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SOME PROPERTIES FOR BEURLING ALGEBRAS

AMIN MAHMOODI

Abstract. Let G be a locally compact group and let ω be a weight function on
G. In this paper, among other things, we show that the Beurling algebra L1(G, ω)
is super-amenable if and only if G is finite and it is biprojective if and only if G is
compact.

1. Introduction

Super-amenable Banach algebras often go by the name of contractible Banach algebras
in the literature [6]. The reason why we prefer to call them super-amenable is that the
adjective contractible is also used in the K-theory of C∗-algebras.

Let A be a Banach algebra, and let E be a Banach A-bimodule. A bounded linear
map D : A −→ E is called a derivation if

D(ab) = a . Db + (Da) . b (a, b ∈ A) .

A Banach algebra A is called amenable if for each Banach A-bimodule E, every
derivation D : A −→ E∗ is inner. Also, a Banach algebra A is called super-amenable
if for each Banach A-bimodule E, each derivation D : A −→ E is inner. Every super-
amenable Banach algebra is amenable and unital. Let G be a locally compact group.
Then the group algebra L1(G) is super-amenable if and only if G is finite [10].

Biprojectivity is a notion that arises naturally in A. Ya. Helemskii Banach homology.
The structure theory for biprojective Banach algebras is due to Yu. V. Selivanov [8]. For
a locally compact group G, the group algebra L(G) is biprojective if and only if G is
compact [5].

Like amenable, super-amenable and biprojective Banach algebras can be characterized
through vanishing of certain cohomology groups [9].

Let ω be a weight function on a locally compact group G. Then the Beurling algebra
L1(G, ω) is the space of measurable functions f : G −→ C for which

||f ||ω :=
∫

G

|f(x)| ω(x) dλ(x) < ∞ ,

where λ is the left Haar measure on G. It is a Banach algebra with the convolution
product

f ? g(x) :=
∫

G

f(y)g(y−1x) dλ(y) , (f, g ∈ L1(G, ω)) .

The amenability of L1(G, ω) has been studied by Grønbaek [4]. He proved that L1(G, ω)
is amenable if and only if G is amenable as a group and ω is diagonally bounded on G.

A Banach algebra A is called weakly amenable if every derivation D : A −→ A∗ is
inner. The weak amenability of L1(G, ω) is discussed in [3]. One result on this is: Let ω
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be a weight function on Z. Then `1(ω) is weakly amenable if and only if

{ωnω−n

n
: n ∈ N} < ∞ .

In this paper, we investigate the super-amenability and biprojectivity of L1(G, ω).
The result are surprisingly the same as in the non-weighted case.

2. Super-amenability

Let E be a Banach space. A finite, biorthogonal system for E is a set

{(xi, ϕj) : i, j = 1, . . . , n},
where x1, . . . , xn ∈ E and φ1, . . . , φn ∈ E∗ satisfy

〈xi, ϕj〉 = δi,j (i, j = 1, . . . , n).

Let F(E) be the set of all bounded finite rank operator on E. The map θn : Mn −→ F(E)
given by

θ(A) :=
n∑

i,j=1

ai,jxi � ϕj (A = [ai,j ]i,j=1,...,n ∈ Mn)

is a homomorphism where the map xi � ϕj is defined by

xi � ϕj : E −→ C, x 7−→ 〈x, ϕj〉xi.

A Banach space E has property A if there is a net of finite, bi-orthogonal systems

{(x(α)
i , φ

(α)
j ) : i, j = 1, . . . , nα}

for E with corresponding homomorphisms θα : Mnα
−→ F(E) such that

(i) limα θα(Enα) = idE , uniformly on compact subsets of E,
(ii) limα θα(Enα)∗ = idE∗ , uniformly on compact subsets of E∗, and
(iii) For each index α, there is a finite, irreducible nα×nα matrix group Gα such that

supα supg∈Gα
‖θα(g)‖ < ∞ .

An element m ∈ A⊗̂A is called a diagonal for A if

a∆m = a, a.m = m.a (a ∈ A),

where ∆ is the diagonal operator

∆ : A⊗̂A −→ A, a⊗ b 7−→ ab.

It is easy to see that A⊗̂A becomes a Banach A-bimodule through

a.(b⊗ c) := ab⊗ c and (b⊗ c).a := b⊗ ca (a, b, c ∈ A) .

It is clear that ∆ is a bimodule homomorphism with respect to this module structure on
A⊗̂A.
A is super-amenable if and only if it has a diagonal [7, Exercise 4.1.3]. Let G be a

locally compact group with the left Haar measure λ and with identity e. A continuous
map ω : G −→ R+ is called a weight function on G if

ω(xy) ≤ ω(x)ω(y), ω(e) = 1, ω(x) ≥ 1 (x, y ∈ G).

If ω is a weight function on G then the map

ω × ω : G×G −→ R+, (x, y) 7−→ ω(x)ω(y)

is also a weight function on G × G . The group algebra L1(G) has property A [7,
Exercise 3.1.4] and it is super-amenable if and only if G is finite [7, Exercise 4.1.7]. We
have the same results for L1(G, ω):

Proposition 2.1. If G is a locally compact group and ω is a weight function on G , then
L1(G, ω) has property A.
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Proof. First suppose that the Haar measure of G is finite. Consider the collection of all
families τ consisting of finitely many, pairwise disjoint sets in BG, the Borel algebra on
G, such that λ(A) 6= 0 for each A ∈ τ . For two such families τ1 and τ2 define τ1 < τ2

if each member of τ1 is the union of a subfamily of τ2 . For each τ = {A1, . . . , Anτ } we
have a corresponding finite, bi-orthogonal systems,

{( 1
λ(Ai)

χAi

ω
, ωχAj

) : i, j = 1, . . . , nτ}.

Let θτ : Mnτ −→ F (L1(G, ω)) be the corresponding homomorphism, then

θτ (Enτ )(
χL

ω
) =

χL

ω

and
θτ (Enτ

)∗(
χL

ω
) =

χL

ω
,

for each L ∈ BG, L < τ. Thus limα θα(Enα
) = idE and limα θα(Enα

)∗ = idE∗ uniformly
on compact subsets of E and E∗, respectively. Consider τ = {A1, . . . , Anτ } and let Gτ

be the group of matrices of the form DtEσ where Dt is the diagonal matrix specified
by t = (tiδi,j), where t1, . . . , tnτ ∈ {−1, 1}, and Eσ is the matrix corresponding to a
permutation σ of {1, . . . , nτ}. Certainly Gτ is an irreducible nτ × nτ matrix group. For
each f ∈ L1(G, ω) and g = DtEσ ∈ Gτ we have

‖θτ (DtEσ)f‖ω =
∥∥∥∥ nτ∑

j=1

( ∫
Aj

f(t)ω(t) dλ(t)
) 1

λ(Aσ(j))
χAσ(j)

ω

∥∥∥∥
ω

=
nτ∑
j=1

∣∣∣tj ∫
Aj

f(t)ω(t) dλ(t)
∣∣∣ ≤ nτ∑

j=1

∫
Aj

|f(t)|ω(t) dλ(t)| ≤ ‖f‖ω.

Thus ‖θτ (g)‖ ≤ 1.
Finally in general case, following [1, Corollary 5.6.64], we approximate the Haar mea-

sure λ with finite measures. �

Recall that a Banach space E has the bounded approximation property if there is a
net (Tα)α in F(E) such that supα ||Tα|| ≤ C for some C ≥ 1, and Tα −→ idE uniformly
on compact subsets of E.

Theorem 2.2. The Beurling algebra L1(G, ω) is super-amenable if and only if G is
finite.

Proof. Let G be a finite group of order n. Then

L1(G, ω) = `1(G, ω) = {Σg∈G αg δg : Σg∈G |αg| ω(g) < ∞ , αg ∈ C },
where δg is the characteristic function of the singleton {g}.

Let m := 1
n

∑
g∈G δg ⊗ δg−1 and let h ∈ G. Since δg ? δg−1 = δe, δh ? ∆m = δh. Also

δh.m =
1
n

∑
g∈G

δhg ⊗ δg−1 =
1
n

∑
g∈G

δg ⊗ δg−1h = m.δh ,

so that m is a diagonal for `1(G, ω), and therefore it is super-amenable.
Conversely suppose that L1(G, ω) is super-amenable. By Proposition 2.1 it has prop-

erty A. Similar to [7, Example C.1.2(c)], we can show that it has bounded approximation
property. By [7, Theorem 4.1.5] there are n1, . . . , nk ∈ N such that

L1(G, ω) w Mn1 ⊕ · · · ⊕Mnk
.

Thus L1(G, ω) has finite dimension and since it is unital [7, Exercise 4.1.1] so G is
finite. �
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3. Biprojectivity

A Banach algebra A is biprojective if the diagonal operator ∆ has a bounded right
inverse which is an A-bimodule homomorphism. Similar to [1, Proposition 3.3.20] we
have the following proposition.

Proposition 3.1. Let G be a locally compact group and ω is a weight function on G.
Then there is an isometric isomorphism T : L1(G, ω)⊗̂L1(G, ω) −→ L1(G × G, ω × ω)
such that

(1) T (f ⊗ g)(x, y) := f(x)g(y) (f, g ∈ L1(G, ω), (x, y) ∈ G×G).

Proof. By [1, A.3.69], there is a unique continuous linear map T such that (1) holds. It
is easy to check that T is a homomorphism and ||T || ≤ 1.

Take S to be the linear subspace of L1(G, ω)⊗̂L1(G, ω) spanned by elements of the
form f ⊗ g, where f and g are simple functions in L1(G, ω). Then S is dense in
L1(G, ω)⊗̂L1(G, ω). Each element a of S can be written as a finite sum a =

∑
i,j ai,j

χEi

ω
⊗

χFj

ω
, where Ei, Fj ∈ BG, for each i, j and the rectangles Ei × Fj are pairwise disjoint in

G×G. It follows that ||Ta||ω×ω ≥ ||a||π and so T is an isometry.
The range of T contains

χE×F

ω × ω
for each rectangle E × F in BG×G, and we claim

that the linear span of such functions is dense in L1(G × G, ω × ω). To see this, it
suffices to show that

χU

ω × ω
can be approximated for each open set U in G×G of finite

measure. For each such U , its measure is the supremum of the measures of the compact
sets contained in U , and each compact subset of U is contained is the union of finitely
many open rectangles each contained in U . Thus

χU

ω × ω
can indeed be approximated,

giving the claim. Thus T is surjective. �

Lemma 3.2. If ω is a weight function on G, then G is compact if and only if ω ∈ L1(G).

Proof. Since G is compact if and only if λ(G) < ∞, the proof is trivial. �

The map

ϕ0 : L1(G, ω) −→ C, f 7−→
∫

G

f(x)ω(x) dλ(x)

is called the augmentation character on L1(G, ω) and its kernel L1
0(G, ω) is called the

augmentation ideal of L1(G, ω). It is a closed ideal of L1(G, ω) with codimension one.
Also L1

0(G, ω) is essential as a left Banach L1(G, ω)-module, that is the linear hull of
{g ? f : g ∈ L1(G, ω), f ∈ L1

0(G, ω)} is dense in L1
0(G, ω).

Theorem 3.3. If ω is a weight function on G , then L1(G, ω) is biprojective if and only
if G is compact.

Proof. Let G be a compact group and define the map

ρ : L1(G, ω) −→ L1(G×G, ω × ω), ρ(f)(x, y) := f(xy) (f ∈ L1(G, ω), x, y ∈ G).

We have ∆(f1 ⊗ f2) =
∫

G
f1 ⊗ f2(xy−1, y)dλ(y) for each f1 and f2 in L1(G, ω) and

x ∈ G. So ∆(F )(x) =
∫

G
F (xy−1, y)dλ(y) for each F ∈ L1(G×G, ω × ω) and x ∈ G. If

f ∈ L1(G, ω) and x ∈ G, then

(∆ρ)(f)(x) =
∫

G

ρ(f)(xy−1, y) dλ(y) =
∫

G

f(x) dλ(y) = f(x).
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Thus ∆ρ = idL1(G,ω) and ρ is a L1(G, ω)-bimodule homomorphism and therefore L1(G, ω)
is biprojective. Let’s A := L1(G, ω) and L := L1

0(G, ω). By [7, Lemma 4.3.10], the mod-
ule map

Θ : A⊗̂A
L
−→ A

L
, f ⊗ g + L 7−→ f ? g + L

has a bounded right inverse ρ1 which is also a left-A-module homomorphism. By [7,

Exercise 5.1.2 and Proposition 5.1.6],
A
L

is projective and there is a left A-module ho-

momorphism ρ̃ :
A
L

−→ A such that πρ̃ = idA
L

, where π : A −→ A
L

is canonical

epimorphism.
The map

φ̃0 :
A
L
−→ C, f + L 7−→

∫
G

f(x)ω(x) dλ(x)

is an isomorphism. Now set ρ := ρ̃φ̃0
−1

and f0 := ρ(1) ∈ A. We have

φ0(f0) = φ0(ρ(1)) = φ0(ρ̃φ̃0
−1

)(1) = 1.

C is a left Banach A-module with the module action

f.α := φ0(f)α (α ∈ C, f ∈ A).

Since ρ is a left A-module homomorphism, for each f ∈ A we have

f ? f0 = f ? ρ(1) = ρ(f.1) = ρ(φ0(f)1) = φ0(f)ρ(1) = φ0(f)f0,

and for each x ∈ G and f ∈ A− L

φ0(f)f0 = φ0(δx ? f)f0 = (δx ? f) ? f0 = δx ? (f ? f0) = δx ? (φ0(f)f0) = φ0(f)(δx ? f0).

Thus f0 is non-zero, constant function in A, and by Lemma 3.2, G is compact. �
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