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BOUNDARY TRIPLETS AND TITCHMARSH-WEYL FUNCTIONS OF
DIFFERENTIAL OPERATORS WITH ARBITRARY DEFICIENCY

INDICES

VADIM MOGILEVSKII

Abstract. Let l[y] be a formally selfadjoint differential expression of an even order
on the interval [0, b〉, b ≤ ∞, with operator coefficients, acting in a separable Hilbert
space H. We introduce the concept of deficiency indices nb± of the expression l at
the point b and show that in the case dim H = ∞ any values of nb± are possible.
Moreover the decomposing selfadjoint boundary conditions exist if and only if nb+ =
nb−. Our considerations of differential operators with arbitrary (possibly unequal)
deficiency indices are based on the concept of a decomposing D-boundary triplet.
Such an approach enables to describe extensions of the minimal operator directly in
terms of operator boundary conditions at the ends of the interval [0, b〉. In particular
we describe in a compact form selfadjoint decomposing boundary conditions.

Associated to a D-triplet is an m-function, which can be regarded as a genera-
lization of the classical characteristic (Titchmarsh-Weyl) function. Our definition
enables to describe all m-functions (and, therefore, all spectral functions) directly in
terms of boundary conditions at the right end b.

1. Introduction

Let ∆ = [0, b〉, b ≤ ∞, be an interval in R, let H be a separable Hilbert space and
let [H] be the set of all bounded linear operators in H. The main objects of the paper
are differential operators in the Hilbert space H = L2(∆; H), generated by a formally
selfadjoint differential expression

l[y] = lH [y]

=
n∑

k=1

(−1)k((pn−ky(k))(k) − i
2 [(q∗n−ky(k))(k−1) + (qn−ky(k−1))(k)]) + pny

(1.1)

of an even order 2n with operator-valued coefficients pk(·), qk(·) : ∆ → [H]. Denote by
L0 and L minimal and maximal operators respectively, induced by the expression lH [y],
and let D be the domain of the operator L. It is known that L0 is a closed densely
defined symmetric operator in H and L∗0 = L. Moreover according to [12, 10] deficiency
indices n± = n±(L0) of the operator L0 are not necessarily equal.

Next recall that a closed operator Ã with the domain D(Ã) is called a proper extension
of L0 (and is referred to the class ExL0) if L0 ⊂ Ã ⊂ L. As is known a description of
various classes of extensions Ã ∈ ExL0 (selfadjoint, symmetric etc.) in terms of boundary
conditions is an important problem in the spectral theory of differential operators. For
a regular expression lH [y] with dim H ≤ ∞ this problem was solved in a compact form
by F. S. Rofe-Beketov in [21].
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The ideas of the paper [21] stimulated appearance of the method of boundary triplets
and the corresponding Weyl functions, which has become a convenient tool in the exten-
sion theory of symmetric operators and its applications (for a densely defined operator
see [8, 1, 2] and references therein). Note that the theory of boundary triplets and their
Weyl functions was developed in [8, 1, 2] only for symmetric operators A with equal defi-
ciency indices n±(A). In order to extend this theory to operators with unequal deficiency
indices the concept of a D-boundary triplet and the corresponding Weyl function was
introduced in our paper [18]. Let us briefly recall some definitions and results from this
paper.

Assume that A is a densely defined symmetric operator and let D(A∗) be the domain
of the adjoint A∗. Then a collection Π = {H0⊕H1,Γ0,Γ1}, where H0 is a Hilbert space,
H1 is a subspace in H0 and Γj : D(A∗) → Hj j ∈ {0, 1} are linear mappings, is called
a D-boundary triplet (or briefly D-triplet) for A∗, if the mapping Γ = (Γ0 Γ1)> is
surjective and the following abstract Green’s identity holds

(1.2) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g) + i(P2Γ0f, P2Γ0g), f, g ∈ D(A∗)

(here P2 is the orthoprojector in H0 onto the subspace H2 := H0	H1). Associated with
the D-triplet {H0 ⊕H1,Γ0,Γ1} for A∗ is the Weyl function M+(·) defined by

(1.3) Γ1fλ = M+(λ)Γ0fλ, fλ ∈ Nλ(A) := Ker(A∗ − λ), λ ∈ C+.

The operator function M+(·) is holomorphic on the upper half plane C+ and takes on
values in the set [H0,H1] of all bounded linear operators from H0 to H1 (see [18]).

It turns out that every D-triplet {H0 ⊕ H1,Γ0,Γ1} satisfies the relation dimH1 =
n−(A) ≤ n+(A) = dimH0. Furthermore in the case H0 = H1 := H a D-triplet Π =
{H,Γ0,Γ1} is a boundary triplet (a boundary value space) for A∗ [8], while the function
M(λ) = M+(λ) coincides with the Weyl function introduced by V. A. Derkach and
M. M. Malamud [1, 2]. Observe also that another approaches to generalization of the
notion of a boundary triplet to the case of unequal deficiency indices were proposed in
[14, 24] and the recent papers [3, 4].

In the present paper we apply the results of [18] to the differential operator L0 with
arbitrary (possibly unequal) deficiency indices n±. The basic object here is a decom-
posing D-triplet for L, which is defined as follows. Let H′0 be a Hilbert space and let H′1
be a subspace inH′0. Then a D-triplet Π = {H0⊕H1,Γ0,Γ1} for L is called decomposing,
if Hj = Hn ⊕H′j and

(1.4) Γ0y = {y(2)(0),Γ′0y} (∈ Hn⊕H′0), Γ1y = {−y(1)(0),Γ′1y} (∈ Hn⊕H′1), y ∈ D,

where y(1)(0), y(2)(0) ∈ Hn are vectors of the quasi-derivatives at the point 0 (see (3.2))
and Γ′j : D → H′j , j ∈ {0, 1}, are linear maps. Clearly, in the case H′0 = H′1 := H′ the
decomposing D-triplet (1.4) turns into a decomposing boundary triplet Π = {H,Γ0,Γ1}
with H = Hn ⊕H′.

Let θ be a selfadjoint linear relation in Hn and let Dθ be the set of all finite at the point
b functions y ∈ D such that {y(1)(0), y(2)(0)} ∈ θ. Denote by Lθ a symmetric extension
of L0 which is the closure of the operator L � Dθ. Using a decomposing D-triplet we
show that the deficiency indices n±(Lθ) of an operator Lθ do not depend on θ. This
makes it possible to introduce the following definition.

Definition 1.1. The numbers nb± := n±(Lθ) are called deficiency indices of the expres-
sion lH [y] at the point b.

Moreover the deficiency indices n± and nb± are connected via

(1.5) n+ = 2n dim H + nb+, n− = 2n dim H + nb−.
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It turns out that in the case dim H = ∞ any deficiency indices at the point b are possible,
while n+ = n− = ∞ (see Proposition 3.8). We also show that every decomposing D-
triplet (1.4) satisfies the relation

(1.6) dimH′1 = nb− ≤ nb+ = dimH′0.

Moreover for an expression lH [y] with arbitrary deficiency indices nb− ≤ nb+ ≤ ∞ we
construct a D-triplet (1.4) with operators Γ′0 and Γ′1, defined in the explicit form by
means of boundary values at the point b.

Another object of our investigations is the Weyl function for the D-triplet (1.4), which
can be written in the block-matrix form

(1.7) M+(λ) =
(

m(λ) M2+(λ)
M3+(λ) M4+(λ)

)
: Hn ⊕H′0 → Hn ⊕H′1, λ ∈ C+.

The representation (1.7) induces the uniformly strict Nevanlinna function m(λ), which
we call an m-function. This function can be defined also by the following statement (i).

(i) Let c(t, λ) and s(t, λ) be operator solutions of the equation l[Y ]−λY = 0 with the
initial data

c(1)(0, λ) = IHn , c(2)(0, λ) = 0, s(1)(0, λ) = 0, s(2)(0, λ) = IHn , λ ∈ C.

Then for every λ ∈ C+ there exists the unique operator m(λ) ∈ [Hn] such that the
operator function v0(t, λ) := −c(t, λ)m(λ) + s(t, λ) satisfy the relation v0(t, λ)ĥ ∈ H and
the boundary condition Γ′0(v0(t, λ)ĥ) = 0 (ĥ ∈ Hn) at the point b.

If dim H = 1 (the scalar case) and n+ = n−, then the function m(·) coincides with
the classical characteristic (Titchmarsh - Weyl) function for decomposing boundary con-
ditions [15, 20, 5]. Moreover in the case dim H ≤ ∞ the function m(·) coincides with
the characteristic function introduced for regular and quasi-regular expressions lH [y] in
[7, 11]. Note in this connection that our definition of the m-function m(λ) can be applied
to differential operators with arbitrary (possibly unequal) deficiency indices. Moreover
if dim H = ∞ and nb+ 6= nb−, then by (1.5) n+ = n− = ∞. At the same time in
view of (1.6) there is not a decomposing boundary triplet (1.4) (with H′0 = H′1). This
shows that the concepts of a decomposing D-triplet and the corresponding m-function
are useful even for operators L0 with equal deficiency indices n+ = n− = ∞.

Observe also that our definition of m(λ) contains in the explicit form the boundary
condition at the right end b of the interval ∆. This enables to describe all m-functions
(and, therefore, all spectral functions ) directly in terms of such conditions [19].

We suppose that the above results on m-functions are new even in the scalar case for
an operator L0 with equal intermediate deficiency indices n < n+ = n− < 2n.

In the final part of the paper we characterize various classes of extensions Ã ∈ ExL0

in terms of a decomposing D-triplet for L. Furthermore we describe spectrum of Ã by
means of boundary conditions and the Weyl function M+(λ). In particular we show that
selfadjoint decomposing boundary conditions exist if and only if nb+ = nb−. Moreover if
this criterion is satisfied and Π = {Hn ⊕H′,Γ0,Γ1} is a decomposing boundary triplet
(1.4), then the set of all selfadjoint decomposing conditions is described by the relations

(1.8) cos B1 y(1)(0) + sinB1 y(2)(0) = 0, cos B2 Γ′0y + sinB2 Γ′1y = 0,

where B1 and B2 are bounded selfadjoint operators in Hn and H′ respectively. This
implies that every selfadjoint boundary condition at the right end b is defined by the
second equation in (1.8) (cf. [22]). For regular and quasi-regular expressions formula
(1.8) was obtained in [21, 11]. Observe also that insufficiency of the condition n+ = n−
for existence of selfadjoint decomposing boundary conditions in the case dim H = ∞ was
noticed in [22] (see also [23]).
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Finally, using the above statements we complement and generalize some results from
[22] (see Corollary 4.7 and Remark 4.8).

In conclusion note that the results of the paper were partially announced in [19].

2. Preliminaries

2.1. Notations. The following notations will be used throughout the paper: H, H de-
note Hilbert spaces; [H1,H2] is the set of all bounded linear operators defined on H1

with values in H2; [H] := [H,H]; A � L is the restriction of an operator A onto the linear
manifold L; PL is the orthogonal projector in H onto the subspace L ⊂ H; C+ (C−) is
the upper (lower) half-plain of the complex plain.

Recall that a closed linear relation from H0 to H1 is a closed subspace in H0 ⊕ H1.
The set of all closed linear relations from H0 to H1 (from H to H) will be denoted by
C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified with its graph
grT ∈ C̃(H0,H1).

For a relation T ∈ C̃(H0,H1) we denote by D(T ), R(T ) and KerT the domain, range
and the kernel respectively. The inverse T−1 and adjoint T ∗ are relations defined by

T−1 = {{f ′, f} : {f, f ′} ∈ T}, T−1 ∈ C̃(H1,H0),

T ∗ = {{g, g′} ∈ H1 ⊕H0 : (f ′, g) = (f, g′), {f, f ′} ∈ T}, T ∗ ∈ C̃(H1,H0).

In the case T ∈ C̃(H0,H1) we write:
0 ∈ ρ(T ) if KerT = {0} and R(T ) = H1, or equivalently if T−1 ∈ [H1,H0];
0 ∈ ρ̂(T ) if KerT = {0} and R(T ) is a closed subspace in H1;
0 ∈ σc(T ) if KerT = {0} and R(T ) = H1 6= R(T );
0 ∈ σp(T ) if KerT 6= {0}; 0 ∈ σr(T ) if Ker T = {0} and R(T ) 6= H1.
For a linear relation T ∈ C̃(H) we denote by ρ(T ) = {λ ∈ C : 0 ∈ ρ(T − λ)} and

ρ̂(T ) = {λ ∈ C : 0 ∈ ρ̂(T − λ)} the resolvent set and the set of regular type points of
T respectively. Next, σ(T ) = C\ρ(T ) stands for the spectrum of T. The spectrum σ(T )
admits the following classification:

σc(T ) = {λ ∈ C : 0 ∈ σc(T − λ)} is the continuous spectrum;
σp(T ) = {λ ∈ C : 0 ∈ σp(T − λ)} is the point spectrum;
σr(T ) = σ(T ) \ (σp(T ) ∪ σc(T )) = {λ ∈ C : 0 ∈ σr(T − λ)} is the residual spectrum.

2.2. Operator pairs. Let K,H0,H1 be Hilbert spaces. A pair of operators Cj ∈
[Hj ,K], j ∈ {0, 1} will be called admissible if the range of the operator C ∈ [H0⊕H1,K]
given by the block-matrix representation

C = (C0 C1) : H0 ⊕H1 → K,

coincides with K. Two admissible pairs C(j) = (C(j)
0 C

(j)
1 ) : H0 ⊕H1 → Kj , j ∈ {1, 2}

will be called equivalent if C(2) = XC(1) with some isomorphism X ∈ [K1,K2].
For a linear relation θ ∈ C̃(H0,H1) we write

(2.1) θ = {(C0, C1);H0,H1;K}
if the operators Cj ∈ [Hj ,K], j ∈ {0, 1} form an admissible operator pair such that

(2.2) θ = KerC = {{h0, h1} ∈ H0 ⊕H1 : C0h0 + C1h1 = 0}.
Moreover in the case H0 = H1 := H we write θ = {(C0, C1);H;K}. Clearly every
θ ∈ C̃(H0,H1) admits the unique representation (2.2) up to equivalence of operator pairs.
This allows us to identify by means of the equality (2.1) a linear relation θ ∈ C̃(H0,H1)
and the corresponding class of equivalent admissible operator pairs Cj ∈ [Hj ,K], j ∈
{0, 1}. Therefore in what follows we do not distinguish equivalent operator pairs.

Next recall some results and definitions from our paper [17].
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Let H1 be a subspace in a Hilbert space H0, let H2 := H0 	 H1 and let Pj be the
orthoprojector in H0 onto Hj , j ∈ {1, 2}. With every linear relation θ ∈ C̃(H0,H1) we
associate a ×-adjoint linear relation θ× ∈ C̃(H0,H1), which is defined as the set of all
vectors k̂ = {k0, k1} ∈ H0 ⊕H1 such that

(2.3) (k1, h0)− (k0, h1) + i(P2k0, P2h0) = 0, {h0, h1} ∈ θ.

According to (2.1) and (2.2) one can consider the relation θ× as the operator pair θ× =
{(C0×, C1×);H0,H1;K×}. If H1 = H0 := H, then a linear relation (operator pair)
θ× ∈ C̃(H) coincides with θ∗. Moreover in the general case H1 ⊂ H0 the relation θ× has
a number of properties similar to θ∗ (see [17]).

Next assume that θ is an operator pair (linear relation) (2.1), C0 = (C01 C02) :
H1 ⊕H2 → K is the block-matrix representation of C0 and

S̃θ := 2Im(C1C
∗
01)− C02C

∗
02, S̃θ ∈ [K].

Definition 2.1. [17]. The operator pair (linear relation) (2.1) belongs to the class:
1) Dis(H0,H1) if S̃θ ≥ 0 and

(2.4) 0 ∈ ρ(C01 − λC1) for some (equivalently for all) λ ∈ C+;

2) Ac(H0,H1) if S̃θ ≤ 0 and

(2.5) 0 ∈ ρ(C0 − λC1P1) for some (equivalently for all) λ ∈ C−;

3) Sym(H0,H1) (Self(H0,H1)) if S̃θ = 0 and at least one of the condition (respectively
both the conditions) (2.4), (2.5) is satisfied.

Note that in the case H1 = H0 := H classes Dis, Ac, Sym and Self coincide with sets
of all maximal dissipative, maximal accumulative, maximal symmetric and selfadjoint
linear relations in H respectively. Moreover every selfadjoint relation θ ∈ C̃(H) admits
the unique representation [21]

(2.6) θ = {(cos B, sinB);H;H},
where B = B∗ ∈ [H], −π

2 I ≤ B ≤ π
2 I and −π

2 /∈ σp(B).

2.3. Boundary triplets and Weyl functions. Let A be a closed densely defined sym-
metric operator in H. In what follows we will use the following notations:

Nλ(A) := Ker(A∗−λ) (λ ∈ ρ̂(A)) is a defect subspace and n±(A) := dim Nλ(A) (λ ∈
C±) are deficiency indices of A;

ExA is the set of all proper extensions of A, i.e., the set of all closed operators Ã in H

such that A ⊂ Ã ⊂ A∗.
Let H0 be a Hilbert space, let H1 be a subspace in H0 and let H2 := H0	H1. Denote

by Pj the orthoprojector in H0 onto Hj , j ∈ {1, 2}.

Definition 2.2. [18]. A collection Π = {H0⊕H1,Γ0,Γ1}, where Γj are linear mappings
from D(A∗) to Hj (j ∈ {0, 1}), is called a D-boundary triplet (or briefly D-triplet) for
A∗, if Γ = (Γ0 Γ1)> : D(A∗) → H0 ⊕ H1 is a surjective linear mapping onto H0 ⊕ H1

and the following Green’s identity holds

(2.7) (A∗f, g)− (f,A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g) + i(P2Γ0f, P2Γ0g), f, g ∈ D(A∗).

In the following propositions some properties of D-triplets are specified (see [18]).

Proposition 2.3. If Π = {H0 ⊕H1,Γ0,Γ1} is a D-triplet for A∗, then

dimH1 = n−(A) ≤ n+(A) = dimH0.

Conversely for every symmetric densely defined operator A with n−(A) ≤ n+(A) there
exists a D-triplet for A∗.
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Proposition 2.4. Let Π = {H0 ⊕H1,Γ0,Γ1} be a D-triplet for A∗. Then:
1) KerΓ0 ∩KerΓ1 = D(A) and the operators Γ0,Γ1 are bounded (in the graph norm);
2) the equality

(2.8) D(Ãθ) := {f ∈ D(A∗) : {Γ0f,Γ1f} ∈ θ} = {f ∈ D(A∗) : C0Γ0f + C1Γ1f = 0}

establishes a bijective correspondence between all proper extensions Ã = Ãθ ∈ ExA with
the domain D(Ãθ) and all linear relations (admissible operator pairs) θ ∈ C̃(H0,H1)
given by (2.1), (2.2). Moreover (Ãθ)∗ = Ãθ× and an extension Ãθ ∈ ExA is maximal
dissipative, maximal accumulative, maximal symmetric or selfadjoint if and only if θ
belongs to the class Dis, Ac, Sym or Self(H0,H1) respectively;

3) The relations

(2.9) D(A0) := KerΓ0 = {f ∈ D(A∗) : Γ0f = 0}, A0 = A∗ � D(A0)

define a maximal symmetric extension A0 ∈ ExA such that n−(A0) = 0.

It turns out that for every λ ∈ C+ (z ∈ C−) the map Γ0 � Nλ(A) (P1Γ0 � Nz(A))
is an isomorphism. This makes it possible to introduce the operator functions (γ-fields)
γ+(·) : C+ → [H0,H], γ−(·) : C− → [H1,H] and the Weyl functions M+(·) : C+ →
[H0,H1], M−(·) : C− → [H1,H0] by

γ+(λ) = (Γ0 � Nλ(A))−1, λ ∈ C+; γ−(z) = (P1Γ0 � Nz(A))−1, z ∈ C−,(2.10)

Γ1 � Nλ(A) = M+(λ)Γ0 � Nλ(A), λ ∈ C+,(2.11)

(Γ1 + iP2Γ0) � Nz(A) = M−(z)P1Γ0 � Nz(A), z ∈ C−.(2.12)

Let λ ∈ C+, z ∈ C− and let

γ+(λ) = (γ(λ) δ+(λ)) : H1 ⊕H2 → H,(2.13)

M+(λ) = (M(λ) N+(λ)) : H1 ⊕H2 → H1,(2.14)

M−(z) = (M(z) N−(z))> : H1 → H1 ⊕H2(2.15)

be the block-matrix representations of γ+(·) and M±(·). Formulas (2.13) and (2.14),
(2.15) induce the operator functions γ(·) : C+ → [H1,H] and M(·) : C+ ∪ C− → [H1].

Proposition 2.5. [18]. All functions γ±(·) and M±(·) are holomorphic on their domains.
Moreover γ+(λ)H0 = Nλ(A) (λ ∈ C+), γ−(z)H1 = Nz(A) (z ∈ C−) and

M(µ)−M∗(λ) = (µ− λ) γ∗(λ)γ(µ), µ, λ ∈ C+(2.16)

M−(z) = M∗
+(z), M(z) = M∗(z)), z ∈ C−.(2.17)

Hence M(·) is a uniformly strict Nevanlinna function, that is Imλ ImM(λ) ≥ 0 and
0 ∈ ρ(ImM(λ)), λ ∈ C+ ∪ C−.

Remark 2.6. If a D-triplet Π = {H0⊕H1,Γ0,Γ1} satisfies the relation H0 = H1 := H (⇔
A0 = A∗0), then it is a boundary triplet. More precisely this means that the collection
Π = {H,Γ0,Γ1} is a boundary triplet (boundary value space) for A∗ in the sense of [8].
In this case the function M(λ) = M±(λ) is defined for all λ ∈ ρ(A0) and coincides with
the Weyl function introduced in [1].

3. Boundary triplets for differential operators

3.1. Differential operators. Let ∆ = [0, b〉 (b ≤ ∞) be an interval on the real axis (in
the case b < ∞ the point b may or may not belong to ∆), let H be a separable Hilbert
space with dim H ≤ ∞ and let

(3.1) l[y] = lH [y] =
n∑

k=1

(−1)k((pn−ky(k))(k)− i
2 [(q∗n−ky(k))(k−1)+(qn−ky(k−1))(k)])+pny,
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be a differential expression of an even order 2n with operator-valued coefficients pk(·), qk(·) :
∆ → [H] satisfying the conditions

pk(·), qk(·) ∈ Cn−k(∆), pk(t) = p∗k(t), 0 ∈ ρ(p0(t)), t ∈ ∆, k = 0÷ n

(here we put qn ≡ 0). Denote by y[k](·), k = 0 ÷ 2n the quasi-derivatives of a vector-
function y(·) : ∆ → H, corresponding to the expression (3.1). Moreover for every
operator function Y (·) : ∆ → [K,H] (K is a Hilbert space) introduce quasi-derivatives
Y [k](·) by the same formulas as y[k] (see [20, 21, 13]).

Let D(l) be the set of all functions y(·) such that y[k](·), k = 0 ÷ (2n − 2) has a
continuous derivative on ∆ and y[2n−1] is absolutely continuous on every finite segment
[0, β] ⊂ ∆. Furthermore for a given Hilbert space K denote by DK(l) the set of all
operator-functions Y (·) with values in [K,H] such that Y [k](·), k = 0 ÷ (2n − 1) has a
continuous derivative on ∆. Clearly for every y ∈ D(l) and Y ∈ DK(l) the functions
y[k](·) : ∆ → H, k = 0 ÷ (2n − 1) and Y [k](·) : ∆ → [K,H], k = 0 ÷ 2n are continuous
on ∆, the function y[2n](t)(∈ H) is defined almost everywhere on ∆ and

l[y] = y[2n](t), y ∈ D(l); l[Y ] = Y [2n](t), Y ∈ DK(l).

This makes it possible to introduce the vector functions y(j)(·) : ∆ → Hn, j ∈ {1, 2} and
ỹ(·) : ∆ → Hn ⊕Hn,

y(1)(t) := {y[k−1](t)}n
k=1(∈ Hn), y(2)(t) := {y[2n−k](t)}n

k=1(∈ Hn),(3.2)

ỹ(t) = {y(1)(t), y(2)(t)}(∈ Hn ⊕Hn), t ∈ ∆,(3.3)

which correspond to every y ∈ D(l). Similarly with each Y ∈ DK(l) we associate the
operator-functions Y (j)(·) : ∆ → [K,Hn] and Ỹ (·) : ∆ → [K,Hn ⊕Hn] given by

Y (1)(t) = (Y (t) Y [1](t) . . . Y [n−1](t))>, Y (2)(t) = (Y [2n−1](t) Y [2n−2](t) . . . Y [n](t))>,

Ỹ (t) = (Y (1)(t) Y (2)(t))> : K → Hn ⊕Hn, t ∈ ∆.

It is clear that for every Y ∈ DK(l) and h ∈ K the function y(t) := Y (t)h belongs to D(l)
and y(j)(t) = Y (j)(t)h, j ∈ {1, 2}.

Next for a given λ ∈ C consider the equation

(3.4) l[y]− λy = 0.

It is known that for every pair of vectors yj ∈ Hn (operators Yj ∈ [K,Hn]) there
exists the unique vector-function y ∈ D(l) (operator-function Y ∈ DK(l)) such that
y[2n](t)− λy(t) = 0 (Y [2n](t)− λY (t) = 0) and y(j)(0) = yj (respectively, Y (j)(0) = Yj),
j ∈ {1, 2}. These functions are called solutions of (3.4) with the initial data yj (or Yj).
Moreover we distinguish the two ”canonical” operator solutions c(·, λ) and s(·, λ) : ∆ →
[Hn,H], λ ∈ C of the equation (3.4) with the initial data

(3.5) c(1)(0, λ) = IHn , c(2)(0, λ) = 0, s(1)(0, λ) = 0, s(2)(0, λ) = IHn , λ ∈ C.

In what follows we will denote by H(= L2(∆; H)) the Hilbert space of all measurable
functions f(·) : ∆ → H such that

∫ b

0
||f(t)||2 dt < ∞. It is known [20, 21] that the

expression (3.1) generate the maximal operator L in H, defined on the domain

(3.6) D = D(L) := {y ∈ D(l) ∩ H : l[y] ∈ H}
by the equality Ly = l[y], y ∈ D. Moreover the Lagrange’s identity

(3.7) (Ly, z)H − (y, Lz)H = [y, z](b)− [y, z](0), y, z ∈ D
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holds with

(3.8) [y, z](t) = (y(1)(t), z(2)(t))Hn − (y(2)(t), z(1)(t))Hn , [y, z](b) = lim
t↑b

[y, z](t).

The minimal operator L0 is defined as a restriction of L onto the domain D0 = D(L0)
of all functions y ∈ D such that ỹ(0) = 0 and [y, z](b) = 0 for all z ∈ D. As is known
[20, 21] L0 is a closed densely defined symmetric operator in H and L∗0 = L. In the sequel
we denote by n± := n±(L0) (n± ∈ Z+ ∪ {∞}) the deficiency indices of the operator L0.
According to [20, 13] the following relation holds

(3.9) n · dim H ≤ n± ≤ 2n · dim H.

Next denote by D1 and D2 linear manifolds in H given by

(3.10) D1 := {y ∈ D : ỹ(0) = 0}, D2 := {y ∈ D : [y, z](b) = 0, z ∈ D}.

It is easily to check that

(3.11) D1 ∩ D2 = D0, D1 +D2 = D.

Definition 3.1. An extension Ã ∈ ExL0 is referred to the class DexL0 if

(3.12) D(Ã) = (D(Ã) ∩ D1) + (D(Ã) ∩ D2).

It is clear that Ã ∈ DexL0 if and only if Ã ∈ ExL0 and for every y ∈ D(Ã) there exists
z ∈ D(Ã) such that z̃(0) = 0 and z(t) = y(t) on some interval (η, b) ∈ ∆. Therefore DexL0

is the set of all extensions defined by decomposing boundary conditions (see [6, 23]).

Definition 3.2. A symmetric extension Ãb ∈ ExL0 is referred to the class SymL0,b if
there exists a selfadjoint extension Ã ∈ DexL0 such that D(Ãb) = D(Ã) ∩ D1.

In Section 4 we will define the class SymL0,b in terms of internal properties of extensions
Ãb ∈ ExL0 (see Definition 4.3).

3.2. Decomposing boundary triplets. Let H′1 be a subspace in a Hilbert space H′0,
let H′2 := H′0 	H′1 and let P ′j be the orthoprojector in H′0 onto H′j , j ∈ {1, 2}.

Definition 3.3. A D-boundary triplet Π = {H0 ⊕ H1,Γ0,Γ1} for L will be called
decomposing, if H0 = Hn ⊕H′0, H1 = Hn ⊕H′1 and

(3.13) Γ0y = {y(2)(0),Γ′0y} (∈ Hn⊕H′0), Γ1y = {−y(1)(0),Γ′1y} (∈ Hn⊕H′1), y ∈ D

where Γ′j : D → H′j , j ∈ {0, 1} are linear maps.
A boundary triplet Π = {H,Γ0,Γ1} for L will be called decomposing, if H = Hn⊕H′

and the maps Γj : D → Hn ⊕H′, j ∈ {0, 1} are given by (3.13) with H′0 = H′1 := H′.

Clearly every decomposing boundary triplet {H,Γ0,Γ1} for L is a decomposing D-
triplet with H0 = H1 := H( ⇐⇒ H′0 = H′1 := H′).

Lemma 3.4. Let H′1 be a subspace in a Hilbert space H′0, let Γ′j : D → H′j be a linear
map, let Hj = Hn ⊕ H′j and let Γj : D → Hj , j ∈ {0, 1} be operators given by (3.13).
Then the following statements are equivalent:

(i) the map Γ′ = (Γ′0 Γ′1)
> : D → H′0 ⊕H′1 is surjective and

(3.14) [y, z](b) = (Γ′1y, Γ′0z)− (Γ′0y, Γ′1z) + i(P ′2Γ
′
0y, P ′2Γ

′
0z), y, z ∈ D,

(ii) the collection Π = {H0 ⊕H1,Γ0,Γ1} is a (decomposing) D-triplet for L.
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Proof. The equivalence of (3.14) and the abstract Green’s identity (2.7) for operators
(3.13) directly follows from the Lagrange’s identity (3.7).

Next assume that the statement (i) is valid and let D1,D2 be linear manifolds (3.10).
Then for every y ∈ D2 and z ∈ D the right hand part of (3.14) is equal to 0, which
implies that Γ′ � D2 = 0. Hence

(3.15) Γ′D1 = Γ′(D1 +D2) = Γ′D = H′0 ⊕H′1
and by (3.13)

(3.16) ΓD1 = ({0} ⊕H′0)⊕ ({0} ⊕H′1), ΓD2 = (Hn ⊕ {0})⊕ (Hn ⊕ {0}),
where Γ = (Γ0 Γ1)>. Therefore ΓD = (Hn ⊕H′0)⊕ (Hn ⊕H′1) = H0 ⊕H1.

Conversely, if ΓD = H0⊕H1, then the equality Γ′D = H′0⊕H′1 is immediately implied
by (3.13). Thus the equivalence (i) ⇐⇒ (ii) is valid. �

For every θ = θ∗ ∈ C̃(Hn) we put Lθ := L � D(Lθ) and L′θ := L � D(L′θ), where

(3.17) D(L′θ) := {y ∈ D : ỹ(0) ∈ θ}, D(Lθ) := {y ∈ D(L′θ) : [y, z](b) = 0, z ∈ D}.
It is easily seen that Lθ is a closed symmetric operator in H and L∗θ = L′θ.

Lemma 3.5. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a decomposing D-triplet (3.13) for L, let
θ = θ∗ ∈ C̃(Hn) and let Γj,θ := Γ′j � D(L′θ), j ∈ {0, 1}.Then a collection Πθ := {H′0 ⊕
H′1,Γ0,θ,Γ1,θ} is a D-triplet for L′θ(= L∗θ).

Conversely, let Π′ = {H′0 ⊕ H′1, G0, G1} be a D-triplet for L′θ. Then there exists a
decomposing D-triplet (3.13) for L such that Gj = Γ′j � D(L′θ), j ∈ {0, 1}.

Proof. 1) Let Π = {H0 ⊕H1,Γ0,Γ1} be a D-triplet (3.13) for L. Since θ = θ∗, it follows
from the first equality in (3.17) that [y, z](0) = 0, y, z ∈ D(L′θ). Moreover according to
Lemma 3.4 the identity (3.14) holds. Therefore by (3.7) one has

(L′θy, z)− (y, L′θz) = [y, z](b) = (Γ′1y, Γ′0z)− (Γ′0y, Γ′1z)+ i(P ′2Γ
′
0y, P ′2Γ

′
0z), y, z ∈ D(L′θ).

Moreover (3.15) and the inclusion D1 ⊂ D(L′θ) imply that Γ′D(L′θ) = H′0 ⊕H′1. Hence
Πθ is is a D-triplet for L′θ.

2) Conversely let Π′ = {H′0 ⊕H′1, G0, G1} be a D-triplet for L′θ. Since D1 ⊂ D(L′θ),
the second relation in (3.11) yields

(3.18) D(L′θ) = D1 +D(Lθ).

Introduce the operators G′j := Gj � D1, j ∈ {0, 1} and G′ := (G′0 G′1)
> : D1 →

H′0 ⊕H′1. It follows from (3.7) and the identity (2.7) (for Π′) that

(3.19) [y, z](b) = (G′1y, G′0z)− (G′0y, G′1z) + i(P ′2G
′
0y, P ′2G

′
0z), y, z ∈ D1.

Moreover in view of (3.18) G′D1 = GD(L′θ) = H′0⊕H′1, so that the map G′ is surjective.
Next assume that y ∈ D. Then by (3.11) there exist yj ∈ Dj , j ∈ {1, 2} such that

(3.20) y = y1 + y2.

Let y = u1 +u2 be the representation (3.20) by means of another pair uj ∈ Dj . Then by
the first relation in (3.11) y1 − u1 ∈ D0 ⊂ D(Lθ) and consequently Gj(y1 − u1) = 0, j ∈
{0, 1}. Hence G′jy1 = G′ju1 which allows us to introduce the operators Γ′j : D → H′j by
Γ′jy := G′jy1, y ∈ D, j ∈ {0, 1} (here y1 is taken from (3.20)).

Next we show that the map Γ′ := (Γ′0 Γ′1)
> satisfies the statement (i) of Lemma 3.4.

It follows from definition of Γ′j that Γ′y = G′y, y ∈ D1 and Γ′ � D2 = 0. Hence

Γ′D = Γ′(D1 +D2) = G′D1 = H′0 ⊕H′1.
Moreover (3.19) and the second equality in (3.11) give the identity (3.14). Thus by
Lemma 3.4 the operators (3.13) form a decomposing D-triplet for L. Finally the equalities
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Gj = Γ′j � D(L′θ) are implied by (3.18) and the relations Γ′j � D1 = Gj � D1, Γ′j �
D(Lθ) = Gj � D(Lθ) = 0, j ∈ {0, 1}. �

Proposition 3.6. Deficiency indices n±(Lθ) of an operator Lθ do not depend on θ.

Proof. Without loss of generality one can suppose that n−(Lθ0) ≤ n+(Lθ0) for some
θ0 = θ∗0 . In this case let Π′ = {H′0⊕H′1, G0, G1} be a D-triplet for L′θ0

(such a D-triplet
exists according to Proposition 2.3). Then by Lemma 3.5 there exists a decomposing
D-triplet Π = {(Hn⊕H′0)⊕ (Hn⊕H′1),Γ0,Γ1} for L. Now assume that θ is an arbitrary
selfadjoint linear relation in Hn. Then by Lemma 3.5 there exists a D-triplet Πθ =
{H′0 ⊕H′1,Γ0,θ,Γ1,θ} for L′θ. This and Proposition 2.3 imply that n−(Lθ) = n−(Lθ0) =
dimH′1, n+(Lθ) = n+(Lθ0) = dimH′0. �

Proposition 3.6 allows us to introduce the following definition.

Definition 3.7. The numbers nb+, nb− ∈ Z+ ∪ {∞} defined by

(3.21) nb+ = nb+(l) := n+(Lθ), nb− = nb−(l) := n−(Lθ), θ = θ∗ ∈ C̃(Hn)

will be called deficiency indices of the differential expression l = l[y] at the right end b
of the interval ∆ = [0, b〉.

It follows from (3.17) that Nλ(Lθ) (λ ∈ C±) is the set of all functions y ∈ H, which are
solutions of (3.4) with ỹ(0) ∈ θ. Hence dim Nλ(Lθ) ≤ dim θ = n · dim H and therefore

(3.22) 0 ≤ nb± ≤ n · dim H.

It turns out that in the case dim H = ∞ all values nb± satisfying (3.22) are possible.
More precisely the following proposition holds.

Proposition 3.8. For every n ∈ N and for every pair N+, N− ∈ Z+ ∪ {∞} there exists
a differential expression l = lH [y] of the order 2n on the half-line [0,∞) (see (3.1)) such
that dim H = ∞ and n∞+(l) = N+, n∞−(l) = N−.

Proof. Let lj = lHj [y] be differential expressions (3.1) with coefficients pk,j , qk,j , j ∈
{1, 2} and let l := l1 ⊕ l2 be the expression l[y] = lH1⊕H2 [y] with coefficients

pk(t) = pk,1(t)⊕ pk,2(t), qk(t) = qk,1(t)⊕ qk,2(t), t ∈ ∆, k = 0÷ n.

It is easily seen that in this case

(3.23) nb+(l) = nb+(l1) + nb+(l2), nb−(l) = nb−(l1) + nb−(l2).

Next assume that l = lH [y] is the expression (3.1) with dim H < ∞ and let H ′ be an
infinite-dimensional Hilbert space. Consider the expression l′ = lH′ [y] of the order 2n
such that nb±(l′) = 0 (for example, one can put lH′ [y] = y(2n)). It follows from (3.23)
that the expressions l ⊕ l′ and l have the same deficiency indices at the point b. Hence
to prove the proposition it is enough to show that for given n ∈ N and N± ∈ Z+ ∪ {∞}
there exist a Hilbert space H and an expression l = lH [y] such that n∞±(l) = N±.

Now without loss of generality suppose that 0 ≤ N− ≤ N+ ≤ ∞, N+ 6= 0 and let
r := N+ −N−(in the case N+ = N− = ∞ we put r = 0). Assume also that H0 := C2, if
n = 1, and H0 = C, if n ≥ 2. According to [10, 12] for every n ∈ N there exist expressions
l′ = l′H0

[y] and l′′ = l′′H0
[y] of the order 2n on the half-line [0,∞) such that

(3.24) n∞+(l′) = n∞−(l′) = 1, n∞+(l′′) = 1, n∞−(l′′) = 0.

Let p′k, q′k and p′′k , q′′k be coefficients of the expressions l′ and l′′ respectively. Introduce

Hilbert spaces H̃ :=
N−⊕
j=1

H0, Ĥ :=
r⊕

j=1

H0 and operator-functions p̃k(·), q̃k(·) : [0,∞) →
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[H̃] and p̂k(·), q̂k(·) : [0,∞) → [Ĥ] by

p̃k(t)h̃ = {p′k(t)hj}N−
j=1, q̃k(t)h̃ = {q′k(t)hj}N−

j=1, h̃ = {hj}N−
1 ∈ H̃;

p̂k(t)ĥ = {p′′k(t)hj}r
j=1, q̂k(t)ĥ = {q′′k (t)hj}r

j=1, ĥ = {hj}r
1 ∈ Ĥ, t ∈ [0,∞).

Denote by l̃ = l eH [y] and l̂ = lĤ [y] differential expressions (3.1) with coefficients p̃k, q̃k

and p̂k, q̂k respectively. Taking (3.24) into account one can easily check that

(3.25) n∞+(l̃) = n∞−(l̃) = N−, n∞+(l̂) = r, n∞−(l̂) = 0.

Finally in view of (3.23) and (3.25) the expression l := l̃⊕ l̂ satisfies the required equality
n∞±(l) = N±. �

The following proposition is an analog of Proposition 2.3.

Proposition 3.9. If Π = {H0 ⊕ H1,Γ0,Γ1}
(
Π = {H,Γ0,Γ1}

)
is a decomposing D-

boundary triplet (boundary triplet) for L, then

(3.26) dimH′1 = nb− ≤ nb+ = dimH′0 (nb− = nb+ = dimH′).

Conversely for every differential expression (3.1) with nb− ≤ nb+ (nb− = nb+) there
exists a decomposing D-boundary triplet (boundary triplet) Π for L.

Proof. The statements of the proposition are immediately implied by Lemma 3.5 and
Proposition 2.3. �

Recall that the expression (3.1) is called regular, if its coefficients are defined on the
finite segment ∆ = [0, b]. It is clear that for a regular expression nb− = nb+ = 2n dim H
and the collection Π = {Hn ⊕Hn,Γ0,Γ1}, where

(3.27) Γ0y = {y(2)(0), y(2)(b)}, Γ1y = {−y(1)(0), y(1)(b)}, y ∈ D,

is a decomposing boundary triplet for L.
In the next proposition we construct in the explicit form a decomposing D-triplet for

an arbitrary expression (3.1) with nb− ≤ nb+ ≤ ∞.

Proposition 3.10. Let l[y] be the expression (3.1) with nb− ≤ nb+ ≤ ∞. In the case
nb− = nb+ = ∞ denote by m an arbitrary (finite or infinite) nonnegative integer and let
m = nb+ − nb− in the case nb− < ∞. Moreover let H′1 = Cnb− , H′2 = Cm and H′0 =
H′1⊕H′2 (here we put C∞ = l2). Then there exist sequences of functions {fj}

nb−
1 , {gj}

nb−
1

and {hj}m
1 (fj , gj , hj ∈ D) such that the Hilbert spaces Hj = Hn ⊕ H′j and the linear

maps Γj : D → Hj , j ∈ {0, 1},

Γ0y := {y(2)(0), {[y, fj ](b)}
nb−
j=1, {[y, hj ](b)}m

j=1} (∈ Hn ⊕ (H′1 ⊕H′2)),(3.28)

Γ1y := {−y(1)(0), {[y, gj ](b)}
nb−
j=1}(∈ Hn ⊕H′1), y ∈ D(3.29)

form a decomposing D-triplet Π = {H0 ⊕H1,Γ0,Γ1} for L.

Proof. Let Ñ±i = Ker(L∗θ± i) be defect subspaces of the operator Lθ (see (3.17)) and let
Ñ′

i, Ñ′′
i be subspaces in Ñi such that dim Ñ′

i = nb−, dim Ñ′′
i = m and Ñi = Ñ′

i ⊕ Ñ′′
i .

Then by von Neumann’s formula the following decomposition holds

(3.30) D(L∗θ) = D(Lθ) u Ñ′
i u Ñ′′

i u Ñ−i.

Next assume that {v′j}
nb−
1 , {v′′j }m

1 and {uj}
nb−
1 are orthonormal bases in Ñ′

i, Ñ′′
i and

Ñ−i respectively. Our aim is to show that the statement of the proposition is valid with
the sequences {fj}

nb−
1 , {gj}

nb−
1 and {hj}m

1 given by

(3.31) fj = 1
2i (uj − v′j), gj = 1

2 (uj + v′j), hj = 1√
2
v′′j .
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Denote by P ′, P ′′ and Q the projectors in D(L∗θ) onto the subspaces Ñ′
i, Ñ

′′
i and Ñ−i

respectively, corresponding to the decomposition (3.30). It follows from the Lagrange’s
identity (3.7) that

(3.32) [y, z](b) = 2i
(
(P ′y, P ′z) + (P ′′y, P ′′z)− (Qy,Qz)

)
, y, z ∈ D(L∗θ).

Therefore

[y, v′j ](b) = 2i(P ′y, v′j), [y, v′′j ](b) = 2i(P ′′y, v′′j ), [y, uj ](b) = −2i(Qy, uj), y ∈ D(L∗θ)

and the equalities (3.31) yield

(3.33) {[y, fj ](b)}
nb−
1 = F ′y +Gy, {[y, gj ](b)}

nb−
1 = i(F ′y−Gy), {[y, hj ](b)}m

1 = i
√

2F ′′y ,

where the sequences F ′y, Gy ∈ H′1 and F ′′y ∈ H′2 are defined by

(3.34) F ′y = {(P ′y, v′j)}
nb−
j=1, F ′′y = {(P ′′y, v′′j )}m

j=1, Gy = {(Qy, uj)}
nb−
j=1, y ∈ D(L∗θ).

Next we show that the operators Γ′0 : D → H′1 ⊕H′2 and Γ′1 : D → H′1 given by

(3.35) Γ′0y =
{
{[y, fj ](b)}

nb−
j=1, {[y, hj ](b)}m

j=1

}
, Γ′1y = {[y, gj ](b)}

nb−
j=1, y ∈ D

satisfy the identity (3.14).
It follows from (3.33) that

(3.36) Γ′0y = {F ′y + Gy, i
√

2F ′′y }(∈ H′1⊕H′2), Γ′1y = i(F ′y −Gy)(∈ H′1), y ∈ D(L∗θ).

Let D1 and D2 be linear manifolds (3.10). Then Γ′j � D2 = 0, j ∈ {0, 1} and in view
of (3.11) it is sufficient to prove (3.14) only for all y, z ∈ D1. Since D1 ⊂ D(L∗θ), the
equalities (3.36) hold for all y ∈ D1. Moreover by (3.34) for every y, z ∈ D(L∗θ) one has

(3.37) (F ′y, F ′z) = (P ′y, P ′z), (F ′′y , F ′′z ) = (P ′′y, P ′′z), (Gy, Gz) = (Qy,Qz).

Now the direct calculation with taking (3.32) and (3.36) into account leads to the required
identity (3.14) for all y, z ∈ D1.

Let further h = {hj}
nb−
1 , k = {kj}

nb−
1 ∈ H′1 and s = {sj}m

1 ∈ H′2. Then the function

y := Σnb−
j=1hjv

′
j + Σm

j=1sjv
′′
j + Σnb−

j=1kjuj , y ∈ D(L∗θ)

satisfies the equalities F ′y = h, F ′′y = s and Gy = k, which in view of (3.36) shows that
the map Γ′ = (Γ′0 Γ′1)

> is surjective. Finally combining (3.35) with (3.28), (3.29) and
taking Lemma 3.4 into account we arrive at the required statement. �

Remark 3.11. 1) Let Lθ be a symmetric extension (3.17). Since n± = dim(D(Lθ)/D0) +
n±(Lθ) and by (3.17) dim(D(Lθ)/D0) = dim θ = n · dim H, it follows that

(3.38) n± = n · dim H + n±(Lθ) = n · dim H + nb±.

Note that in the case dim H < ∞ the statement of Proposition 3.6 is a well-known
consequence of the first equality in (3.38).

2) The notion of a boundary triplet for a regular differential expression was first
introduced in [21] by means of the equalities (3.27). Afterwards various constructions
of boundary triplets for the expression (3.1) on the half-line [0,∞) with n+ = n− were
suggested in [11, 9, 16]. Note that in these papers some additional restrictions are
imposed on the expression l[y]. Observe also that for the case dim H < ∞ and n+ = n−
formulas (3.28), (3.29) were obtained in [16].
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3.3. m-functions. For a pair of Hilbert spaces K, H denote by L′2[K,H] the set of all
operator-functions Y (·) : ∆ → [K,H] such that Y (t)h ∈ H for all h ∈ K.

Theorem 3.12. Let Π = {H0 ⊕H1,Γ0,Γ1} be a decomposing D-triplet (3.13) and let

γ+(λ) = (γ1(λ) γ2+(λ)) : Hn ⊕H′0 → H, λ ∈ C+,(3.39)

γ−(z) = (γ1(z) γ2−(z)) : Hn ⊕H′1 → H, z ∈ C−,(3.40)

M+(λ) =
(

m(λ) M2+(λ)
M3+(λ) M4+(λ)

)
: Hn ⊕H′0 → Hn ⊕H′1, λ ∈ C+,(3.41)

M−(z) =
(

m(z) M2−(z)
M3−(z) M4−(z)

)
: Hn ⊕H′1 → Hn ⊕H′0, z ∈ C−,(3.42)

be the block-matrix representations of the corresponding γ-fields and Weyl functions (see
(2.10)–(2.12)). Then:

1) the extension A0 ∈ ExL0 (see Proposition 2.4, 3)) has the domain

(3.43) D(A0) = {y ∈ D : y(2)(0) = 0, Γ′0y = 0};

2) for every λ ∈ C+∪C− there exists the unique operator function v0(·, λ) ∈ L′2[H
n,H],

satisfying the equation (3.4)and the boundary conditions

v
(2)
0 (0, λ) = IHn , λ ∈ C+ ∪ C−,(3.44)

Γ′0(v0(t, λ)ĥ) = 0, λ ∈ C+; P ′1Γ
′
0(v0(t, z)ĥ) = 0, z ∈ C−, ĥ ∈ Hn.(3.45)

Moreover for every λ ∈ C+ (z ∈ C−) there exists the unique operator function u+(·, λ) ∈
L′2[H′0,H] (u−(·, z) ∈ L′2[H′1,H]), satisfying (3.4) and the boundary conditions

u
(2)
+ (0, λ) = 0, Γ′0(u+(t, λ)h′0) = h′0, λ ∈ C+, h′0 ∈ H′0;(3.46)

u
(2)
− (0, z) = 0, P ′1Γ

′
0(u−(t, z)h′1) = h′1, z ∈ C−, h′1 ∈ H′1.(3.47)

For every fixed t ∈ ∆ the operator-functions v0(t, ·), u+(t, ·) and u−(t, ·) are holomorphic
on their domains.

3) formulas (3.39) and (3.40) define the holomorphic operator-functions γ1(·) : C+ ∪
C− → [Hn,H], γ2+(·) : C+ → [H′0,H] and γ2−(·) : C− → [H′1,H] satisfying the relations

(γ1(λ)ĥ)(t) = v0(t, λ)ĥ, λ ∈ C+ ∪ C−, ĥ ∈ Hn;(3.48)

(γ2+(λ)h′0)(t) = u+(t, λ)h′0, λ ∈ C+, h′0 ∈ H′0;(3.49)

(γ2−(z)h′1)(t) = u−(t, z)h′1, z ∈ C−, h′1 ∈ H′1.(3.50)

4) the block-matrix representations (3.41) and (3.42) generate the holomorphic operator-
function m(·) : C+ ∪ C− → [Hn], which can be also defined in terms of the ”canonical”
solutions (3.5) by the following statement:

(i) there exists the unique operator-function m(·) : C+ ∪ C− → [Hn] such that for
every λ ∈ C+ ∪ C− the operator -function

(3.51) v0(t, λ) := −c(t, λ)m(λ) + s(t, λ)

(of the variable t) belongs to L′2[H
n,H] and satisfies the boundary condition (3.45).

Moreover formula (3.41) gives the holomorphic operator-functions M2+(λ)(∈ [H′0,Hn])
and M3+(λ)(∈ [Hn,H′1]) (λ ∈ C+), which can be also defined by the following statement:

(ii) there exists the unique operator-function M2+(·) : C+ → [H′0,Hn] (M3+(·) :
C+ → [Hn,H′1]) such that the operator-function

(3.52) u+(t, λ) := −c(t, λ)M2+(λ), λ ∈ C+ (u−(t, z) := −c(t, z)M∗
3+(z), z ∈ C−)

belongs to L′2[ ·,H] and satisfies the second equality in (3.46) (respectively in (3.47)).
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Finally the operator function M4+(·) : C+ → [H′0,H′1] in (3.41) can be defined via

(3.53) M4+(λ)h′0 = Γ′1(u+(t, λ)h′0), h′0 ∈ H′0, λ ∈ C+.

5) m(·) is a uniformly strict Nevanlinna function satisfying the relation

(3.54) m(µ)−m∗(λ) = (µ− λ)
∫ b

0

v∗0(t, λ)v0(t, µ) dt, µ, λ ∈ C+.

The integral in (3.54) converges strongly, that is

(3.55)
∫ b

0

v∗0(t, λ)v0(t, µ) dt = s− lim
η↑b

∫ η

0

v∗0(t, λ)v0(t, µ) dt.

Proof. The statement 1) is immediately implied by (3.13).
2) Let

S+(t, λ) = (v0(t, λ) u+(t, λ)) : Hn ⊕H′0 → H, λ ∈ C+,(3.56)

S−(t, z) = (v0(t, z) u−(t, z)) : Hn ⊕H′1 → H, z ∈ C−(3.57)

be the operator solutions of (3.4) with the initial data

S̃+(0, λ) =

(
v
(1)
0 (0, λ) u

(1)
+ (0, λ)

v
(2)
0 (0, λ) u

(2)
+ (0, λ)

)
:=
(
−m(λ) −M2+(λ)
IHn 0

)
,(3.58)

S̃−(0, z) =

(
v
(1)
0 (0, z) u

(1)
− (0, z)

v
(2)
0 (0, z) u

(2)
− (0, z)

)
:=
(
−m(z) −M2−(z)
IHn 0

)
.(3.59)

It follows from (3.5) and (3.58), (3.59) that

v0(t, λ) = −c(t, λ)m(λ) + s(t, λ), λ ∈ C+ ∪ C−,(3.60)

u+(t, λ) = −c(t, λ)M2+(λ), λ ∈ C+; u−(t, z) = −c(t, z)M2−(z), z ∈ C−.(3.61)

Next we show that the operator-functions v0 and u±, defined by (3.56) and (3.57) possess
the required properties.

For fixed h0 ∈ H0, λ ∈ C+ and h1 ∈ H1, z ∈ C− consider the vector-functions

(3.62) y+ = y+(t, h0, λ) := (γ+(λ)h0)(t), y− = y−(t, h1, z) := (γ−(z)h1)(t).

It follows from (2.10)–(2.12) that y+ ∈ Nλ(L0), y− ∈ Nz(L0) and

(3.63) Γ0y+ = h0, Γ1y+ = M+(λ)h0; P1Γ0y− = h1, (Γ1 + iP2Γ0)y− = M−(z)h1.

This and (3.13) imply that

y
(2)
+ (0, h0, λ) = ĥ, y

(1)
+ (0, h0, λ) = −m(λ)ĥ−M2+(λ)h′0, h0 = {ĥ, h′0} ∈ Hn ⊕H′0,

y
(2)
− (0, h1, z) = ĝ, y

(1)
− (0, h1, z) = −m(z)ĝ −M2−(z)h′1, h1 = {ĝ, h′1} ∈ Hn ⊕H′1.

Therefore y+ and y− are solutions of (3.4) with the initial data ỹ+(0, h0, λ) = S̃+(0, λ)h0,
ỹ−(0, h1, z) = S̃−(0, z)h1, so that y+ = S+(t, λ)h0, y− = S−(t, z)h1 and by (3.62)

(3.64) S+(t, λ)h0 = (γ+(λ)h0)(t), h0 ∈ H0; S−(t, z)h1 = (γ−(z)h1)(t), h1 ∈ H1.

This and (3.56) show that the operator-functions v0 and u± are solutions of (3.4), be-
longing to L′2[ ·,H]. Moreover in view of (3.63) for all ĥ ∈ Hn, h′0 ∈ H′0 and h′1 ∈ H′0

Γ′0(v0(t, λ)ĥ) = 0, Γ′0(u+(t, λ)h′0) = h′0,(3.65)

Γ′1(v0(t, λ)ĥ) = M3+(λ)ĥ, Γ′1(u+(t, λ)h′0) = M4+(λ)h′0,(3.66)

P ′1Γ
′
0(v0(t, z)ĥ) = 0, P ′1Γ

′
0(u−(t, z)h′1) = h′1,(3.67)

(Γ′1 + iP ′2Γ
′
0)(v0(t, z)ĥ) = M3−(z)ĥ, (Γ′1 + iP ′2Γ

′
0)(u−(t, z)h′1) = M4−(z)h′1.(3.68)
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Now combining (3.58), (3.59), (3.65) and (3.67), we arrive at (3.44)–(3.47).
The uniqueness of the operator-functions v0 and u± follows from the inclusion 0 ∈

ρ(Γ0 � Nλ(L0)) ∩ ρ(P1Γ0 � Nz(L0)). Finally the holomorphy of these functions is a
consequence of the relations (3.60) and (3.61).

3) Formulas (3.48)–(3.50) are immediately implied by (3.64) and (3.56), (3.57).
The statement 4) follows from the statement 2) and formulas (3.60) and (3.61), where

by the first equality in (2.17) M2−(z) = M∗
3+(z), z ∈ C−.

5) Let γ(·) and M(·) be operator functions defined by the representations (2.13) and
(2.14), (2.15). Then γ1(λ) = γ(λ) � Hn, m(λ) = PHnM(λ) � Hn and in view of
Proposition 2.5 m(·) is a uniformly strict Nevanlinna function obeying the identity

(3.69) m(µ)−m∗(λ) = (µ− λ) γ∗1 (λ)γ1(µ), µ, λ ∈ C+.

Let us show that

(3.70) γ∗1 (λ)f =
b

∫
0

v∗0(t, λ)f(t) dt := lim
η↑b

η

∫
0

v∗0(t, λ)f(t) dt, f = f(t) ∈ H.

First assume that f(t) = 0, t ∈ (η, b) for some η ∈ (0, b). Then by (3.48)

(γ1(λ)ĥ, f)H =
b

∫
0
(v0(t, λ)ĥ, f(t)) dt

=
b

∫
0
(ĥ, v∗0(t, λ)f(t)) dt = (ĥ,

b

∫
0

v∗0(t, λ)f(t) dt)Hn , ĥ ∈ Hn,

which gives (3.70) for finite functions f ∈ H. Next suppose that f ∈ H is an arbitrary
function and let fη := χ[0,η]f (here χ[0,η] is an indicator of the segment [0, η], η < b).
Then limη↑b ||fη − f ||H = 0 and therefore

γ∗1 (λ)f = lim
η↑b

γ∗1 (λ)fη = lim
η↑b

η

∫
0

v∗0(t, λ)f(t) dt =
b

∫
0

v∗0(t, λ)f(t) dt.

Now using (3.48) and taking (3.70) into account, one obtains

γ∗1 (λ)γ1(µ)ĥ = lim
η↑b

η

∫
0
(v∗0(t, λ)v0(t, µ)ĥ) dt = lim

η↑b

(
η

∫
0

v∗0(t, λ)v0(t, µ) dt

)
ĥ, ĥ ∈ Hn.

This and (3.69) lead to the relations (3.54) and (3.55). �

In the case of a decomposing boundary triplet the statements of Theorem 3.12 can be
rather simplified. Namely the following corollary is obvious.

Corollary 3.13. Let Π = {H,Γ0,Γ1} be a decomposing boundary triplet (3.13) for L
(that is H′0 = H′1 := H′), let A0 = L � Ker Γ0 and let

γ(λ) = (γ1(λ) γ2(λ)) : Hn ⊕H′ → H, λ ∈ ρ(A0),(3.71)

M(λ) =
(

m(λ) M2(λ)
M3(λ) M4(λ)

)
: Hn ⊕H′ → Hn ⊕H′, λ ∈ ρ(A0)(3.72)

be the corresponding γ-field and Weyl function (see Remark 2.6). Then
1) A0 is a selfadjoint extension with the domain (3.43);
2) for every λ ∈ ρ(A0) there exists the unique operator-functions v0(·, λ) ∈ L′2[H

n,H]
and u(·, λ) ∈ L′2[H′,H], satisfying (3.4) and the boundary conditions

v
(2)
0 (0, λ) = IHn , Γ′0(v0(t, λ)ĥ) = 0, ĥ ∈ Hn, λ ∈ ρ(A0),(3.73)

u(2)(0, λ) = 0, Γ′0(u(t, λ)h′) = h′, h′ ∈ H′, λ ∈ ρ(A0);(3.74)

3) the operator-functions γ1(λ)(∈ [Hn,H]) and γ2(λ)(∈ [H′,H]) satisfy the relations

(3.75) (γ1(λ)ĥ)(t) = v0(t, λ)ĥ, (γ2(λ)h′)(t) = u(t, λ)h′, ĥ ∈ Hn, h′ ∈ H′, λ ∈ ρ(A0);
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4) the operator functions m(λ)(∈ [Hn]), M2(λ)(∈ [H′,Hn]) and M3(λ)(∈ [Hn,H′]),
λ ∈ ρ(A0) are uniquely defined by the relations

v0(t, λ) := −c(t, λ)m(λ) + s(t, λ) ∈ L′2[H
n,H]; Γ′0(v0(t, λ)ĥ) = 0, ĥ ∈ Hn,(3.76)

u(t, λ) := −c(t, λ)M2(λ) ∈ L′2[H′,H]; Γ′0(u(t, λ)h′) = h′, h′ ∈ H′,(3.77)

M3(λ) = M∗
2 (λ), λ ∈ ρ(A0);(3.78)

5) m(λ) is a uniformly strict Nevanlinna function obeying (3.54) for all µ, λ ∈ ρ(A0).

Definition 3.14. The operator function m(·), defined in Theorem 3.12, will be called a
m-function, corresponding to the extension A0.

In the next proposition we show that the m-function m(·) coincides with the Weyl
function for a D-triplet of some symmetric extension Â ∈ ExL0 .

Proposition 3.15. Let Π = {H0⊕H1,Γ0,Γ1} be a decomposing D-triplet (3.13) for L.
Then

1) the operator Â := L � D(Â) with the domain D(Â) := {y ∈ D : ỹ(0) = 0, Γ′0y = 0}
is a closed symmetric extension of L0 and Â∗ = L � D(Â∗), where

(3.79) D(Â∗) = {y ∈ D : P ′1Γ
′
0y = 0};

2) the maps Γ̂0 : D(Â∗) → Hn ⊕H′2 and Γ̂1 : D(Â∗) → Hn, defined via

(3.80) Γ̂0y = {y(2)(0), Γ′0y} (∈ Hn ⊕H′2), Γ̂1y = −y(1)(0) (∈ Hn), y ∈ D(Â∗)

form a D-triplet Π̂ = {(Hn ⊕H′2)⊕Hn, Γ̂0, Γ̂1} for Â∗;
3) the extension Â∗ � Ker Γ̂0 coincides with A0 (see Theorem 3.12, 1)) and the cor-

responding γ-fields (2.13), (2.10) and Weyl function (2.14), (2.15) for Π̂ are

(γ̂(λ)ĥ)(t) = v0(t, λ)ĥ, (γ̂−(z)ĥ)(t) = v0(t, z)ĥ, ĥ ∈ Hn, λ ∈ C+, z ∈ C−,(3.81)

M̂(λ) = m(λ), λ ∈ C+ ∪ C−.(3.82)

Proof. 1) It is easily seen that Â = Ãθ with θ = {0} ⊕ ({0} ⊕H′1) (see (2.8)). Therefore
by Proposition 2.4, 2) Â∗ = Ãθ× , where θ× = (Hn⊕H′2)⊕(Hn⊕H′1). This yields (3.79).

The statement 2) is obvious. The equalities (3.81) and (3.82) are implied by (3.48)
and (3.41) respectively. �

Corollary 3.16. Let Π = {H,Γ0,Γ1} be a decomposing boundary triplet (3.13) for L

(with H′0 = H′1 := H′) and let Â be an extension, defined in Proposition 3.15. Then
1) D(Â∗) = {y ∈ D : Γ′0y = 0} and the collection Π̂ = {Hn, Γ̂0, Γ̂1} with

(3.83) Γ̂0y = y(2)(0), Γ̂1y = −y(1)(0), y ∈ D(Â∗)

is a boundary triplet for Â∗;
2) the (selfadjoint) extension A0 := Â∗ � Ker Γ̂0 is defined by (3.43) and the corres-

ponding γ-field and Weyl function for Π̂ are

(3.84) (γ̂(λ)ĥ)(t) = v0(t, λ)ĥ, ĥ ∈ Hn; M̂(λ) = m(λ), λ ∈ ρ(A0).

Remark 3.17. 1) For a scalar differential operator (dim H = 1) with equal deficiency in-
dices n+ = n− the m-function m(·) coincides with the classical characteristic (Titchmarsh-
Weyl) function for decomposing boundary conditions (see for instance [15, 20, 5]). In
the case dim H ≤ ∞ the characteristic function was defined by the relation (3.76) in
[7] for regular expressions of the second order and in [11] for quasi-regular expressions
on the half-line [0,∞), i.e, for expressions (3.1) such that

∫∞
0
||c(t, λ)||2 dt < ∞ and∫∞

0
||s(t, λ)||2 dt < ∞, λ ∈ C (clearly in this case n∞+ = n∞−).
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2) Assume that the expression l[y] is quasiregular and let Π = {H,Γ0,Γ1} be a
decomposing boundary triplet (3.13) for L. Define (holomorphic) operator functions
Nj(·) : ρ(A0) → [Hn,H′] and Sj(·) : ρ(A0) → [Hn,H′] by

Nj(λ)ĥ := Γ′j(c(t, λ)ĥ), Sj(λ)ĥ := Γ′j(s(t, λ)ĥ), ĥ ∈ Hn, λ ∈ ρ(A0), j ∈ {0, 1}.

It is not difficult to prove that 0 ∈ ρ(N0(λ)) and the entries of the matrix (3.72) are

m(λ) = N−1
0 (λ)S0(λ), M2(λ) = −N−1

0 (λ), M3(λ) = −N−1∗
0 (λ),

M4(λ) = N1(λ)N−1
0 (λ).

For a scalar operator of the second order these equalities were obtained in [2].
3) In the scalar case the identity (3.54) is well known (see [15, 20]). In [7] this identity

was proved for a regular expression lH [y] of the second order with dim H ≤ ∞.

4. Boundary conditions and spectrum of proper extensions

4.1. Boundary conditions for proper extensions. Let H, H′j be Hilbert spaces and
let Hj := Hn ⊕H′j , j ∈ {0, 1}. Then according to Section 2.2 the equalities

θ = {(Ĉ0, Ĉ1);H0,H1;K} := {{h0, h1} ∈ H0 ⊕H1 : Ĉ0h0 + Ĉ1h1 = 0},(4.1)

θ× = {(Ĉ0×, Ĉ1×);H0,H1;K×} := {{h0, h1} ∈ H0 ⊕H1 : Ĉ0×h0 + Ĉ1×h1 = 0}(4.2)

make it possible to identify a linear relation θ ∈ C̃(H0,H1) and the corresponding linear
relation θ× ∈ C̃(H0,H1) (see (2.3)) with admissible operator pairs Ĉj ∈ [Hj ,K] and
Ĉj× ∈ [Hj ,K×] (j ∈ {0, 1}) respectively (recall that we do not distinguish equivalent
operator pairs). Next assume that

Ĉ0 = (C2 C ′0) : Hn ⊕H′0 → K, Ĉ1 = (−C1 C ′1) : Hn ⊕H′1 → K,(4.3)

Ĉ0× = (C2× C ′0×) : Hn ⊕H′0 → K×, Ĉ1× = (−C1× C ′1×) : Hn ⊕H′1 → K×(4.4)

are the block-matrix representations of Ĉj and Ĉj×.Then admissibility of the pair Ĉ0, Ĉ1

means that for every h ∈ K there exist ĥ1, ĥ2 ∈ Hn, h′0 ∈ H′0 and h′1 ∈ H′1 such that

C1ĥ1 + C2ĥ2 + C ′0h
′
0 + C ′1h

′
1 = h.

Observe also that in view of (4.1) a linear relation θ ∈ C̃(H0,H1) can be identified with
an operator quadruple C1, C2, C

′
0, C

′
1, which forms the operator pair Ĉ0, Ĉ1 via (4.3).

In the next theorem we describe the class ExL0 in terms of a D-triplet for L.

Theorem 4.1. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a decomposing D-triplet (3.13) for L.
Then: 1) the equalities

(4.5) D(Ã) = {y ∈ D : C1y
(1)(0) + C2y

(2)(0) + C ′0Γ
′
0y + C ′1Γ

′
1y = 0}, Ã = L � D(Ã)

establish a bijective correspondence between all proper extensions Ã ∈ ExL0 and all admis-
sible operator pairs θ = {(Ĉ0, Ĉ1);H0,H1;K} defined by (4.3). Moreover if an extension
Ã is given by the equality (4.5), then the adjoint Ã∗ is defined by the same equality with
operators C1×, C2×, C ′0× and C ′1× taken from (4.4).

2) the equalities
(4.6)
D(Ã) = {y ∈ D : N1y

(1)(0) + N2y
(2)(0) = 0, N ′

0Γ
′
0y + N ′

1Γ
′
1y = 0}, Ã = L � D(Ã)

give a bijective correspondence between all extensions Ã ∈ DexL0 (see Definition 3.1)
and all collections formed by admissible operator pairs θ0 = {(N2,−N1);Hn;K} and
θ′ = {(N ′

0, N
′
1);H′0,H′1;K′} (see (2.1)).
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3) the extension (4.5) (respectively (4.6)) is maximal dissipative, maximal accumula-
tive, maximal symmetric or selfadjoint if and only if the corresponding operator pair θ
(both the pairs θ0 and θ′) belongs to the class Dis, Ac, Sym or Self respectively.

Proof. The statement 1) is a direct consequence of Proposition 2.4, 2).
2) For every θ ∈ C̃(H0,H1) put θ0 := θ ∩ (Hn ⊕ Hn) and θ′ := θ ∩ (H′0 ⊕ H′1). It

follows from (3.16) that an extension Ã = Ãθ defined by (2.8), satisfies the relations

D(Ãθ) ∩ D1 = {y ∈ D : {Γ0y, Γ1y} ∈ θ0}, D(Ãθ) ∩ D2 = {y ∈ D : {Γ0y, Γ1y} ∈ θ′}.
Therefore according to Definition 3.1

Ãθ ∈ DexL0 ⇐⇒ θ = θ0 ⊕ θ′ ⇐⇒ D(Ãθ) = {y ∈ D : ỹ(0) ∈ θ0, Γ′y ∈ θ′},
which yields the correspondence (4.6).

3) Clearly a linear relation (operator pair) θ = θ0 ⊕ θ′ belongs to one of the classes
Dis, Ac, Sym or Self if and only if both the relations θ0 and θ1 belong to the same class.
This and Proposition 2.4, 2) yield the required statement. �

Corollary 4.2. 1) A selfadjoint extension Ã ∈ DexL0 exists if and only if nb+ = nb−.
2) Let nb+ = nb− and let Π = {H,Γ0,Γ1} be a decomposing boundary triplet (3.13)

for L (so that H′0 = H′1 := H′). Then
(i) the equalities (4.6) establish a bijective correspondence between all selfadjoint exten-

sions Ã ∈ DexL0 and all collections formed by selfadjoint operator pairs (linear relations)
θ0 = {(N2,−N1);Hn;K} and θ′ = {(N ′

0, N
′
1);H′;K′};

(ii) the relations

D(Ãb) = {y ∈ D : ỹ(0) = 0, N ′
0Γ
′
0y + N ′

1Γ
′
1y = 0}, Ãb = L � D(Ãb),(4.7)

D(Ã∗b) = {y ∈ D : N ′
0Γ
′
0y + N ′

1Γ
′
1y = 0}, Ã∗b = L � D(Ã∗b)(4.8)

give a bijective correspondence between all symmetric extensions Ãb ∈ SymL0,b (see De-
finition 3.2) and their adjoint Ã∗b on the one hand, and all selfadjoint operator pairs
θ′ = {(N ′

0, N
′
1);H′;K′} on the other hand. Moreover if the extension Ãb ∈ SymL0,b is

given by (4.7), then the equalities (4.6) establish a bijective correspondence between all
proper extensions Ã of the operator Ãb and all admissible operator pairs (linear relations)
θ0 = {(N2,−N1);Hn;K}.

Proof. 1) Without loss of generality suppose that nb− ≤ nb+ and let Π be a decomposing
D-triplet (3.13) for L (see Proposition 3.9). Then by Theorem 4.1 a selfadjoint extension
Ã ∈ DexL0 exists if and only if Self(H′0,H′1) 6= ∅. According to [17] the last condition is
equivalent to dimH′0 = dimH′1, which in view of (3.26) gives the required statement.

2) The statement (i) directly follows from Theorem 4.1. The statement (ii) is a
consequence of the statement (i) and Theorem 4.1. �

It is not difficult to verify that an extension Ãb ∈ ExL0 satisfies (4.7) and (4.8) if and
only if the relations

(4.9) D(Ãb) ⊂ D1, D(Ã∗b) = D(Ãb) + (D(Ã∗b) ∩ D2)

are valid. Therefore Definition 3.2 is equivalent to the following one.

Definition 4.3. An extension Ãb ∈ ExL0 belongs to the class SymL0,b if (4.9) holds.

Remark 4.4. 1) For a scalar expression l[y] the relation (4.5) is in fact a system of scalar
boundary conditions defining the extension Ã. Similarly the two equations in (4.6) are
equivalent to two systems of scalar boundary conditions at the ends of the interval ∆,
which together form a decomposing system [5]. Note in this connection that the classical
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method of construction of extensions Ã ∈ ExL0 by means of scalar boundary conditions
[5, 20] is not convenient in the case dim H = ∞, when the equality dimD(Ã)/D(L0) = ∞
is possible. At the same time in view of (3.28) and (3.29) one can consider the maps
Γ′j : D → H′j , j ∈ {0, 1} as operator boundary values at the point b (cf. Corollary
13.2.28 in [5]). Therefore Theorem 4.1 gives a description of extensions Ã ∈ ExL0 (for
the case dim H ≤ ∞) in terms of operator boundary conditions at the ends of the interval
∆ = [0, b〉 (see equations in (4.5) and (4.6)).

2) Description of all selfadjoint extensions Ã ∈ ExL0 for a regular expression lH [y]
(dim H ≤ ∞) by means of the boundary triplet (3.27) and formulas (4.5), (4.6) was first
obtained in [21]. In the paper [11] this result was extended to quasiregular expressions.

3) The statement 1) of Corollary 4.2 contains a criterion of existence of selfadjoint de-
composing boundary conditions (or equivalently extensions Ã = Ã∗ ∈ DexL0), while the
description of such conditions is given in the statement 2). For regular and quasiregular
expressions similar description was obtained in [21] and [11] respectively (see also [23]).

4.2. Spectrum of proper extensions. In the next theorem, which is a direct conse-
quence of Proposition 4.1 in [18], we describe the spectrum of proper extensions Ã ∈ ExL0

in terms of boundary conditions (4.5) and the Weyl functions M±(·).

Theorem 4.5. Let Π = {H0 ⊕ H1,Γ0,Γ1} be a decomposing D-triplet (3.13) for L,
let M±(·) be the corresponding Weyl functions (3.41), (3.42) and let Ã ∈ ExL0 be an
extension defined by (4.5). Moreover assume that Ĉj ∈ [Hj ,K], j ∈ {0.1} are operators
(4.3), C̃1 := Ĉ0 � H1, C̃0 := (Ĉ1 − i C ′0 � H′2) : H1 ⊕H′2 → K and let

S+(λ) := Ĉ0 + Ĉ1M+(λ), λ ∈ C+, S−(λ) := C̃1 + C̃0M−(λ), λ ∈ C−.

Then the following relations hold

λ ∈ ρ(Ã) ⇔ 0 ∈ ρ(S±(λ)), λ ∈ σj(Ã) ⇔ 0 ∈ σj(S±(λ)), j ∈ {p, c, r}, λ ∈ C±,

(4.10)

λ ∈ ρ̂(Ã) ⇐⇒ 0 ∈ ρ̂(S±(λ)), λ ∈ C±,(4.11)

R(Ã− λ) = R(Ã− λ) ⇐⇒ R(S±(λ)) = R(S±(λ)), λ ∈ C±,(4.12)

dim Ker(Ã− λ) = dim KerS±(λ), codimR(Ã− λ) = codimR(S±(λ)), λ ∈ C±.

(4.13)

In the case H1 = H0 := H the following corollary is directly implied by Theorem 4.5.

Corollary 4.6. Assume that Π = {H,Γ0,Γ1} is a decomposing boundary triplet (3.13)
for L, A0(= A∗0) is the extension (3.43) and M(·) is the Weyl function (3.72). Moreover
let an extension Ã ∈ ExL0 be defined by (4.5), let Ĉj ∈ [H,K], j ∈ {0.1} be operators
(4.3) and let S(λ) := Ĉ0 + Ĉ1M(λ), λ ∈ ρ(A0). Then for every λ ∈ ρ(A0) the relations
(4.10)–(4.13) hold with S(λ) instead of S±(λ).

Corollary 4.7. let under conditions of Corollary 4.2, 2) θ′ = {(N ′
0, N

′
1);H′;K′} be a

selfadjoint operator pair, let Ãb ∈ SymL0,b be the corresponding extension (4.7) and let
Aθ′ ∈ DexL0 be a selfadjoint extension with the domain

(4.14) D(Aθ′) = {y ∈ D : y(2)(0) = 0, N ′
0Γ
′
0y + N ′

1Γ
′
1y = 0}.

Then: 1) for every λ ∈ ρ(Aθ′) there exists the unique operator function vθ′(·, λ) ∈
L′2[H

n,H] satisfying the equation (3.4) and the boundary conditions

v
(2)
θ′ (0, λ) = IHn ,(4.15)

(N ′
0Γ
′
0 + N ′

1Γ
′
1)(vθ′(t, λ)ĥ) = 0, ĥ ∈ Hn, λ ∈ ρ(Aθ′);(4.16)
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2) if a proper extension Ã of the operator Ãb is given by (4.6), then for every λ ∈ ρ(Aθ′)
the relations (4.10)–(4.13) hold with Sθ′(λ) := N1v

(1)
θ′ (0, λ) + N2 in place of S±(λ).

Proof. Without loss of generality assume that N ′
0 = cos B, N ′

1 = sinB (see (2.6)) and
let

Γ′0,b := N ′
0Γ
′
0 + N ′

1Γ
′
1, Γ′1,b := −N ′

1Γ
′
0 + N ′

0Γ
′
1.

Moreover let Γj,b be linear maps from D to H(= Hn ⊕ H′), given by (3.13) with Γ′j,b
instead of Γ′j , j ∈ {0, 1}. Then the immediate checking shows that Πb := {H,Γ0,b,Γ1,b}
is a boundary triplet for L with A0,b := L � Ker Γ0,b = Aθ′ . Now applying statement 2)
of Corollary 3.13 to this triplet one obtains the statement 1). Moreover in view of (3.76)
the corresponding m-function for the triplet Πb is mb(λ) = −v

(1)
θ′ (0, λ), λ ∈ ρ(Aθ′).

Next application of Corollary 3.16 to the boundary triplet Πb shows that the operators

Γ̂0,by = y(2)(0), Γ̂1,by = −y(1)(0), y ∈ D(Ã∗b)

form a boundary triplet Π̂b = {Hn, Γ̂0,b, Γ̂1,b} for Ã∗b . Moreover for this triplet Â0,b :=
Ã∗b � Ker Γ̂0,b = Aθ′ and by (3.84) the corresponding Weyl function is

M̂b(λ) = mb(λ) = −v
(1)
θ′ (0, λ), λ ∈ ρ(Aθ′).

Now assume that an extension Ã of the operator Ãb is given by (4.6). Then in terms of
the triplet Π̂b

(4.17) D(Ã) = {y ∈ D(Ã∗b) : N2Γ̂0,by −N1Γ̂1,by = 0}, Ã = Ã∗b � D(Ã)

and application of Proposition 4.1 from [18] to the triplet Π̂b and the extension (4.17)
gives rise to the statement 2). �

Remark 4.8. The operator function vθ′(t, λ) is a fundamental solution of the problem
(3.4), (4.16) in the sense of the papers [22, 23], where some kinds of such solutions were
constructed by the more complicated way. Observe also that for selfadjoint extensions
Ã the statement 2) of Corollary 4.7 (with a rather different fundamental solution) was
proved in [22] (see also [23]).
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