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ls-PONOMAREV-SYSTEMS AND COMPACT IMAGES OF LOCALLY
SEPARABLE METRIC SPACES

TRAN VAN AN AND NGUYEN VAN DUNG

Abstract. We introduce the notion of an ls-Ponomarev-system (f, M, X, {Pλ,n}),
and give necessary and sufficient conditions such that the mapping f is a com-
pact (compact-covering, sequence-covering, pseudo-sequence-covering, sequentially-
quotient) mapping from a locally separable metric space M onto a space X. As
applications of these results, we systematically get characterizations of certain com-
pact images of locally separable metric spaces.

1. Introduction

Finding characterizations of certain images of metric spaces is of a considerable inter-
est in general topology. In the past, many nice results have been obtained in [8], [10],
[11], [16], [17], [19]. Related to characterizing images of metric spaces, many topologists
were engaged in a research of characterizations of compact images of locally separa-
ble metric spaces, and some noteworthy results have been shown. In [9], Y. Ikeda,
C. Liu and Y. Tanaka characterized quotient compact images of locally separable metric
spaces. After that, Y. Ge characterized pseudo-sequence-covering compact images of
locally separable metric spaces in [5]. In general, it is difficult to obtain nice characteri-
zations of compact images of locally separable metric spaces (under covering-mappings)
instead of metric domains. It is known that the key to prove these results is to con-
struct covering-mappings and compact mappings from locally separable metric spaces.
In [14], V. I. Ponomarev proved that every first countable space can be characterized
as an open image of a subspace of Baire’s zero-dimensional space. After that, S. Lin
and P. Yan generalized “Ponomarev’s method” to establish a system (f,M,X, {Pn}),
called a Ponomarev-system, to characterize images of metric spaces in [12]. Recently,
Y. Tanaka and Y. Ge investigated the Ponomarev-system (f,M,X, {Pn}), and char-
acterized certain compact-covering (or sequence-covering) quotient compact images of
metric spaces in terms of weak bases or symmetric spaces, and considered relations be-
tween these compact-covering images and sequence-covering images in [18]. Moreover,
for a Ponomarev-system (f,M,X, {Pn}), Y. Ge has obtained necessary and sufficient
conditions such that the mapping f is a compact-covering (pseudo-sequence-covering,
sequentially-quotient, compact) mapping from a metric space M onto a space X in [7].

From the above, the following question naturally arises.

Question 1.1. Find a consistent method to construct a covering-mapping (compact map-
ping) onto a space X from some locally separable metric space?

In this paper, same as the Ponomarev-system (f,M,X, {Pn}), where M is a metric
space, we introduce the ls-Ponomarev-system (f,M,X, {Pλ,n}), where M is a locally
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separable metric space, and give necessary and sufficient conditions such that the map-
ping f is a compact (compact-covering, sequence-covering, pseudo-sequence-covering,
sequentially-quotient) mapping from a locally separable metric space M onto a space
X. As applications of these results, we systematically get characterizations of certain
compact images of locally separable metric spaces.

Throughout this paper, all spaces are T1 and regular, all mappings are continuous
and onto, a convergent sequence includes its limit point, N denotes the set of all natural
numbers. Let f : X −→ Y be a mapping, x ∈ X, and P,Q be families of subsets
of X, we denote Px = {P ∈ P : x ∈ P},

⋃
P =

⋃
{P : P ∈ P}, st(x,P) =

⋃
Px,

f(P) = {f(P ) : P ∈ P}, and P ∩ Q = {P ∩ Q : P ∈ P, Q ∈ Q}. We say that a
convergent sequence {xn : n ∈ N} ∪ {x} converging to x is eventually (resp., frequently)
in A if {xn : n ≥ n0} ∪ {x} ⊂ A for some n0 ∈ N (resp., {xnk

: k ∈ N} ∪ {x} ⊂ A for
some subsequence {xnk

: k ∈ N} of {xn : n ∈ N}).
For terms which are not defined here, please refer to [4] and [17].

2. Results

Definition 2.1. Let P be a family of subsets of a space X, and K be a subset of X.
Assume that P is closed under finite intersections.

(1) For each x ∈ X, P is a network at x in X, if P ⊂ Px, and if x ∈ U with U open
in X, there exists P ∈ P such that x ∈ P ⊂ U .

(2) P is a cfp-cover for K in X, if for each compact subset H of K, there exists a
finite subfamily F of P such that H ⊂

⋃
{CF : F ∈ F}, where CF is closed and CF ⊂ F

for every F ∈ F . Note that such an F is a full cover in the sense of [3]. If K = X, then
a cfp-cover for K in X is a cfp-cover for X [20].

(3) P is a cs-cover for K in X (resp., cs∗-cover for K in X), if for each convergent
sequence S in K, S is eventually (resp., frequently) in some P ∈ P. If K = X, then a
cs-cover for K in X (resp., cs∗-cover for K in X) is a cs-cover for X [21] (resp., cs∗-cover
for X [18]).

(4) P is a wcs-cover for K in X, if for each convergent sequence S in K, there exists
a finite subfamily F of Px such that S is eventually in

⋃
F . If K = X, then a wcs-cover

for K in X is a wcs-cover [6].
(5) A cfp-cover (resp., cs-cover, wcs-cover, cs∗-cover) for X is abbreviated to a cfp-

cover (resp., cs-cover, wcs-cover, cs∗-cover).

Remark 2.2. For each subset K of X, if P is a cfp-cover (resp., cs-cover, wcs-cover,
cs∗-cover), then P is a cfp-cover (resp., cs-cover, wcs-cover, cs∗-cover) for K in X.

Lemma 2.3. Let P be a countable family of subsets of a space X. Then the following
are equivalent for a convergent sequence S in X.

(1) P is a cfp-cover for S in X.
(2) P is a wcs-cover for S in X.
(3) P is a cs∗-cover for S in X.

Proof. (1) ⇒ (2) ⇒ (3). It is obvious.
(3) ⇒ (1). It follows from [19, Lemma 3]. �

Definition 2.4. Let f : X −→ Y be a mapping.
(1) f is a compact-covering mapping [13], if every compact subset of Y is the image

of some compact subset of X.
(2) f is a sequence-covering mapping [15], if for every convergent sequence S of Y ,

there is a convergent sequence L of X such that f(L) = S.
(3) f is a pseudo-sequence-covering mapping [9], if every convergent sequence of Y is

the image of some compact subset of X.



ls-PONOMAREV-SYSTEMS AND COMPACT IMAGES OF LOCALLY . . . 393

(4) f is a subsequence-covering mapping [11], if for every convergent sequence S of Y ,
there is a compact subset K of X such that f(K) is a subsequence of S.

(5) f is a sequentially-quotient mapping [2], if for every convergent sequence S of Y ,
there is a convergent sequence L of X such that f(L) is a subsequence of S.

(6) f is a compact mapping [1], if f−1(y) is compact for every y ∈ Y .

The following lemma is clear, where certain covers are preserved under covering-
mappings.

Lemma 2.5. Let f : X −→ Y be a mapping, and P be a cover for X. Then the following
hold.

(1) If P is a cs-cover for X and f is sequence-covering, then f(P) is a cs-cover for
Y .

(2) If P is a cfp-cover for X and f is compact-covering, then f(P) is a cfp-cover
for Y .

(3) If P is a wcs-cover for X and f is pseudo-sequence-covering, then f(P) is a
wcs-cover for Y .

(4) If P is a cs∗-cover for X and f is sequentially-quotient, then f(P) is a cs∗-cover
for Y .

The next result concerns preservation of certain covers but no need of covering-
properties of mappings.

Lemma 2.6. Let f : X −→ Y be a mapping, and P be a cover for X. Then the following
hold.

(1) If P is a cs-cover for a convergent sequence S in X, then f(P) is a cs-cover for
f(S) in Y .

(2) If P is a cfp-cover for a compact subset K in X, then f(P) is a cfp-cover for
f(K) in Y .

(3) If P is a wcs-cover for a convergent sequence S in X, then f(P) is a wcs-cover
for f(S) in Y .

(4) If P is a cs∗-cover for a convergent sequence S in X, then f(P) is a cs∗-cover
for f(S) in Y .

Proof. (1). Let L be a convergent sequence in f(S). Then K = f−1(L)∩S is a convergent
sequence in S satisfying that f(K) = L. Since P is a cs-cover for S in X, K is eventually
in some P ∈ P. This implies that L is eventually in f(P ). Therefore, f(P) is a cs-cover
for f(S) in Y .

(2). Let L be a compact subset of f(K). Then H = f−1(L) ∩ K is a compact
subset of K satisfying that f(H) = L. Since P is a cfp-cover for K in X, there exists
a finite subfamily F of P such that H ⊂

⋃
{CF : F ∈ F}, where CF is closed and

CF ⊂ F for every F ∈ F . This implies that f(F) is a finite subfamily of f(P) such
that L ⊂

⋃
{f(CF ) : f(F ) ∈ f(F)}, where f(CF ) is closed and f(CF ) ⊂ f(F ) for every

f(F ) ∈ f(F). Therefore, f(P) is a cfp-cover for f(K) in Y .
(3). Let L be a convergent sequence in f(S) converging to y in Y . Then K =

f−1(L)∩S is a convergent sequence in S converging to some x ∈ f−1(y), and f(K) = L.
Since P is a wcs-cover for S in X, there exists a finite subfamily F of Px such that K
is eventually in

⋃
F . Then f(F) is a finite subfamily of (f(P))y and L is eventually in⋃

f(F). It implies that f(P) is a wcs-cover for f(S) in Y .
(4). Let L be a convergent sequence in f(S). Then K = f−1(L) ∩ S is a convergent

sequence in S satisfying that f(K) = L. Since P is a cs∗-cover for S in X, K is
frequently some P ∈ P. Then L is frequently in f(P ). Therefore, f(P) is a cs∗-cover for
f(S) in Y . �
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Definition 2.7. Let {Pn : n ∈ N} be a cover sequence for a space X. {Pn : n ∈ N} is
a point-star network for X [12], if {st(x,Pn) : n ∈ N} is a network at x in X for every
x ∈ X.

Definition 2.8. Let {Pn : n ∈ N} be a point-star network for X. For every n ∈ N, put
Pn = {Pα : α ∈ An}, and endowed An with discrete topology. Put

M =
{

a = (αn) ∈
∏
n∈N

An : {Pαn : n ∈ N} forms a network at some point xa in X
}

.

Then M , which is a subspace of the product space
∏

n∈N An, is a metric space, xa is
unique, and xa =

⋂
n∈N Pαn for every a ∈ M . Define f : M −→ X by f(a) = xa, then f

is a mapping and (f,M,X, {Pn}) is a Ponomarev-system [12].

Remark 2.9. There are two ways to define the Ponomarev-system in [12]. The Pono-
marev-system (f,M,X, {Pn}) requires that {Pn : n ∈ N} is a point-star network for X,
and the Ponomarev-system (f,M,X,P) requires that P is a strong network for X (i.e.,
for each x ∈ X, there exists a countable P(x) ⊂ P such that P(x) is a network at x
in X). In this paper, we use the definition of Ponomarev-system (f,M,X, {Pn}), where
{Pn : n ∈ N} is a point-star network for X.

In [18, Lemma 2.2] and [7, Theorem 2.7], the authors have investigated the Ponomarev-
system (f,M,X, {Pn}) and obtained conditions such that the mapping f is a compact
mapping (covering-mapping) from a metric space M onto a space X. Now, based on
certain covers for a convergent sequence (compact subset) of a space, we get the following.

Lemma 2.10. Let (f,M,X, {Pn}) be a Ponomarev-system. Then the following hold.
(1) Pn is a cs-cover for a convergent sequence S in X for each n ∈ N if and only if

there exists a convergent sequence L in M such that S = f(L).
(2) Pn is a cfp-cover for a compact set K in X for each n ∈ N if and only if there

exists a compact subset L of M such that K = f(L).
(3) Pn is a wcs-cover for a convergent sequence S in X for each n ∈ N if and only

if there exists a compact subset L of M such that S = f(L).
(4) Pn is a cs∗-cover for a convergent sequence S in X for each n ∈ N if and only

if there exists a convergent sequence L in M such that f(L) is a convergent
subsequence of S.

Proof. (1). Necessity. For each n ∈ N, let each Pn be a cs-cover for a convergent sequence
S in X. As in the proof of [18, Lemma 2.2(ii)], S = f(L) for some convergent sequence
L in M .

Sufficiency. Let S be a convergent sequence in X and S = f(L) for some convergent
sequence L in M . Then, as in the proof (2) of [7, Theorem 2.7], S is eventually in some
Pαn for each n ∈ N. It implies that Pn is a cs-cover for S in X.

(2). As in the proof of [7, Theorem 2.7(3)].
(3). It follows from Lemma 2.3 and (2).
(4). As in the proof of [7, Theorem 2.7(2)]. �

Definition 2.11. Let {Xλ : λ ∈ Λ} be a cover for a space X such that each Xλ has a
sequence cover {Pλ,n : n ∈ N}.

(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cover for X, if {Pλ,n : n ∈ N} is a
point-star network for Xλ consisting of countable covers Pλ,n.

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star cover for X, if
{(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cover for X, and for each λ ∈ Λ and
n ∈ N, both {Xλ : λ ∈ Λ} and Pλ,n are point-finite.
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Definition 2.12. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cover for X.
(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cs-cover for X, if for each convergent

sequence S in X, there exists λ ∈ Λ such that S is eventually in Xλ and, for each n ∈ N,
Pλ,n is a cs-cover for S ∩Xλ in Xλ.

(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cfp-cover for X, if for each compact
subset K of X, there exists a finite subset ΛK of Λ such that K =

⋃
{Kλ : λ ∈ ΛK} and,

for each λ ∈ ΛK and n ∈ N, Kλ is compact and Pλ,n is a cfp-cover for Kλ in Xλ.
(3) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wcs-cover for X, if for each convergent

sequence S in X, there exists a finite subset ΛS of Λ such that S =
⋃
{Sλ : λ ∈ ΛS} and,

for each λ ∈ ΛS and n ∈ N, Sλ is a convergent sequence and Pλ,n is a wcs-cover for Sλ

in Xλ.
(4) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cs∗-cover for X, if for each convergent

sequence S in X, there exists λ ∈ Λ such that S is frequently in Xλ and, for each n ∈ N,
Pλ,n is a cs∗-cover for a subsequence Sλ of S in Xλ.

(5) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star cs-cover (resp., point-
finite double point-star cfp-cover, point-finite double point-star wcs-cover, point-finite
double point-star cs∗-cover) for X, if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cs-
cover (resp., double point-star cfp-cover, double point-star wcs-cover, double point-star
cs∗-cover) for X, and for each λ ∈ Λ and n ∈ N, both {Xλ : λ ∈ Λ} and Pλ,n are
point-finite.

Remark 2.13. If {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cover (resp., double point-
star cfp-cover, double point-star cs-cover, double point-star wcs-cover, double point-star
cs∗-cover) for X, then {Xλ : λ ∈ Λ} is a cover (resp, cfp-cover, cs-cover, wcs-cover, cs∗-
cover) for X, and each {Pλ,n : n ∈ N} is a point-star network for Xλ.

Definition 2.14. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cover for a space
X, and (fλ,Mλ, Xλ, {Pλ,n}) be the Ponomarev-system for each λ ∈ Λ. Since each Pλ,n

is countable, Mλ is a separable metric space. Put M =
⊕

λ∈Λ Mλ, and f =
⊕

λ∈Λ fλ.
Then M is a locally separable metric space, and f is a mapping from a locally separable
metric space M onto X. The system (f,M,X, {Pλ,n}) is an ls-Ponomarev-system.

Y. Ge has proved a necessary and sufficient condition such that the mapping f is a
compact mapping from a metric space M onto a space X, where (f,M,X, {Pn}) is a
Ponomarev-system in [7, Lemma 2.7]. The following result is a necessary and sufficient
condition such that the mapping f is a compact mapping from a locally separable metric
space M onto a space X, where (f,M,X, {Pλ,n}) is an ls-Ponomarev-system.

Theorem 2.15. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. Then f is a compact
mapping if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star cover for
X.

Proof. Necessity. Let f be a compact mapping. For each x ∈ X, since f−1(x) is compact,
{λ ∈ Λ : f−1(x)∩Mλ 6= ∅} is finite. Then {λ ∈ Λ : x ∈ Xλ} is finite, i.e., {Xλ : λ ∈ Λ} is
point-finite. On the other hand, for each λ ∈ Λ, since f−1

λ (x) = f−1(x)∩Mλ is compact,
fλ is compact. Then each Pλ,n is point-finite by [7, Theorem 2.7(1)]. It implies that
{(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a point-finite double point-star cover for
X. For each x ∈ X, Λx = {λ ∈ Λ : x ∈ Xλ} is finite by point-finiteness of {Xλ : λ ∈ Λ}.
Since each Pλ,n is point-finite, f−1

λ (x) is compact by [7, Theorem 2.7(1)]. It implies that
f−1(x) =

⋃
{f−1

λ (x) : λ ∈ Λx} is compact, i.e., f is a compact mapping. �

Corollary 2.16. The following are equivalent for a space X.
(1) X is a compact image of a locally separable metric space.



396 TRAN VAN AN AND NGUYEN VAN DUNG

(2) X has a point-finite double point-star cover.

Proof. (1) ⇒ (2). Let f : M −→ X be a compact mapping from a locally separable
metric M onto X. Since M is a locally separable metric space, M =

⊕
λ∈Λ Mλ where

each Mλ is separable by [4, 4.4.F]. Since each Mλ is a separable metric space, Mλ has a
sequence of open countable covers {Bλ,n : n ∈ N} such that for every compact subset K of
Mλ and any open set U in Mλ with K ⊂ U , there exists n ∈ N satisfying st(K,Bλ,n) ⊂ U
by [4, 5.4.E]. Let Cλ,n be a locally finite open refinement of each Bλ,n. Then, for each
λ ∈ Λ, {Cλ,n : n ∈ N} is a sequence of locally finite open countable covers for Mλ such
that for every compact subset K of Mλ and any open set U in Mλ with K ⊂ U , there
exists n ∈ N satisfying st(K, Cλ,n) ⊂ U . For each λ ∈ Λ and n ∈ N, put Xλ = f(Mλ),
and Pλ,n = f(Cλ,n). We have the following claims (a)–(e).

(a) {Xλ : λ ∈ Λ} is a cover for X.
(b) Each Pλ,n is countable.
(c) For each λ ∈ Λ, {Pλ,n : n ∈ N} is a point-star network for Xλ.
Let x ∈ U with U open in Xλ. Then x ∈ V with V open in X and V ∩Xλ = U . Since

f is compact, f−1(x) is compact. Then f−1
λ (x) = f−1(x)∩Mλ is a compact subset of Mλ

and f−1
λ (x) ⊂ Vλ with Vλ = f−1(V )∩Mλ open in Mλ. Therefore, there exists n ∈ N such

that st(f−1
λ (x), Cλ,n) ⊂ Vλ. It implies that st(x,Pλ,n) ⊂ f(f−1(V )∩Mλ) ⊂ V ∩Xλ = U .

Then {Pλ,n : n ∈ N} is a point-star network for Xλ.
(d) {Xλ : λ ∈ Λ} is point-finite.
For each x ∈ X, since f is compact, f−1(x) is compact. Then f−1(x) meets only

finitely many Mλ’s. It implies that {Xλ : λ ∈ Λ} is point-finite.
(e) Each Pλ,n is point-finite.
For each x ∈ Xλ, since f is compact, f−1

λ (x) = f−1(x) ∩Mλ is a compact subset of
Mλ. Then f−1

λ (x) meets only finitely many members of Cλ,n by locally finiteness of Cλ,n

for each n ∈ N. It implies that x meets only finitely many members of Pλ,n for each
n ∈ N. Then each Pλ,n is point-finite.

From (a)-(e) we get that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a point-finite double point-star
cover for Xλ.

(2) ⇒ (1). By Theorem 2.15. �

In [7] and [18], the authors have proved conditions such that the mapping f is a
covering-mapping from a metric space M onto a space X, where (f,M,X, {Pn}) is a
Ponomarev-system. Next, we give necessary and sufficient conditions such that the
mapping f is a covering-mapping from a locally separable metric space M onto a space
X, where (f,M,X, {Pλ,n}) is an ls-Ponomarev-system.

Theorem 2.17. Let (f,M,X, {Pλ,n}) be an ls-Ponomarev-system. Then the following
hold.

(1) f is sequence-covering if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star
cs-cover for X.

(2) f is compact-covering if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star
cfp-cover for a space X.

(3) f is pseudo-sequence-covering if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double
point-star wcs-cover for X.

(4) f is sequentially-quotient if and only if {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-
star cs∗-cover for X.

Proof. (1). Necessity. Let f be sequence-covering. For each convergent sequence S in
X, S = f(L) for some convergent sequence L in M . Then L is eventually in some Mλ.
Therefore, S is eventually in Xλ. Put Sλ = fλ(Lλ), where Lλ = L ∩Mλ is a convergent
sequence. It follows from Lemma 2.10 that each Pλ,n is a cs-cover for Sλ in Xλ. Then
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each Pλ,n is a cs-cover for S ∩ Xλ in Xλ. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a
double point-star cs-cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cs-cover for X. For
each convergent sequence S in X, there exists λ ∈ Λ such that S is eventually in Xλ

and, for each n ∈ N, Pλ,n is a cs-cover for S ∩ Xλ in Xλ. It follows from Lemma 2.10
that there exists a convergent sequence Lλ in Mλ such that Sλ = fλ(Lλ) = f(Lλ). Since
S − Sλ is finite, S − Sλ = f(F ) for some finite subset F of M . Put L = F ∪ Lλ, then L
is a convergent sequence in M and S = f(L). It implies that f is sequence-covering.

(2). Necessity. Let f be compact-covering. For each compact subset K of X, K =
f(L) for some compact subset L of M . Since L is compact, ΛK = {λ ∈ Λ : L∩Mλ 6= ∅} is
a finite subset of Λ and each Lλ = L∩Mλ is compact. For each λ ∈ ΛK , put Kλ = fλ(Lλ).
Then Kλ is compact, K =

⋃
{Kλ : λ ∈ ΛK}, and each Pλ is a cfp-cover for Kλ in Xλ

by Lemma 2.10. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cfp-cover
for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cfp-cover for X. For
each compact subset K of X, there exists a finite subset ΛK of Λ such that K =

⋃
{Kλ :

λ ∈ ΛK} and, for each λ ∈ ΛK and n ∈ N, Kλ is compact and Pλ,n is a cfp-cover for Kλ

in Xλ. It follows from Lemma 2.10 that there exists a compact subset Lλ of Mλ such
that Kλ = fλ(Lλ) = f(Lλ). Put L =

⋃
{Lλ : λ ∈ ΛK}. Then L is a compact subset of

M and K = f(L). It implies that f is compact-covering.
(3). Necessity. Let f be pseudo-sequence-covering. For each convergent sequence S

in X, S = f(L) for some compact subset L of M . Note that S is also a compact subset
of X. Then, as in the proof of necessity of (2), there is a finite subset ΛS of Λ such
that S =

⋃
{Sλ : λ ∈ ΛS} and, for each λ ∈ ΛS and n ∈ N, Sλ is compact and Pλ,n

is a cfp-cover for Sλ in Xλ. For each λ ∈ ΛS and each n ∈ N, we have that Sλ is
a convergent sequence, and then, Pλ,n is a wcs-cover for Sλ in Xλ by Lemma 2.3. It
implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wcs-cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star wcs-cover for X.
For each convergent sequence S in X, there exists a finite subset ΛS of Λ such that
S =

⋃
{Sλ : λ ∈ ΛS} and, for each λ ∈ ΛS and n ∈ N, Sλ is a convergent sequence and

Pλ,n is a wcs-cover for Sλ in Xλ. It follows from Lemma 2.10 that there exists a compact
subset Lλ in Mλ such that Sλ = fλ(Lλ) = f(Lλ). Put L =

⋃
{Lλ : λ ∈ ΛS}. Then L is

a compact subset of M and S = f(L). It implies that f is pseudo-sequence-covering.
(4). Necessity. Let f be sequentially-quotient. For each convergent sequence S in

X, there exists some convergent sequence L of M such that H = f(L) is a convergent
subsequence of S. Then, as in the proof necessity of (1), H is eventually in some Xλ

and each Pλ,n is a cs-cover for H ∩Xλ in Xλ. Therefore, S is frequently in Xλ and each
Pλ,n is a cs∗-cover for a convergent subsequence Sλ = H ∩ Xλ of S in Xλ. It implies
that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cs∗-cover for X.

Sufficiency. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cs∗-cover for X. For
each convergent sequence S in X, there exists λ ∈ Λ such that S is frequently in Xλ

and, for each n ∈ N, Pλ,n is a cs∗-cover for a subsequence Sλ of S in Xλ. It follows
from Lemma 2.10 that there exists a convergent sequence Lλ in Mλ such that fλ(Lλ)
is a convergent subsequence of Sλ. Note that fλ(Lλ) = f(Lλ) is also a convergent
subsequence of S. It implies that f is sequentially-quotient. �

In [5] and [18], the authors have characterized compact images of locally separable
metric spaces by means of certain point-star networks. From the above theorems, we
systematically get characterizations of compact images of locally separable metric spaces
under certain covering-mappings by means of double point-star covers as follows.

Corollary 2.18. The following hold for a space X.
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(1) X is a sequence-covering compact image of a locally separable metric space if and
only if X has a point-finite double point-star cs-cover.

(2) X is a compact-covering compact image of a locally separable metric space if and
only if X has a point-finite double point-star cfp-cover.

(3) X is a pseudo-sequence-covering compact image of a locally separable metric
space if and only if X has a point-finite double point-star wcs-cover.

(4) X is a sequentially-quotient compact image of a locally separable metric space if
and only if X has a point-finite double point-star cs∗-cover.

Proof. (1). Necessity. Let f : M −→ X be a sequence-covering compact mapping from a
locally separable metric M onto X. By notations and arguments in the proof (1)⇒ (2) of
Corollary 2.16, it suffices to show that the double point-star cover {(Xλ, {Pλ,n}) : λ ∈ Λ}
is a double point-star cs-cover for X.

For each convergent sequence S in X, since f is sequence-covering, S = f(L) for some
convergent sequence L in M . Then L is eventually in some Mλ. It implies that S is
eventually in Xλ. Since Lλ = L ∩Mλ is a convergent sequence in Mλ and each Cλ,n is
a cs-cover for Lλ in Mλ, Pλ,n is a cs-cover for Sλ = f(Lλ) in Xλ by Lemma 2.6. Then
Pλ,n is a cs-cover for S ∩Xλ in Xλ. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double
point-star cs-cover for X.

Sufficiency. By Theorem 2.15 and Theorem 2.17.(1).
(2). Necessity. Let f : M −→ X be a compact-covering compact mapping from a

locally separable metric M onto X. By notations and arguments in the proof (1)⇒ (2) of
Corollary 2.16, it suffices to show that the double point-star cover {(Xλ, {Pλ,n}) : λ ∈ Λ}
is a double point-star cfp-cover for X.

For each compact subset K of X, since f is compact-covering, K = f(L) for some
compact subset L of M . Put ΛK = {λ ∈ Λ : L ∩ Mλ 6= ∅}, then ΛK is finite, and
Lλ = L ∩Mλ is compact for each λ ∈ ΛK by compactness of L. For each λ ∈ ΛK , put
Kλ = f(Lλ). Then K =

⋃
{Kλ : λ ∈ ΛK} and each Kλ is compact. For each λ ∈ ΛK

and each n ∈ N, since Cλ,n is a cfp-cover for Lλ in Mλ, Pλ,n is a cfp-cover for Kλ in Xλ

by Lemma 2.6. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cfp-cover
for X.

Sufficiency. By Theorem 2.15 and Theorem 2.17.(2).
(3). Necessity. Let f : M −→ X be a pseudo-sequence-covering compact mapping

from a locally separable metric M onto X. By notations and arguments in the proof (1)
⇒ (2) of Corollary 2.16, it suffices to show that the double point-star cover {(Xλ, {Pλ,n}) :
λ ∈ Λ} is a double point-star wcs-cover for X.

For each convergent sequence S in X, since f is pseudo-sequence-covering, S = f(L)
for some compact subset L of M . Put ΛS = {λ ∈ Λ : L ∩Mλ 6= ∅}, then ΛS is finite,
and Lλ = L ∩Mλ is compact by compactness of L. For each λ ∈ ΛS , put Sλ = f(Lλ),
then S =

⋃
{Sλ : λ ∈ ΛS} and each Sλ is compact. Since Sλ is a compact subset of a

convergent sequence S, Sλ is a convergent sequence. On the other hand, for each λ ∈ ΛS

and n ∈ N, since Cλ,n is a cfp-cover for a compact subset Lλ in Mλ, Pλ,n is a cfp-cover
for Sλ in Xλ by Lemma 2.6. Then Pλ,n is a wcs-cover for Sλ in Xλ by Lemma 2.3. It
implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double wcs-cover for X.

Sufficiency. By Theorem 2.15 and Theorem 2.17.(3).
(4). Necessity. Let f : M −→ X be a sequentially-quotient compact mapping from a

locally separable metric M onto X. By notations and arguments in the proof (1)⇒ (2) of
Corollary 2.16, it suffices to show that the double point-star cover {(Xλ, {Pλ,n}) : λ ∈ Λ}
is a double point-star cs∗-cover for X.

For each convergent sequence S in X, since f is sequentially-quotient, there exists a
convergent sequence L in M such that f(L) is a convergent subsequence of S. Since L
is eventually in some Mλ, Lλ = L ∩Mλ is a convergent sequence. Then Sλ = f(Lλ) is
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a convergent subsequence of S, and hence, S is frequently in Xλ. On the other hand,
since each Cλ,n is a cs∗-cover for a convergent sequence Lλ in Mλ, Pλ,n is a cs∗-cover for
Sλ in Xλ by Lemma 2.6. It implies that {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star
cs∗-cover for X.

Sufficiency. By Theorem 2.15 and Theorem 2.17.(4). �

Remark 2.19. Since subsequence-covering mappings and sequentially-quotient map-
pings are equivalent for metric domains, “sequentially-quotient” in Theorem 2.17.(4)
and Corollary 2.18.(4) can be replaced by “subsequence-covering”.

In [5], the author proved that a space X is a sequentially-quotient compact image of
a locally separable metric space if and only if X is a pseudo-sequence-covering compact
image of a locally separable metric space. Now, we get this result again by the following
lemma.

Lemma 2.20. Let {(Xλ, {Pλ,n}) : λ ∈ Λ} be a double point-star cover for X such that
{Xλ : λ ∈ Λ} is point-finite. Then the following are equivalent.

(1) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star wcs-cover for X.
(2) {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double point-star cs∗-cover for X.

Proof. (1) ⇒ (2). It is obvious.
(2) ⇒ (1). Let S be a convergent sequence in X converging to x. Then there exists

λ ∈ Λ such that S is frequently in Xλ and each Pλ,n is a cs∗-cover for a convergent
subsequence Sλ of S in Xλ. Put

Λ′
S = {λ ∈ Λ : each Pλ,n is a cs∗-cover for some subsequence Sλ of S in Xλ}.

Since {Xλ : λ ∈ Λ} is point-finite, the limit point x of S meets only finitely many Xλ’s.
Then ΛS is finite. We shall prove that S is eventually in

⋃
{Sλ : λ ∈ Λ′

S}. If not, there
exists a subsequence L of S such that L ⊂ S −

⋃
{Sλ : λ ∈ Λ′

S}. Since L ∪ {x} is also a
convergent sequence in X, L∪{x} is frequently in some Xα, and each Pα,n is a cs∗-cover
for some convergent subsequence Sα of L ∪ {x}. Since Sα is a convergent subsequence
of S, α ∈ Λ′

S . It is a contradiction. Then S is eventually in
⋃
{Sλ : λ ∈ Λ′

S}. Since
S −

⋃
{Sλ : λ ∈ Λ′

S} is finite, S −
⋃
{Sλ : λ ∈ Λ′

S} =
⋃
{Sλ : λ ∈ Λ′′

S}, where Λ′′
S is

also a finite subset of Λ and each Sλ is a finite subset of Xλ. Put ΛS = Λ′
S ∪ Λ′′

S , then
S =

⋃
{Sλ : λ ∈ ΛS}, where ΛS is a finite subset of Λ and, for each λ ∈ ΛS and n ∈ N,

Sλ is a convergent sequence and Pλ,n is a cs∗-cover for Sλ in Xλ. It follows from Lemma
2.3 that each Pλ,n is a wcs-cover for Sλ in Xλ. Then {(Xλ, {Pλ,n}) : λ ∈ Λ} is a double
point-star wcs-cover for X. �

Corollary 2.21 (Theorem 2.2, [5]). The following are equivalent for a space X.
(1) X is a pseudo-sequence-covering compact image of a locally separable metric

space,
(2) X is a subsequence-covering compact image of a locally separable metric space,
(3) X is a sequentially-quotient compact image of a locally separable metric space.

Proof. It is obvious from Corollary 2.18 and Lemma 2.20. �
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