts and ends in a singular point;
(3) there are no trajectories, which connect saddles.

Two Morse fields are called trajectory equivalent if there is a homeomorphism of the
surface onto itself which maps trajectories of one field into trajectories of another one
preserving their orientation.
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Remark 1. There is exactly one Morse vector field without saddle points on a closed
two-dimensional manifold. It is the gradient field of the height function on the sphere S2

standardly embedded in R3 with the metric induced from R3. We consider Morse fields
with at least one saddle.

Definition 7. A graph is called a three-colored graph if the degrees of its vertices are
equal to 3, and edges are colored in three colors (s, u, t) in such a way that each vertex is
the end of edges of three different colors. Two three-colored graphs are called isomorphic

if they are isomorphic without coloring, and the isomorphism preserves the coloring.

Figure 1. Triangulation of a surface

We assign a three-colored graph to the Morse vector field (details see in [7]). For this
purpose we construct separatrices. They divide the surface into canonical quadrilaterals

(see fig. 1). We construct one trajectory from the source to the sink for each canonical
quadrilateral. Thus, we obtain a triangulation of the surface (we call these triangles
canonical). Each triangle corresponds to a vertex of the three-colored graph, two vertices
are joined by an s-edge (u-edge, t-edge) if the corresponding triangles have a common
side (separatrix) from a source to a saddle (the separatrix from a saddle to a sink,
the trajectory from a source to a sink). We call such separatrices s-separatrices (u-

separatrices, t-trajectories). A cycle on the graph in which s-edges and u-edges alternate
is called an su-cycle.

Proposition 2. Two Morse fields are trajectory equivalent if and only if their three-

colored graphs are isomorphic.

Proposition 3. Three-colored graph corresponds to some Morse field if and only if all

its su-cycles have length 4.

For proofs of these statements, see [7].
We call such graphs 3-graphs. That is a 3-graph is a collection of n su-squares (where

n is the number of saddles) the vertices of which are connected with t-edge. By a 3-graph
with indexing, we call a 3-graph with indexing of su-squares.

We consider Morse functions to within fiber equivalence, and Morse fields to within
trajectory equivalence.

2. The assignment of Morse functions and flows

According to Proposition 1, to a Morse function on an orientable surface there can
be assigned a Reeb graph. We shall consider now a nonorientable case. From the Morse
lemma it follows that the transformation of fibers in saddle levels lies in attaching a
rectangle. In an orientable case, attaching happens so that the surface remains oriented,
therefore it is unique. In general, it is possible to attach the usual rectangle and over-
wound one to one boundary circle, the last leads to occurrence of a nonorientable saddle
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atom (the vertex of valency 2 of the Reeb graph). Also, it is possible to paste a rectan-
gle on two boundary circles in two, generally speaking, not homeomorphic ways. The
latter leads to that in a nonorientable case, Reeb graphs, generally speaking, does not
assign Morse function, an additional information is necessary. For example, Reeb graphs
represented in Fig. 2, corresponds to two nonequivalent Morse functions on a torus and
on a Klein bottle. For the correspondence to be unique, we equip the Reeb graphs with
signs, as shown in Fig. 2. For this purpose, we set an arbitrary orientation of the tubes
that connect atoms. Further we set an orientation of saddle atoms that correspond to
vertices of valency 3 of the Reeb graph, according to the orientation of the tube which is
attached to the upper boundary, if the type of the atom is the trousers, or to the bottom
boundary, if the type of the atom is the turned trousers. And near with the ends of the
edges we put a plus if the corresponding tube is attached to the rest of the boundaries of
the atoms with the coordination of orientations, and a minus otherwise. That is, the sign
is set to the pair of incident edges, one of which corresponds to the tube which is attached
to the top boundary of the saddle atom, and another corresponds to the tube which is
attached to the bottom boundary of the same atom. The arrangement of the signs is
ambiguous, that is, Morse functions which correspond to two different arrangements of
the signs on Reeb graph can be equivalent. For local extrema and nonorientable saddle
atoms the arrangement of signs is not required.

Definition 8. We call such graphs with the additional information equipped Reeb graphs.
Two equipped Reeb graph are called isomorphic if they are isomorphic as usual graphs,
and it is possible to obtain identical signs at the junctions of the corresponding edges by
several realization of the following operation: the replacement of the signs (or a sign, if
it is only one) from one end of an edge with a simultaneous replacement of the signs (or
a sign, if it is only one) on its other end.

Figure 2. Reeb graphs

Proposition 4. Two Morse functions on a surface are fiber equivalent if and only if

their equipped Reeb graphs are isomorphic.

Proof. The only reason of the ambiguity of the signs on Reeb graph is the choice of
arbitrary orientation of the tubes which correspond to the edges. The operation of the
replacement of signs from Definition 8 eliminates this ambiguity. Therefore, necessity fol-
lows from Statement 1. Sufficiency is proved similarly to the orientable case, because the
equipped Reeb graph assigns from what pieces it is necessary to paste together a surface,
what components of their boundaries must be pasted together and how (coordinating
orientations or not). �

We assign Morse functions by the equipped Reeb graphs. According to the state-
ment 2, Morse flows can be assigned by 3-graphs.
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3. The construction of a Morse function from a Morse flow with

indexing

Theorem 1. Let M be a smooth closed two-dimensional manifold, Φ be a Morse flow

with an indexing of saddle points on M . Then there exists a Morse function f : M → R,

unique up to fiber equivalence, such that its gradient flow grad f is trajectory equivalent

to the flow Φ in some Riemannian metric and values of the function f in saddle points

are ordered according to the the indexing of the saddle points of the flow Φ.

Proof. The existence of the function in a nonorientable case is proved similarly to ori-
entable case (see [9]).

We prove uniqueness. We show uniqueness of the construction of the equipped Reeb
graph from a 3-graph.

Let a Morse function be defined on the manifold. All regular fibers of the Morse
function are circles. From the definition of a Reeb graph it follows that two critical
points are connected in Reeb graph by an edge if and only if there is a smooth path on
the manifold connecting the points along which the function increases and which does
not intersect critical fibers, but its ends. Two saddles are joined on Reeb graph with two
edges if and only if there are two increasing smooth paths on the manifold which connect
these saddles and do not intersect critical fibers, but its ends, and these paths cannot
be connected with a constant path on manifold. That is the interior points of the paths
belong to different fibers.

Since the function increases along the trajectories of the gradient flow, the increasing
paths for local extrema are separatrices. Hence, on the Reeb graph the minimum is
joined with a saddle which has the least index among those saddles which are connected
by separatrices to a source which corresponds to the minimum. The similar construction
is for maxima. The increasing path (or paths) for saddle points passes on canonical
quadrilaterals, intersecting s-and u-separatrices. It is an increasing path if and only if
the function increases along it on each passed quadrilateral. And it fulfills if the value
of the function in the entry point in a quadrilateral is less than the value in the exit
point. The latter is determined only by the numbers of saddles (vertex) of the passed
quadrilaterals, because there are two choices for the entry and the exit (through an s- or
a u-separatrix), and the number of the passed quadrilaterals is finite. To check the path
for intersection of critical fibers, it is enough to examine the existence of a constant path
(along which the function is constant) from each saddle with the number between the
numbers of the ends of the increasing path. It can be checked similarly to the examination
of the paths for increasing. The examination for the multiplicity of the edges on the Reeb
graph is also reduced to the searching a constant path.

For an arrangement of the signs it is enough to set the orientation on the canonical
triangles, coordinated in the neighborhoods of the saddle points, and to compare the
orientations of the first and the last triangles for the increasing path, corresponding to
the edge on the Reeb graph. If the orientations can be coordinated (that is, they are
opposite), we put a plus, otherwise we put a minus. �

Remark 2. Though only one function corresponds to a flow with an indexing, but func-
tions which corresponds to different indexing of saddle points of the flow can be fiber
equivalent. Moreover, one function can correspond to different (trajectory nonequivalent)
flows.

4. An algorithm for finding Morse functions

In this section we use 3-graphs and equipped Reeb graphs for the assignment of Morse
flows and functions.
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We describe an algorithm for constructing a Morse function to within trajectory equiv-
alence by Morse flow with the indexing of the saddle points. For the construction of the
Reeb graph we find the paths from the proof of Theorem 1. For a local extremum, this
path is the separatrix to the saddle with the nearest index. For a minimum it is the
least, for a maximum it is the greatest index. For finding the paths between saddles we
start from saddles with smaller indices and construct increasing paths. The algorithm of
the construction of all admissible increasing paths from a saddle a is the following. We
have the interval (a, b), in the beginning b = n+1, where n is the number of saddles. We
start passing from the saddle a to one of the four canonical quadrilaterals (it is necessary
to examine all). We check the opposite saddle with the index i. If i < a then we can
exit from the quadrilateral through a u-separatrix. If i > b then we can exit through
an s-separatrix. If i ∈ (a, b) we assign b := i, remember i as a candidate for the end of
the path (we throw the previous candidate), and we exit through an s-separatrix. This
procedure stops when the index of the current saddle is i = a or i = b. If we have not
found a candidate at the end of the path, then it is impossible to construct an admissible
increasing path to a saddle through this quadrilateral. If the candidate c has been found,
the path from a to c may be admissible. It remains to check whether the found paths do
not intersect the critical fibers and correspond to different edges on the Reeb graph.

To discover the type of the saddle atom, we start a constant path from the saddle a
to one of the canonical quadrilaterals. We check the opposite saddle with the index i.
If i < a then it is possible to exit through a u-separatrix. If i > a then it is possible
to exit through an s-separatrix. The procedure stops, when we return to the saddle a.
We check through what quadrilateral we return to a. If it has a common s-separatrix of
the saddle a with the initial quadrilateral, then the type of the atom is the trousers, if
it has a common u-separatrix of the saddle a, then the type of the atom is the turned
trousers, if there are no common separatrices, then it is a nonorientable saddle atom.
This statement follows from that it is possible to connect the increasing paths which pass
on the quadrilaterals with a common s-separatrix with a constant path (it intersects this
separatrix) (see Fig. 1). Similarly, it is possible to connect the increasing ways which
pass on the quadrilaterals with common a u-separatrix with a constant path, slightly
raising the initial constant path (as we consider only simple Morse functions, no saddle
can prevent).

Since two (or four) paths correspond to one edge of the Reeb graph, the number of
paths is even. If there is no increasing path, there is no increasing edge from this saddle
to another saddle. If there are two increasing paths, then there is one edge to their end.
Indeed, if there is the edge to the maximum and there is a path on the quadrilateral
incident to the corresponding sink, then there is a saddle which is connected with a
separatrix to this sink and the index of which is greater than a. And this contradicts
to the rule of the junction of maxima. If there are 4 paths and the type of the atom is
equal 1 then there are two edges (one to minimal and one to maximal end of the paths).
Otherwise there is one edge to the minimal end of the paths.

It is possible to consider all aforesaid paths as paths on a 3-graph. Intersecting an
s-separatrix, we pass to the corresponding s-edge, passing on a canonical quadrilateral
from a saddle to a saddle, we pass on the t-edge. The canonical quadrilaterals (and
triangles) which are incident to a saddle correspond to the vertices of the su-square. Two
increasing paths which correspond to one edge of the Reeb graph start in the vertices of
the su-square, which are connected with an s-edge, a u-edge or are opposite, if the type
of the saddle atom is the trousers, the turned trousers or the nonorientable saddle atom,
respectively.

For an arrangement of the signs, it is necessary to set a sign for each vertex of the
3-graph in such a way that the signs alternate at the bypass of everyone s − u cycle.
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.

Table 1. 3-graphs and Reeb graphs for Morse functions and flows with
one saddle

Saddles with nonorientable atom of the equipped Reeb graph is not equipped with signs.
For a saddle with the index 1 of the equipped Reeb graph we assign pluses. Further we
look over the edges which connect the saddles of Reeb graph, in ascending order of the
numbers of their beginnings. If the ends of the corresponding increasing path on 3-graph
have different signs on the ends, then we put a plus to the end of the edge, and a minus,
otherwise. Only for nonorientable saddle atom the sign can depend on the choice of the
path (from two or four variants), but in this case it is unnecessary to put signs. For other
two types of the saddle atoms the sign does not depend on the choice of the path. Since
one vertex of the 3-graph corresponds to canonical triangle and the number of vertices
in the increasing path on the 3-graph is even, the inequality of the signs on the ends
implies the possibility to set the coordinated orientation to the canonical triangles and
to the tube with saddle atom which are glued together from these triangles.

5. Examples

There are three 3-graphs with one su-square. Hence, there are three Morse flows with
one saddle. Two of them are assigned on sphere and the third flow is assigned on RP2.
The 3-graphs and the corresponding Reeb graphs are shown in Table 1.

There are 11 3-graphs with two su-squares. So, there are 11 Morse flows with two
saddles and 22 flows with indexing. But some flows are symmetric and they have only one
unique numeration of saddles. Hence, there are 15 different Morse flows with numeration
of 2 saddles. 3-graphs and equipped Reeb graphs of corresponding Morse functions are
shown in Table 2. The signs are drawn only for one graph, because in other cases all
signs are +.

Some flows correspond one function, so there are 11 different functions with 2 saddles.
One can compute the number of Morse functions with 2 saddles as number of different
equipped Reeb graphs and get the same result. Indeed, there are two saddle atoms and
there are 3 types for each atoms. So there are 9 possibilities, but one of them corresponds
3 different graphs (see Figure 2).

The number of Morse flows and functions with 1, 2 and 3 saddles are resulted in the
Table 3. It follows from these results that some nonequivalent Morse flows with the
numeration correspond the equivalent functions but not the reverse.
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