SOME PROPERTIES FOR BEURLING ALGEBRAS

AMIN MAHMOODI

ABSTRACT. Let G be a locally compact group and let ω be a weight function on G. In this paper, among other things, we show that the Beurling algebra $L^1(G, \omega)$ is super-amenable if and only if G is finite and it is biprojective if and only if G is compact.

1. INTRODUCTION

Super-amenable Banach algebras often go by the name of contractible Banach algebras in the literature [6]. The reason why we prefer to call them super-amenable is that the adjective contractible is also used in the K-theory of C^* -algebras.

Let \mathcal{A} be a Banach algebra, and let E be a Banach \mathcal{A} -bimodule. A bounded linear map $D: \mathcal{A} \longrightarrow E$ is called a *derivation* if

$$D(ab) = a \cdot Db + (Da) \cdot b \quad (a, b \in \mathcal{A})$$

A Banach algebra \mathcal{A} is called *amenable* if for each Banach \mathcal{A} -bimodule E, every derivation $D : \mathcal{A} \longrightarrow E^*$ is inner. Also, a Banach algebra \mathcal{A} is called *super-amenable* if for each Banach \mathcal{A} -bimodule E, each derivation $D : \mathcal{A} \longrightarrow E$ is inner. Every superamenable Banach algebra is amenable and unital. Let G be a locally compact group. Then the group algebra $L^1(G)$ is super-amenable if and only if G is finite [10].

Biprojectivity is a notion that arises naturally in A. Ya. Helemskii Banach homology. The structure theory for biprojective Banach algebras is due to Yu. V. Selivanov [8]. For a locally compact group G, the group algebra $L^{(G)}$ is biprojective if and only if G is compact [5].

Like amenable, super-amenable and biprojective Banach algebras can be characterized through vanishing of certain cohomology groups [9].

Let ω be a weight function on a locally compact group G. Then the *Beurling algebra* $L^1(G, \omega)$ is the space of measurable functions $f: G \longrightarrow \mathbb{C}$ for which

$$||f||_{\omega} := \int_G |f(x)| \ \omega(x) \, d\lambda(x) < \infty \ ,$$

where λ is the left Haar measure on G. It is a Banach algebra with the convolution product

$$f \star g(x) := \int_G f(y)g(y^{-1}x) \, d\lambda(y) \,, \quad (f,g \in L^1(G,\omega)) \,.$$

The amenability of $L^1(G, \omega)$ has been studied by Grønback [4]. He proved that $L^1(G, \omega)$ is amenable if and only if G is amenable as a group and ω is diagonally bounded on G.

A Banach algebra \mathcal{A} is called *weakly amenable* if every derivation $D : \mathcal{A} \longrightarrow \mathcal{A}^*$ is inner. The weak amenability of $L^1(G, \omega)$ is discussed in [3]. One result on this is: Let ω

²⁰⁰⁰ Mathematics Subject Classification. Primary 22D15, 43A10; Secondary 43A20, 46H25, 47B47. Key words and phrases. Super-amenability, biprojectivity, locally compact group, weight function.

be a weight function on \mathbb{Z} . Then $\ell^1(\omega)$ is weakly amenable if and only if

$$\left\{\frac{\omega_n\omega_{-n}}{n}: n \in \mathbb{N}\right\} < \infty .$$

In this paper, we investigate the super-amenability and biprojectivity of $L^1(G, \omega)$. The result are surprisingly the same as in the non-weighted case.

2. Super-Amenability

Let E be a Banach space. A *finite*, *biorthogonal system* for E is a set

$$\{(x_i,\varphi_j): i,j=1,\ldots,n\},\$$

where $x_1, \ldots, x_n \in E$ and $\phi_1, \ldots, \phi_n \in E^*$ satisfy

$$\langle x_i, \varphi_j \rangle = \delta_{i,j} \quad (i, j = 1, \dots, n).$$

Let $\mathcal{F}(E)$ be the set of all bounded finite rank operator on E. The map $\theta_n : M_n \longrightarrow \mathcal{F}(E)$ given by

$$\theta(A) := \sum_{i,j=1}^{n} a_{i,j} x_i \odot \varphi_j \quad (A = [a_{i,j}]_{i,j=1,\dots,n} \in M_n)$$

is a homomorphism where the map $x_i \odot \varphi_i$ is defined by

$$_i \odot \varphi_j : E \longrightarrow \mathbb{C}, \ x \longmapsto \langle x, \varphi_j \rangle x_i.$$

A Banach space E has property **A** if there is a net of finite, bi-orthogonal systems

$$(x_i^{(\alpha)}, \phi_j^{(\alpha)}): i, j = 1, \dots, n_{\alpha}\}$$

for E with corresponding homomorphisms $\theta_{\alpha}: M_{n_{\alpha}} \longrightarrow \mathcal{F}(E)$ such that

(i) $\lim_{\alpha} \theta_{\alpha}(E_{n_{\alpha}}) = \mathrm{id}_{E}$, uniformly on compact subsets of E,

(*ii*) $\lim_{\alpha} \theta_{\alpha}(E_{n_{\alpha}})^* = \mathrm{id}_{E^*}$, uniformly on compact subsets of E^* , and

(*iii*) For each index α , there is a finite, irreducible $n_{\alpha} \times n_{\alpha}$ matrix group G_{α} such that $\sup_{\alpha} \sup_{g \in G_{\alpha}} \|\theta_{\alpha}(g)\| < \infty$.

An element $m \in \mathcal{A} \hat{\otimes} \mathcal{A}$ is called a *diagonal* for \mathcal{A} if

$$a\Delta m = a, \quad a.m = m.a \quad (a \in \mathcal{A}),$$

where Δ is the diagonal operator

$$\Delta: \mathcal{A}\hat{\otimes}\mathcal{A} \longrightarrow \mathcal{A}, \ a \otimes b \longmapsto ab.$$

It is easy to see that $\mathcal{A} \hat{\otimes} \mathcal{A}$ becomes a Banach \mathcal{A} -bimodule through

$$a.(b\otimes c):=ab\otimes c \quad ext{and} \quad (b\otimes c).a:=b\otimes ca \quad (a,b,c\in\mathcal{A}) \;.$$

It is clear that Δ is a bimodule homomorphism with respect to this module structure on $\mathcal{A}\hat{\otimes}\mathcal{A}$.

 \mathcal{A} is super-amenable if and only if it has a diagonal [7, Exercise 4.1.3]. Let G be a locally compact group with the left Haar measure λ and with identity e. A continuous map $\omega: G \longrightarrow \mathbb{R}^+$ is called a *weight function* on G if

$$\omega(xy) \le \omega(x)\omega(y), \quad \omega(e) = 1, \quad \omega(x) \ge 1 \quad (x, y \in G).$$

If ω is a weight function on G then the map

$$\omega \times \omega : G \times G \longrightarrow \mathbb{R}^+, (x, y) \longmapsto \omega(x)\omega(y)$$

is also a weight function on $G \times G$. The group algebra $L^1(G)$ has property **A** [7, Exercise 3.1.4] and it is super-amenable if and only if G is finite [7, Exercise 4.1.7]. We have the same results for $L^1(G, \omega)$:

Proposition 2.1. If G is a locally compact group and ω is a weight function on G, then $L^1(G, \omega)$ has property **A**.

260

Proof. First suppose that the Haar measure of G is finite. Consider the collection of all families τ consisting of finitely many, pairwise disjoint sets in \mathbf{B}_G , the Borel algebra on G, such that $\lambda(A) \neq 0$ for each $A \in \tau$. For two such families τ_1 and τ_2 define $\tau_1 < \tau_2$ if each member of τ_1 is the union of a subfamily of τ_2 . For each $\tau = \{A_1, \ldots, A_{n_\tau}\}$ we have a corresponding finite, bi-orthogonal systems,

$$\{(\frac{1}{\lambda(A_i)}\frac{\chi_{A_i}}{\omega},\omega\chi_{A_j}):i,j=1,\ldots,n_{\tau}\}.$$

Let $\theta_{\tau}: M_{n_{\tau}} \longrightarrow F(L^1(G, \omega))$ be the corresponding homomorphism, then

$$\theta_{\tau}(E_{n_{\tau}})(\frac{\chi_L}{\omega}) = \frac{\chi_L}{\omega}$$

and

$$\theta_{\tau}(E_{n_{\tau}})^*(\frac{\chi_L}{\omega}) = \frac{\chi_L}{\omega}$$

for each $L \in \mathbf{B}_G$, $L < \tau$. Thus $\lim_{\alpha} \theta_{\alpha}(E_{n_{\alpha}}) = \mathrm{id}_E$ and $\lim_{\alpha} \theta_{\alpha}(E_{n_{\alpha}})^* = \mathrm{id}_{E^*}$ uniformly on compact subsets of E and E^* , respectively. Consider $\tau = \{A_1, \ldots, A_{n_{\tau}}\}$ and let \mathbf{G}_{τ} be the group of matrices of the form $\mathbf{D}_{\mathbf{t}}\mathbf{E}_{\sigma}$ where $\mathbf{D}_{\mathbf{t}}$ is the diagonal matrix specified by $\mathbf{t} = (t_i\delta_{i,j})$, where $t_1, \ldots, t_{n_{\tau}} \in \{-1, 1\}$, and \mathbf{E}_{σ} is the matrix corresponding to a permutation σ of $\{1, \ldots, n_{\tau}\}$. Certainly \mathbf{G}_{τ} is an irreducible $n_{\tau} \times n_{\tau}$ matrix group. For each $f \in L^1(G, \omega)$ and $g = \mathbf{D}_{\mathbf{t}}\mathbf{E}_{\sigma} \in \mathbf{G}_{\tau}$ we have

$$\begin{aligned} \|\theta_{\tau}(\mathbf{D}_{\mathbf{t}}\mathbf{E}_{\sigma})f\|_{\omega} &= \left\|\sum_{j=1}^{n_{\tau}} \left(\int_{A_{j}} f(t)\omega(t) \, d\lambda(t)\right) \frac{1}{\lambda(A_{\sigma}(j))} \frac{\chi_{A_{\sigma}(j)}}{\omega}\right\|_{\omega} \\ &= \sum_{j=1}^{n_{\tau}} \left|t_{j} \int_{A_{j}} f(t)\omega(t) \, d\lambda(t)\right| \leq \sum_{j=1}^{n_{\tau}} \int_{A_{j}} |f(t)|\omega(t) \, d\lambda(t)| \leq \|f\|_{\omega}. \end{aligned}$$

Thus $\|\theta_{\tau}(g)\| \leq 1$.

Finally in general case, following [1, Corollary 5.6.64], we approximate the Haar measure λ with finite measures.

Recall that a Banach space E has the bounded approximation property if there is a net $(T_{\alpha})_{\alpha}$ in $\mathcal{F}(E)$ such that $\sup_{\alpha} ||T_{\alpha}|| \leq C$ for some $C \geq 1$, and $T_{\alpha} \longrightarrow \mathrm{id}_{E}$ uniformly on compact subsets of E.

Theorem 2.2. The Beurling algebra $L^1(G, \omega)$ is super-amenable if and only if G is finite.

Proof. Let G be a finite group of order n. Then

$$L^{1}(G,\omega) = \ell^{1}(G,\omega) = \{ \Sigma_{g \in G} \alpha_{g} \delta_{g} : \Sigma_{g \in G} |\alpha_{g}| \omega(g) < \infty , \alpha_{g} \in \mathbb{C} \},$$

where δ_g is the *characteristic function* of the singleton $\{g\}$.

Let $m := \frac{1}{n} \sum_{g \in G} \delta_g \otimes \delta_{g^{-1}}$ and let $h \in G$. Since $\delta_g \star \delta_{g^{-1}} = \delta_e$, $\delta_h \star \Delta m = \delta_h$. Also

$$\delta_h \cdot m = \frac{1}{n} \sum_{g \in G} \delta_{hg} \otimes \delta_{g^{-1}} = \frac{1}{n} \sum_{g \in G} \delta_g \otimes \delta_{g^{-1}h} = m \cdot \delta_h ,$$

so that m is a diagonal for $\ell^1(G, \omega)$, and therefore it is super-amenable.

Conversely suppose that $L^1(G, \omega)$ is super-amenable. By Proposition 2.1 it has property **A**. Similar to [7, Example C.1.2(c)], we can show that it has bounded approximation property. By [7, Theorem 4.1.5] there are $n_1, \ldots, n_k \in \mathbb{N}$ such that

$$L^1(G,\omega) \simeq M_{n_1} \oplus \cdots \oplus M_{n_k}.$$

Thus $L^1(G, \omega)$ has finite dimension and since it is unital [7, Exercise 4.1.1] so G is finite.

AMIN MAHMOODI

3. Biprojectivity

A Banach algebra \mathcal{A} is *biprojective* if the diagonal operator Δ has a bounded right inverse which is an \mathcal{A} -bimodule homomorphism. Similar to [1, Proposition 3.3.20] we have the following proposition.

Proposition 3.1. Let G be a locally compact group and ω is a weight function on G. Then there is an isometric isomorphism $T: L^1(G, \omega) \hat{\otimes} L^1(G, \omega) \longrightarrow L^1(G \times G, \omega \times \omega)$ such that

(1)
$$T(f \otimes g)(x,y) := f(x)g(y) \quad (f,g \in L^1(G,\omega), (x,y) \in G \times G).$$

Proof. By [1, A.3.69], there is a unique continuous linear map T such that (1) holds. It is easy to check that T is a homomorphism and $||T|| \leq 1$.

Take \mathcal{S} to be the linear subspace of $L^1(G, \omega) \otimes L^1(G, \omega)$ spanned by elements of the form $f \otimes g$, where f and g are simple functions in $L^1(G, \omega)$. Then \mathcal{S} is dense in $L^1(G, \omega) \otimes L^1(G, \omega)$. Each element a of \mathcal{S} can be written as a finite sum $a = \sum_{i,j} a_{i,j} \frac{\chi_{E_i}}{\omega} \otimes \frac{\chi_{F_j}}{\omega}$, where $E_i, F_j \in \mathbf{B}_G$, for each i, j and the rectangles $E_i \times F_j$ are pairwise disjoint in

 $\frac{1}{\omega},$ where $E_i, F_j \in \mathbf{B}_G$, for each i, j and the rectangles $E_i \times F_j$ are pairwise disjoint in $G \times G$. It follows that $||Ta||_{\omega \times \omega} \ge ||a||_{\pi}$ and so T is an isometry. The range of T contains $\frac{\chi_{E \times F}}{\omega \times \omega}$ for each rectangle $E \times F$ in $\mathbf{B}_{G \times G}$, and we claim

The range of T contains $\frac{XD \times P}{\omega \times \omega}$ for each rectangle $E \times F$ in $\mathbf{B}_{G \times G}$, and we claim that the linear span of such functions is dense in $L^1(G \times G, \omega \times \omega)$. To see this, it suffices to show that $\frac{\chi_U}{\omega \times \omega}$ can be approximated for each open set U in $G \times G$ of finite measure. For each such U, its measure is the supremum of the measures of the compact sets contained in U, and each compact subset of U is contained is the union of finitely many open rectangles each contained in U. Thus $\frac{\chi_U}{\omega \times \omega}$ can indeed be approximated, giving the claim. Thus T is surjective.

Lemma 3.2. If ω is a weight function on G, then G is compact if and only if $\omega \in L^1(G)$.

Proof. Since G is compact if and only if $\lambda(G) < \infty$, the proof is trivial.

The map

$$\varphi_0: L^1(G, \omega) \longrightarrow \mathbb{C}, \ f \longmapsto \int_G f(x)\omega(x) \, d\lambda(x)$$

is called the augmentation character on $L^1(G, \omega)$ and its kernel $L^1_0(G, \omega)$ is called the augmentation ideal of $L^1(G, \omega)$. It is a closed ideal of $L^1(G, \omega)$ with codimension one. Also $L^1_0(G, \omega)$ is essential as a left Banach $L^1(G, \omega)$ -module, that is the linear hull of $\{g \star f : g \in L^1(G, \omega), f \in L^1_0(G, \omega)\}$ is dense in $L^1_0(G, \omega)$.

Theorem 3.3. If ω is a weight function on G, then $L^1(G, \omega)$ is biprojective if and only if G is compact.

Proof. Let G be a compact group and define the map

$$\rho: L^1(G, \omega) \longrightarrow L^1(G \times G, \omega \times \omega), \rho(f)(x, y) := f(xy) \quad (f \in L^1(G, \omega), x, y \in G)$$

We have $\Delta(f_1 \otimes f_2) = \int_G f_1 \otimes f_2(xy^{-1}, y) d\lambda(y)$ for each f_1 and f_2 in $L^1(G, \omega)$ and $x \in G$. So $\Delta(F)(x) = \int_G F(xy^{-1}, y) d\lambda(y)$ for each $F \in L^1(G \times G, \omega \times \omega)$ and $x \in G$. If $f \in L^1(G, \omega)$ and $x \in G$, then

$$(\Delta\rho)(f)(x) = \int_G \rho(f)(xy^{-1}, y) \, d\lambda(y) = \int_G f(x) \, d\lambda(y) = f(x).$$

262

Thus $\Delta \rho = \operatorname{id}_{L^1(G,\omega)}$ and ρ is a $L^1(G,\omega)$ -bimodule homomorphism and therefore $L^1(G,\omega)$ is biprojective. Let's $\mathcal{A} := L^1(G,\omega)$ and $\mathbf{L} := L^1_0(G,\omega)$. By [7, Lemma 4.3.10], the module map

$$\Theta: \mathcal{A}\hat{\otimes}\frac{\mathcal{A}}{\mathbf{L}} \longrightarrow \frac{\mathcal{A}}{\mathbf{L}}, \ f \otimes g + \mathbf{L} \longmapsto f \star g + \mathbf{L}$$

has a bounded right inverse ρ_1 which is also a left- \mathcal{A} -module homomorphism. By [7, Exercise 5.1.2 and Proposition 5.1.6], $\frac{\mathcal{A}}{\mathbf{L}}$ is projective and there is a left \mathcal{A} -module homomorphism $\tilde{\rho} : \frac{\mathcal{A}}{\mathbf{L}} \longrightarrow \mathcal{A}$ such that $\pi \tilde{\rho} = \operatorname{id}_{\mathcal{A}}$, where $\pi : \mathcal{A} \longrightarrow \frac{\mathcal{A}}{\mathbf{L}}$ is canonical

epimorphism. The map

$$\tilde{\phi_0}: \frac{\mathcal{A}}{\mathbf{L}} \longrightarrow \mathbb{C}, \ f + \mathbf{L} \longmapsto \int_G f(x) \omega(x) \, d\lambda(x)$$

is an isomorphism. Now set $\rho := \tilde{\rho} \tilde{\phi_0}^{-1}$ and $f_0 := \rho(1) \in \mathcal{A}$. We have

$$\phi_0(f_0) = \phi_0(\rho(1)) = \phi_0(\tilde{\rho}\tilde{\phi_0}^{-1})(1) = 1.$$

 $\mathbb C$ is a left Banach $\mathcal A\text{-module}$ with the module action

$$f.\alpha := \phi_0(f)\alpha \quad (\alpha \in \mathbb{C}, f \in \mathcal{A}).$$

Since ρ is a left \mathcal{A} -module homomorphism, for each $f \in \mathcal{A}$ we have

$$f \star f_0 = f \star \rho(1) = \rho(f.1) = \rho(\phi_0(f)1) = \phi_0(f)\rho(1) = \phi_0(f)f_0,$$

and for each $x \in G$ and $f \in \mathcal{A} - \mathbf{L}$

 $\phi_0(f)f_0 = \phi_0(\delta_x \star f)f_0 = (\delta_x \star f) \star f_0 = \delta_x \star (f \star f_0) = \delta_x \star (\phi_0(f)f_0) = \phi_0(f)(\delta_x \star f_0).$ Thus f_0 is non-zero, constant function in \mathcal{A} , and by Lemma 3.2, G is compact. \Box

References

- 1. H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, 2001.
- H. G. Dales, A. T-M. Lau, *The second duals of Beurling algebras*, Memoirs Amer. Math. Soc., Vol. 117, Amer. Math. Soc., Providence, R. I., 2005.
- N. Grønbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 149–162.
- N. Grønbaek, Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. **319** (1990), no. 2, 765–775.
- A. Ya. Helemskii, Flat Banach modules and amenable algebras, Trans. Moscow Math. Soc. 47 (1985), 199–224.
- 6. A. Ya. Helemskii, Banach and Locally Convex Algebras, Oxford University Press, 1993.
- V. Runde, *Lectures on Amenability*, Lecture Notes in Mathematics, Vol. 1774, Springer Verlag, 2002.
- 8. Yu. V. Selivanov, Biprojective Banach algebras, Math. USSR Izvestija 15 (1980), 387-399.
- Yu. V. Selivanov, Cohomological characterization of biprojective and biflat Banach algebras, Monatsh. Math. 128 (1999), 35–60.
- 10. J. A. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137–182.

Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran

E-mail address: a_mahmoodi@iauctb.ac.ir