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INVERSE SPECTRAL PROBLEM FOR SOME GENERALIZED
JACOBI HERMITIAN MATRICES

I. YA. IVASIUK

Dedicated to my dear father on the occasion of his 50th birthday

Abstract. In this article we will investigate an inverse spectral problem for three-
diagonal block Jacobi type Hermitian real-valued matrices with ”almost” semidiago-
nal matrices on the side diagonals.

1. Introduction

This article is a logical continuation of article [5]. Here we investigate an inverse
spectral problem for some generalized Jacobi Hermitian matrices. As in [5] under the
generalized Jacobi Hermitian matrix we mean a three-diagonal block Jacobi type Her-
mitian matrix. Using word ”some” in the title we mean that the matrix has following
special form: matrices on side diagonals have elements which are equal to zero. Later we
will give an accurate definition.

In Section 2 we describe an inverse spectral problem for the classical Jacobi matrix.
It helps to understand the problem in the general case.

In Section 3 we will recall all necessary results about the direct spectral problem for
generalized Jacobi Hermitian matrices from [5]. Also, we will give there a new result, a
recurrence relation for calculating the whole vector which consists of generalized eigen-
values of the considered matrix (the so-called, polynomials of the first order) and two
examples which show that this vector has a complex structure in the general case.

Section 4 contains the main results of this article. At first, we define the matrix J
for which the inverse spectral problem will be considered. It is necessary to admit that
in this section we will use the same notations as in Section 3 but they will describe
objects for the new matrix under investigation. Then we consider an orthogonalization
procedure for some system of vectors for a given measure. The obtained new vectors give
a possibility to correctly recover elements of the matrix, i.e., to solve the inverse spectral
problem.

Now we give a short list of notations used in this article.
Let X = (xij)N M

i=0 j=0, N = 0, 1, . . . ,∞,M = 0, 1, . . . ,∞, be some matrix, XT and X∗

denote, respectively, the transposed and the adjoint matrix of X. It is necessary to admit
that in what follows we will understand a vector as a column-vector, i.e., the matrix with
single column; and often we will write the vector as a transposed one to row-vector, i.e.,
as a matrix with one row (line matrix). Also, X·,i and Xi,· denotes respectively the i-th
column and i-th row of X; Xj;·,i (Xj;i,·) denotes the i-th column (row) of the matrix Xj ;
Xj;i,k denotes the element of the matrix Xj which belongs to i-th row and k-th column,
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i.e., Xj;i,k = (Xj)i,k; by Ij we denote the identity matrix in Cj ;

Pα;(j,·)(λ) =


Pα;(j,0)(λ)
Pα;(j,1)(λ)

. . .
Pα;(j,j)(λ)

0
. . .

 ;

δj = (0, . . . , 0, 1︸︷︷︸
jth place

, 0, . . .)T (the indexing starts with 0); δj,k =

{
0, j 6= k,

1, j = k.

2. The inverse spectral problem for the classical Jacobi matrix

In the classical theory one investigates, on the space `2 of sequences f = (fn)∞n=0, fn ∈
C, the Hermitian Jacobi matrix:

(1) J =


b0 a0 0 0 0 . . .
a0 b1 a1 0 0 . . .
0 a1 b2 a2 0 . . .
...

...
...

...
...

 , bn ∈ R, an > 0, n ∈ N0 = {0, 1, 2, . . .}.

This matrix generates, on finite sequences f ∈ `fin, an operator on `2, which is Hermitian
with equal deficiency indices and, therefore, has a selfadjoint extension on `2. Under some

conditions on J (for example,
∞∑

n=0

1
an

= ∞) the closure J̃ of J is selfadjoint.

The inverse spectral problem in this classical case is the following. Consider a Borel
probability measure dρ(λ) on R for which all the moments sn exist:

(2) sn =
∫
R

λndρ(λ), n ∈ N0

(and support of dρ(λ) contains an infinite set on finite interval).
The problem is following: it is necessary to recover the corresponding Jacobi matrix

J in such a way that the initial measure dρ(λ) would be equal to the spectral measure
of J̃ .

A method for such a reconstruction is simple: it is necessary to take the sequence of
functions

(3) 1, λ, λ2, . . . ∈ L2(R, dρ(λ))

(which is linearly independent) and apply to it the classical Gram-Schmidt orthogonal-
ization procedure. As a result, we get a sequence of orthonormal polynomials,

(4) P0(λ) = 1, P1(λ), P2(λ), . . . .

Then the matrix J is reconstructed by the formulas: ∀n ∈ N0

(5) an =
∫
R

λPn(λ)Pn+1(λ)dρ(λ), bn =
∫
R

λ
(
Pn(λ)

)2
dρ(λ).

3. About direct spectral problem for generalized Jacobi Hermitian
matrices

At first we recall necessary results from [5].
Let us consider the complex Hilbert space

(6) l2 = H0 ⊕H1 ⊕H2 ⊕ . . . , Hi = Ci+1, i ∈ N0,
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of vectors l2 3 f = (fn)∞n=0, where fn = (fn;j)n
j=0 ∈ Hn; f =

∞∑
n=0

n∑
j=0

fn;jen;j , (here

en;j , n = 0, 1, . . . , j = 0, 1, . . . , n, are elements of the standard basis in l2) with the scalar
product

(f, g)l2 =
∞∑

n=0

(fn, gn)Hn , f, g ∈ l2.

Consider the Hilbert space rigging

(7) l = (lfin)′ ⊃ l2(p−1) ⊃ l2 ⊃ l2(p) ⊃ lfin,

where lfin is the space of finite vectors, l is the space of arbitrary vectors, l2(p) is the
space of infinite vectors with the scalar product

(f, g)l2(p) =
∞∑

n=0

(fn, gn)Hnpn; f, g ∈ l2(p)

(here p = (pn)∞n=0, pn ≥ 1, is a given weight). Let us suppose that the embedding of the

positive space l2(p) ⊂ l2 is quasinuclear. This is true if
∞∑

n=0

n+1
pn

< ∞.

Let us consider, in space (6), the Hermitian matrix J = (Jj,k)∞j,k=0 with operator-
valued complex elements Jj,k : Hk → Hj , Jj,k = (Jj,k;α,β) j k

α=0β=0, of the following block
Jacobi structure:

(8) J =


b0 c0 0 0 . . .
a0 b1 c1 0 . . .
0 a1 b2 c2 . . .
...

...
...

...
. . .

 , where
ai = Ji+1,i : Hi → Hi+1,
bi = Ji,i : Hi → Hi,
ci = Ji,i+1 : Hi+1 → Hi.

It is necessary to assume that bj = (bj)∗, cj = (aj)∗.
Let u ∈ l2. Then the matrix J acts in following way:

(9) (Ju)j = aj−1uj−1 + bjuj + cjuj+1, where u−1 = 0.

The following analogue of Green’s formula takes place ∀k, l ∈ N0, k ≤ l:

(10)

l∑
j=k

[(
(Ju)j , vj

)
Hj
−

(
uj , (Jv)j

)
Hj

]
=

[
(clul+1, vl)Hl

− (alul, vl+1)Hl+1

]
−

[
(ck−1uk, vk−1)Hk−1 − (ak−1uk−1, vk)Hk

]
, ∀u, v ∈ l2.

Then we construct an operator J in l2 (an analog of J̃ in the classical case) from the
matrix J. Let the operator J be selfadjoint (necessary and sufficient conditions for self-
adjointness were given in [5]). Consider an equation which gives a possibility to find
eigenvectors for the operator J,

(11) (Jϕ(λ))j = aj−1ϕj−1(λ) + bjϕj(λ) + cjϕj+1(λ) = λϕj(λ), λ ∈ R, j ∈ N0,

where ϕ ∈ l, ϕ−1(λ) = 0.
As we can see, none of equations in system (11) defines ϕj+1(λ) in a unique way by

means of ϕj(λ) and ϕj−1(λ). Indeed, first of all, from (11) we need to obtain n + 2
variables ϕj+1;0, ϕj+1;1, . . . , ϕj+1;j+1 but there are only n + 1 equalities. And secondly,
cj is a (j + 1)× (j + 2)-matrix and, therefore, its inverse matrix is not defined.

So, we assume that
1) rank cj = j + 1;
2) the matrix cj =

{
cj;α,β

}j j+1

α=0 β=0
is as follows: for the matrix c̃j :=

{
cj;α,β

}j j+1

α=0 β=1

there exists an inverse c̃−1
j ;
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3) let ϕj;0(λ) = ϕj;0 ∈ C, j = 0, 1, . . . , be some fixed complex constants, i.e., ϕj;0

does not depend on λ, where ϕ0,0 := ϕ0. Thus all of the above indicates that ϕj;0

generates a ”boundary conditions” vector ϕ·;0 :=
(
ϕ0, ϕ1;0, ϕ2;0, . . .

)T
.

So, now we have to find a solution of the difference equation (11) with the following
Cauchy conditions: ϕ−1(λ) = 0 and ϕ·;0 is some given boundary conditions vector.

Let us denote by Pα;(j,·)(λ) :=
(
Pα;(j,k)(λ)

)j

k=0
, α = 0, 1, . . . , j = 0, 1, . . . , a solution

of equation (11) with the boundary conditions Pα;(j,0) = δj,α, j = 0, 1, . . .. Then for any
fixed α and ∀k = 1, 2, . . . , j, the following equality takes place:

(12) Pα;(j,k)(λ) =



0, j = 0, . . . , α− 1
−(c̃−1

j−1)k−1,·cj−1;·,0, j = α,(
c̃−1
j−1(λIj−1 − bj−1)

)
k−1,·Pα;(j−1,·)(λ), j = α + 1,(

c̃−1
j−1(λIj−1 − bj−1)

)
k−1,·Pα;(j−1,·)(λ)−

−
(
c̃−1
j−1aj−2

)
k−1,·Pα;(j−2,·)(λ)

j = α + 2, α + 3, . . .

And ϕj(λ) satisfy the following formulas in the vector and coordinate forms:

ϕj(λ) =
j∑

α=0

ϕα;0Pα;(j,·)(λ),

ϕj;k(λ) =
j∑

α=0

ϕα;0Pα;(j,k)(λ), j = 0, 1, . . . , k = 0, 1, . . . , j.

(13)

It follows from [2], Ch. 5, that for our operator J we have the representation

(14) Jf =
∫
R

λΦ(λ)dσ(λ)f, f ∈ l2(p)

and a resolution of identity, which corresponds to J, can be represented in the form

(15) E(M) =
∫
M

Φ(λ)dσ(λ), M∈ B(R),

where B(R) is a Borel sigma algebra on R, dσ(λ) is a nonnegative finite measure with
infinite support, Φ(λ) : l2(p) → l2(p−1) is a generalized projection operator and Φ(λ) is
a positive-defined kernel, i.e. ∀f ∈ l2(p) (Φ(λ)f, f)l2 ≥ 0. For all f, g ∈ l2(p) we have the
Parseval equality

(16) (f, g)l2 =
∫
R

(Φ(λ)f, g)l2dσ(λ).

Let us denote by πn the operator in l2 of orthogonal projection on Hn, n ∈ N0. Hence
∀f = (fn)∞n=0 ∈ l2 we have fn = πnf. This operator acts analogously in the space l2(p)
and l2(p−1). Let us consider the operator matrix (Φj,k(λ))∞j,k=0 where

(17) Φj,k(λ) = πjΦ(λ)πk : l2 → Hj (or, in fact, Hk → Hj).

The following representation takes place:

Φj,k;l,m(λ) =
j∑

α=0

k∑
β=0

Φα,β;0,0(λ)Pβ;(k,m)(λ)Pα;(j,k)(λ),

j, k ∈ N0, l = 0, . . . , j,m = 0, . . . , k, where Φj,k;l,m(λ) is the element of the (j+1)×(k+1)-
matrix (17) and it can be understand also as

(18) Φj,k;l,m(λ) = (Φ(λ)ek;m, ej;l)l2 , j, k ∈ N0, l = 0, . . . , j, m = 0, . . . , k.
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Let us construct the matrix spectral measure Σ(·) by the formula

(19) dΣ(λ) =

Φ0,0;0,0(λ) Φ0,1;0,0(λ) . . .
Φ1,0;0,0(λ) Φ1,1;0,0(λ) . . .

...
...

. . .

 dσ(λ) =
(
Φα,β;0,0(λ)dσ(λ)

)∞
α,β=0

.

Denote σαβ(·) := (Σ(·)δβ , δα)`2 . From (15), (18) and (19), it follow that

(20) (E(M)eβ;0, eα;0)l2 = (Σ(M)δβ , δα)`2 = σαβ(M), M∈ B(R).

Consider the space of finite vectors u(λ) =
(
u0(λ), u1(λ), . . .

)
, λ ∈ R, (ui(·), i = 0, 1, . . . ,

are complex-valued functions of the real variable) with the scalar product

(u(λ), v(λ))L2(R,dΣ(λ)) =
∫
R

(dΣ(λ)u(λ), v(λ))`2 .

Since Φ(λ) is a positive-defined kernel, the scalar product (·, ·)L2 is well defined. Let
us introduce the Hilbert space L2(R, dΣ(λ)) as a completion of the given space of finite
vectors with respect to the scalar product (·, ·)L2(R,dΣ(λ)). Also, introduce for f ∈ lfin,

the Fourier transform f̂(λ) =

f̂0(λ)
f̂1(λ)
. . .

 ∈ L2(R, dΣ(λ)) by the formula

(21) f̂α(λ) =
∞∑

j=α

(
fj , Pα;(j,·)(λ)

)
Hj

, α ∈ N0.

According to these notations, the following Parseval equality takes place: ∀f, g ∈ lfin

(22) (f, g)l2 = (f̂(λ), ĝ(λ))L2(R,dΣ(λ)).

Let us denote

P·;(j,k)(λ) :=


P0;(j,k)(λ)

. . .
Pj;(j,k)(λ)

0
. . .

 =
(
Pα;(j,k)(λ)

)∞
α=0

, j = 0, 1, . . . , k = 0, . . . , j.

Vectors elements of which are polynomials will be called ”vectors of polynomials”. These
vectors of polynomials are very important for the inverse spectral problem. We will
represent in order the infinite collection of all these vectors,

P·;(0,0)(λ);P·;(1,0)(λ), P·;(1,1)(λ);P·;(2,0)(λ), P·;(2,1)(λ), P·;(2,2)(λ); . . . ;

P·;(j,0)(λ), . . . , P·;(j,k)(λ), . . . , P·;(j,j)(λ); . . . , j = 0, 1, . . . , k = 0, . . . , j.

So, it is convenient to write this set of vectors of polynomials P·;(j,k)(λ) as

(23)

P·;(j,j)(λ)
. . .

k P·;(2,2)(λ) P·;(j,k)(λ)
↑ P·;(1,1)(λ) P·;(2,1)(λ) . . .

P·;(0,0)(λ) P·;(1,0)(λ) P·;(2,0)(λ) . . . P·;(j,0)(λ) . . . → j

From (22) we obtain the orthogonality relations: ∀N,M ∈ N0, ξ = 0, . . . , N, ζ = 0, . . . ,M ,

(24) δN,Mδξ,ζ =
∫
R

(
dΣ(λ)P·;(N,ξ)(λ), P·;(M,ζ)(λ)

)
`2

.

The operator J acts as follows: ∀f, g ∈ lfin

(25) (Jf, g)l2 = (Jf, g)l2 =
(
λf̂(λ), ĝ(λ)

)
L2(R,dΣ(λ))

.
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Elements of the matrix J can be recovered by the formulas: ∀j, k ∈ N0, l = 0, . . . , j,m =
0, . . . , k,

(26) Jj,k;l,m =
∫
R

λ
(
dΣ(λ)P·;(k,m)(λ), P·;(j,l)(λ)

)
`2

.

Now we will give some new results which were not published in [5]. They are very
useful for a better understanding of the inverse spectral problem in the general case.

The equalities (12) give a possibility to calculate Pα;(j,k)(λ) step by step for all per-
mitted indexes. In following statement we prove a recurrence relation which allows to
obtain the whole P·;(j,k)(λ) at once.

Proposition 1. Let us denote ∀j ∈ N0

(27) Bj(λ) := c̃j
−1(λIj − bj), Aj := −c̃j

−1aj−1, Cj := −c̃j
−1cj;·,0.

Here Bj(λ) is a (j+1)×(j+1)-matrix elements of which are polynomials of the first degree,
Aj is a (j + 1)× j-matrix and Cj is a vector from Hj . Then ∀j = 1, 2, . . . , i = 1, . . . , j,
the following recurrence formula takes place:

(28) P·;(j,i)(λ) =
j−1∑
k=0

Bj−1;i−1,k(λ)P·;(j−1,k)(λ)+
j−2∑
l=0

Aj−1;i−1,lP·;(j−2,l)(λ)+Cj−1;i−1δj .

Proof. Let us prove (28) for P·;(j,i)(λ), j = 0, 1, 2, i = 0, . . . , j, at first. It helps to
understand the scheme of the proof in general. 1) P·;(0,0)(λ) = δ0.
2) P·;(1,0)(λ) = δ1;

P·;(1,1)(λ) =


P0;(1,1)(λ)
P1;(1,1)(λ)

0
. . .

 =


c̃0
−1(λ− b0)P0;(0,·)(λ)

c̃0
−1c0;0,0

0
. . .

 = c̃0
−1(λ− b0)δ0 − c̃0

−1c0;0,0δ1.

3) P·;(2,0)(λ) = δ2;

P·;(2,1)(λ) =


P0;(2,1)(λ)
P1;(2,1)(λ)
P2;(2,1)(λ)

0
. . .



=



(
c̃1
−1(λI1 − b1)

)
0,·

P0;(1,·)(λ)−
(
c̃1
−1a0

)
0,·

P0;(0,·)(λ)(
c̃1
−1(λI1 − b1)

)
0,·

P1;(1,·)(λ)(
c̃1
−1

)
0,·

c1;·,0

0
. . .


=

(
c̃1
−1(λI1 − b1)

)
0,·

× (P0;(1,·)(λ)δ0 + P1;(1,·)(λ)δ1)−
(
c̃1
−1a0

)
0,·

P0;(0,·)(λ)δ0 −
(
c̃1
−1

)
0,·

c1;·,0δ2

=
1∑

k=0

B1;0,k(λ)P·;(1,k)(λ) + A1;0,0P·;(0,0)(λ) + C1;0δ2;
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P·;(2,2)(λ) =


B1;1,·(λ)P0;(1,·)(λ) + A1;1,·P0;(0,·)(λ)

B1;1,·(λ)P1;(1,·)(λ)
C1;1

0
. . .

 =
1∑

k=0

B1;1,k(λ)P·;(1,k)(λ)

+ A1;1,0δ0 + C1;1δ2.

4) Let us prove that equality (28) takes place ∀j ∈ N0, i = 0, . . . , j. Indeed,

P·;(j,i)(λ) =



Bj−1;i−1,·(λ)P0;(j−1,·)(λ) + Aj−1;i−1,·P0;(j−2,·)(λ)
. . .

Bj−1;i−1,·(λ)Pj−2;(j−1,·)(λ) + Aj−1;i−1,·Pj−2;(j−2,·)(λ)
Bj−1;i−1,·(λ)Pj−1;(j−1,·)(λ)

Cj−1;i−1

0
. . .


=

j−1∑
k=0

Bj−1;i−1,k(λ)(P0;(j−1,k)(λ)δ0 + P1;(j−1,k)(λ))δ1 + · · ·+ Pj−1;(j−1,k)(λ))δj−1)

+
j−2∑
l=0

Aj−1;i−1,l(P0;(j−2,l)(λ)δ0 + · · ·+ Pj−2;(j−2,l)(λ)δj−2) + Cj−1;i−1δj

=
j−1∑
k=0

Bj−1;i−1,k(λ)P·;(j−1,k)(λ) +
j−2∑
l=0

Aj−1;i−1,lP·;(j−2,l)(λ) + Cj−1;i−1δj .

�

Now we will consider two examples of the matrix J and calculate the vector of the
polynomials P·;(j,k)(λ) for j = 0, 1, 2, 3, k = 0, . . . , j. These calculations will help us
to understand the construction and the form of P·;(j,k)(λ) in the general case. This
information is very important for the corresponding inverse spectral problem.

Example 1. Consider a matrix (8) of the form: ∀j = 0, 1, . . .

bj =

0 . . . 0
...

. . .
...

0 . . . 0

 , cj =


1 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 , aj = (cj)∗.

So, c̃j
−1 = Ij , cj;·,0 = (1, 0, . . . , 0)T ∈ Hj , j = 0, 1, . . . Using (28) we obtain

1) P·;(0,0)(λ) = δ0 = (1, 0, 0, . . .)T .

2) P·;(1,0)(λ) = δ1 = (0, 1, 0, . . .)T ;
P·;(1,1)(λ) = λδ0 − δ1 = (λ,−1, 0, . . .)T .
3) P·;(2,0)(λ) = δ2;
P·;(2,1)(λ) = λP·;(1,0)(λ)− P·;(0,0)(λ)− δ2 = (−1, λ,−1, 0, . . .)T ;
P·;(2,2)(λ) = λP·;(1,1)(λ)− δ0 − δ2 = (λ2 − 1,−λ,−1, 0, . . .)T .
4) P·;(3,0)(λ) = δ3;

B2(λ) =

λ 0 0
0 λ 0
0 0 λ

 , A2 = −

1 0
1 0
0 1

 , C2 = −

1
0
0

 ;

P·;(3,1)(λ) = λP·;(2,0)(λ)− P·;(1,0)(λ)− δ3 = λδ2 − δ1 − δ3 = (0,−1, λ,−1, 0, . . .)T ;
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P·;(3,2)(λ) = λP·;(2,1)(λ)− P·;(1,0)(λ) = λ2δ1 − λδ0 − λδ2 − δ1 = (−λ, λ2 − 1,−λ, 0, . . .)T ;
P·;(3,3)(λ) = λP·;(2,2)(λ)− P·;(1,1)(λ) = (λ3 − 2λ,−λ2 + 1,−λ, 0, . . .)T .

Example 2. Let us consider a matrix (8) of the form: ∀j = 0, 1, . . .

bj =

0 . . . 0
...

. . .
...

0 . . . 0

 , cj =


0 1 −1 0 . . . 0
0 0 1 −1 . . . 0
...

...
...

. . . . . .
...

0 0 0 . . . 1 −1
0 0 0 . . . 0 1

 , aj = (cj)∗.

Then c̃j
−1 =


1 1 . . . 1
0 1 . . . 1
...

...
. . .

...
0 0 . . . 1

 . The vectors of polynomials P·;(j,k)(λ) for this matrix are

following:
1) P·;(0,0)(λ) = δ0.
2) P·;(1,0)(λ) = δ1;
P·;(1,1)(λ) = λδ0.

3) B1 =
(

λ λ
0 λ

)
, A1 = −

(
1
1

)
, C1 =

(
0
0

)
;

P·;(2,0)(λ) = δ2;
P·;(2,1)(λ) = λP·;(1,0)(λ) + λP·;(1,1)(λ)− δ0 = λδ1 + λ2δ0 − δ0 = (λ2 − 1, λ, 0, . . .)T ;
P·;(2,2)(λ) = λP·;(1,1)(λ)− δ0 = (λ2 − 1, 0, . . .)T .

4) B2 =

λ λ λ
0 λ λ
0 0 λ

 , A2 = −

 0 1
0 1
−1 1

 , C2 =

0
0
0

 ;

P·;(3,0)(λ) = δ3;
P·;(3,1)(λ) = λP·;(2,0)(λ) + λP·;(2,1)(λ) + λP·;(2,2)(λ)− P·;(1,1)(λ)
= λδ2 + λ(λ2 − 1, λ, 0, . . .)T + λ(λ2 − 1, 0, . . .)T − λδ0 = (2λ3 − 3λ, λ2, λ, 0, . . .)T ;
P·;(3,2)(λ) = λP·;(2,1)(λ) + λP·;(2,2)(λ)− P·;(1,1)(λ) = (2λ3 − 3λ, λ2, 0, . . .)T ;
P·;(3,3)(λ) = λP·;(2,2)(λ) + P·;(1,0)(λ)− P·;(1,1)(λ) = (λ3 − 2λ, 1, 0, . . .)T .

Lemma 1. The defined above polynomials of the first order, Pα;(j,k)(λ), for the matrix
J (8) have the following form:
1) if k = 0, then ∀j ∈ N0 P·;(j,k)(λ) = δj ;
2) if k = 1, 2, . . . , j, then ∀j, α ∈ N0 the polynomial Pα;(j,k)(λ) is as follows:

2.1) the degree of Pα;(j,k)(λ) is less or equal than j − α or Pα;(j,k)(λ) = 0,
where α = 0, . . . , j − 1;

2.2) Pj;(j,k)(λ) is some complex constant;
2.3) Pα;(j,k)(λ) = 0, where α = j + 1, j + 2, . . . .
Consider, for some fixed j ∈ N0, the system of vectors,

(1, 0, . . .)T ; (0, 1, 0, . . .)T , (λ, 0, . . .)T ; (0, 0, 1, 0, . . .)T , (0, λ, 0, . . .)T , (λ2, 0, . . .)T ;

(0, . . . , 0︸ ︷︷ ︸
j

, 1, 0, . . .)T , . . . , (0, . . . , 0︸ ︷︷ ︸
j−k

, λk, 0, . . .)T , . . . (λj , 0, . . .)T ; k = 0, . . . , j, λ ∈ R,
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or, what is the same but in another words and a more convenient way, the set of vectors
of polynomials

(29)

λjδ0

. . .
λ2δ0 λkδj−k

λδ0 λδ1 . . .
δ0 δ1 δ2 . . . δj

Then, for any fixed j ∈ N0 and for all k = 1, . . . , j, the vector of polynomials P·;(j,k)(λ)
is a linear combination of elements of system (29).

Proof. This Lemma follows from identities (12) and (28). �

Remark 1. It is necessary to admit that in some cases, i.e. for some matrices J, the
vector of polynomials P·;(j,k)(λ), j = 0, 1, . . . , k = 0, . . . , j, is not a linear combination of
all elements of set (29) (see, Example 1). But in the general case we need all ”prime”
vectors of polynomials from (29) for the construction of P·;(j,k)(λ) (see, Example 2).

Remark 2. This Section contains results which was published in [5]. In that article
we consider the direct spectral problem for some selfadjoint operator J generated by a
generalized Jacobi matrix, i.e., some eigenvector expansion of J was constructed there.

Let us remark (and it will be used later) that all of the results described above hold
true if J is not selfadjoint. Now we will give some respective explanations.

First of all, we assume that it follows from the construction that J is a Hermitian
operator (because J is a Hermitian matrix). If J is not selfadjoint, it can be extended
to a selfadjoint operator with or without leaving l2. If the operator J is selfadjoint, it
is well known that there is exist a resolution of identity which corresponds to it and
such a resolution will be called ordinary. If J is Hermitian, there is exists some ordinary
resolution of identity for its selfadjoint extension and we will call such a resolution a
generalized resolution of identity for the operator J.

Since the embedding H0 ⊃ H+ is quasinuclear, from [2], Ch. V (see, [2], Ch. V,
Theorems 2.1 and 2.3) it follows that for any M∈ B(R) for the ordinary (the generalized)
resolution of identity E(M), which corresponds to a selfadjoint (Hermitian) operator J,
(15) takes place. So, if J is Hermitian, the results of paper [5], i.e., the construction of
the spectral measure, the generalized eigenvector expansion and so on, are valid.

4. The inverse spectral problem for the generalized Jacobi Hermitian
matrix with an ”almost” semidiagonal matrix on the side diagonals

In this section we will consider the inverse spectral problem for some kind of the
generalized Jacobi Hermitian matrix. In the next section we will give some explanations
about the inverse spectral problem for the general situation, i.e., for the matrix (8).

It is necessary to remark that in this section, we will use the same notations as in
Section 3. They will denote the same objects as above but for a more concrete matrix.

Let us consider the space l2 of form (6). Consider a matrix J on the space l2 of the
form (8) with elements of following type:

cj =


cj;0,0 cj;0,1 0 . . . 0
cj;1,0 cj;1,1 cj;1,2 . . . 0

...
...

...
. . .

...
cj;j,0 cj;j,1 cj;j,2 . . . cj;j,j+1

 , cj;i.i+1 > 0, i = 0, . . . , j;

bj = (bj)T , aj = (cj)T , j = 0, 1, . . . ,

(30)
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where aj , bj , cj , j = 0, 1, . . . , are real-valued matrices. The matrix J generates an operator
J on l2 as the closure in l2 of the operator lfin 3 f 7→ Jf ∈ lfin.

The direct spectral problem for such a matrix was solved in [5] and we will partially
describe its solution in Section 3 (in fact, it was solved for a more general matrix). First
of all, it is necessary to assume that, since the matrix J is real-valued, that the respective
vectors of polynomials are real. This means that Pα;(j,k)(λ) ∈ R for any permitted α, j, k
and a fixed λ ∈ R. Since, in comparison with article [5], we have a more simple matrix,
we can calculate P·;(j,k)(λ), j = 0, 1, . . . , k = 0, . . . , j, more accurately. Let us do this.

The matrix c̃j is lower subdiagonal matrix with positive elements on the main diagonal.
Then c̃j

−1 is as follows:
(31)

c̃j
−1 =



1
cj;0,1

0 0 . . . 0
∗ 1

cj;1,2
0 . . . 0

∗ ∗ 1
cj;2,3

. . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . 1
cj;j,j+1

 ; here ∗ denotes some real constants.

Using (28) and (31) we obtain the following:
1) P·;(0,0)(λ) = δ0.
2) P·;(1,0)(λ) = δ1;
P·;(1,1)(λ) = B0;0,0(λ)P·;(0,0)(λ) + C0;0δ1 = ( 1

c0;0,1
λ− b0

c0;0,1
,

c0;0,0
c0;0,1

, 0, . . .)T .

3) P·;(2,0)(λ) = δ2;

P·;(2,1)(λ) =
1∑

k=0

B1;0,k(λ)P·;(1,k)(λ) + A1;0,0P·;(0,0)(λ) + C1;0δ2

= λ
(
c̃1
−1

)
0,0

P·;(1,0)(λ)−
1∑

k=0

(
c̃1
−1b1

)
0,k

P·;(1,k)(λ) + A1;0,0P·;(0,0)(λ) + C1;0δ2

= (∗λ + ∗; 1
c1;0,1

λ + ∗; ∗; 0; . . .)T ;

(here, and in what follows, ∗ mean some real constants in the respective place);

P·;(2,2)(λ) =
1∑

k=0

B1;1,k(λ)P·;(1,k)(λ) + A1;1,0P·;(0,0)(λ) + C1;1δ2

= λ
(
c̃1
−1

)
1,0

P·;(1,0)(λ) + λ
(
c̃1
−1

)
1,1

P·;(1,1)(λ)

−
1∑

k=0

(
c̃1
−1b1

)
1,k

P·;(1,k)(λ) + A1;1,0P·;(0,0)(λ) + C1;1δ2

= (
1

c1;1,2

1
c0;0,1

λ2 + ∗λ + ∗, ∗λ + ∗, ∗, 0, . . .)T .
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4) B2(λ) = c̃2
−1(λI2 − b2) =


λ

c2;0,1
0 0

∗λ λ
c2;1,2

0
∗λ ∗λ λ

c2;2,3

− c̃2
−1b2;

P·;(3,0)(λ) = δ3;

P·;(3,1)(λ) =
2∑

k=0

B2;0,k(λ)P·;(2,k)(λ) +
1∑

l=0

A2;0,lP·;(1,l)(λ) + C2;0δ3

= (∗λ2 + ∗λ + ∗, ∗λ + ∗, 1
c2;0,1

λ + ∗, ∗, 0, . . .)T ;

P·;(3,2)(λ) =
2∑

k=0

B2;1,k(λ)P·;(2,k)(λ) +
1∑

l=0

A2;1,lP·;(1,l)(λ) + C2;1δ3

= (∗λ2 + ∗λ + ∗, 1
c2;1,2

1
c1;0,1

λ2 + ∗λ + ∗, ∗λ + ∗, ∗, 0, . . .)T ;

P·;(3,3)(λ) =
2∑

k=0

B2;2,k(λ)P·;(2,k)(λ) +
1∑

l=0

A2;2,lP·;(1,l)(λ) + C2;2δ3

= (
1

c2;2,3

1
c1;1,2

1
c0;0,1

λ3 + ∗λ2 + ∗λ + ∗, ∗λ2 + ∗λ + ∗, ∗λ + ∗, ∗, 0, . . .)T .

5) Let us suppose, by induction, that for any j = n − 1, n, n ∈ N, following equalities
take place:

P·;(j,0)(λ) = δj ;

P·:(j,k)(λ) =
k−1∑
r=0

r∑
s=0

∗λsδj−r +
k−1∑
s=0

∗λsδj−k +
k−1∏
i=0

1
cj−k+i;i,i+1

λkδj−k

+
j∑

r=k+1

r−1∑
s=0

∗λsδj−r, k = 1, 2, . . . , j.

(32)

For a better understanding we give the following picture:

(33)

1 λ λ2 . . . λk−1 λk λk+1 . . . λj−2 λj−1 λj

δ0 ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ ∗ 0
δ1 ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . ∗ 0 0
δ2 ∗ ∗ ∗ . . . ∗ ∗ ∗ . . . 0 0 0
...
δj−(k+1) ∗ ∗ ∗ . . . ∗ ∗ 0 . . . 0 0 0
δj−k ∗ ∗ ∗ . . . ∗ + 0 . . . 0 0 0
δj−(k−1) ∗ ∗ ∗ . . . ∗ 0 0 . . . 0 0 0
...
δj−2 ∗ ∗ ∗ . . . 0 0 0 . . . 0 0 0
δj−1 ∗ ∗ 0 . . . 0 0 0 . . . 0 0 0
δj ∗ 0 0 . . . 0 0 0 . . . 0 0 0

Table in (33) should be understood in the following way: if at the intersection of the
column indicated with λs and a row marked with δr there is ” ∗ ”, then the vector of the
polynomials P·;(j,k)(λ) contains the respective element λsδr with some real coefficient.
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The sign ” + ” means that the element λkδj−k has a positive coefficient
k−1∏
i=0

1
cj−k+i;i,i+1

and ”0” stands for an element that does not enter P·;(j,k)(λ).

6) Now we will show that (32) holds true for j = n + 1.
From the definition of vectors of the polynomials, it follows that P·;(n+1,0)(λ) = δn+1.

Using (27), (28), (31), (32) and (33) we obtain

P·;(n+1,i)(λ) =
n∑

k=0

Bn;i−1,k(λ)P·;(n,k)(λ) +
n−1∑
l=0

An−1;i−1,lP·;(n−1,l)(λ) + Cn;i−1δn+1

=
i−2∑
k=0

λ(c̃−1
n )i−1,kP·;(n;k)(λ) + λ

1
cn;i−1,i

P·;(n,i−1)(λ)−
n∑

k=0

(c̃−1
n bn)i−1,kP·;(n,k)(λ)

+
n−1∑
l=0

An−1;i−1,lP·;(n−1,l)(λ) + Cn;i−1δn+1 = λ

[
i−2∑
r=0

r∑
s=0

∗λsδn−r +
n∑

r=i−1

r−1∑
s=0

∗λsδn−r

]

+ λ

[
1

cn;i−1,i

i−2∏
l=0

1
cn−i+1+l;l,l+1

λi−1δn−i+1 +
i−2∑
r=0

r∑
s=0

∗λsδn−r +
n∑

r=i−1

r−1∑
s=0

∗λsδn−r

]

+

[
n∑

r=0

r∑
s=0

∗λsδn−r

]
+

[
n−1∑
r=0

r∑
s=0

∗λsδn−1−r

]
+ [∗δn+1] =

i−2∑
r=0

r+1∑
s=1

∗λsδn+1−(r+1)

+
n∑

r=i−1

r∑
s=1

∗λsδn+1−(r+1) +
i−1∏
l=0

1
cn+1−i+l;l,l+1

λiδn+1−i +
n∑

r=0

r∑
s=0

∗λsδn+1−(r+1)

+ ∗δn+1 =
i−1∑
r=1

r∑
s=1

∗λsδn+1−r +
n+1∑
r=i

r−1∑
s=1

∗λsδn+1−r +
i−1∏
l=0

1
cn+1−i+l;l,l+1

λiδn+1−i

+
n+1∑
r=1

r−1∑
s=0

∗λsδn+1−r + ∗δn+1 =
i−1∑
r=0

r∑
s=0

∗λsδn+1−r +
i−1∏
l=0

1
cn+1−i+l;l,l+1

λiδn+1−i

+
n+1∑
r=i

r−1∑
s=0

∗λsδn+1−r, i = 1, . . . , n + 1.

By induction from these calculations we obtain the following Lemma.

Lemma 2. For any fixed j ∈ N0 and k = 0, . . . , j, the vector of polynomials P·;(j,k)(λ)
for the matrix J of type (8) with elements (30) is a linear combination of elements of
the system

(34)

λj−1δ0

λkδj−k

λ2δ0 . . . . . .
λδ0 λδ1 λδj−2 λδj−1

δ0 δ1 δ2 . . . δj−1 δj

This linear combination consist of λkδj−k with positive coefficient
k−1∏
i=0

1
cj−k+i;i,i+1

and all

other vectors of (34) with some real coefficients.

It is necessary to note that in this case, i.e., when the matrix J has elements (30), the
vectors of polynomials is a linear combination of not all the vectors of system (29) but
just those ones that belong to (34).

Consider the orthogonality relations (24) which corresponds to the matrix J with
elements (30).
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Since
∥∥P·;(j,k)(λ)

∥∥
L2 = 1, j ∈ N0, k = 0, . . . , j, and P·;(j,0)(λ) = δj , j ∈ N0, we obtain

(35)
∫

R
dσαα(λ) = 1, α = 0, 1, . . .

Also, from (24), it follows that

(36) (P·;(N,0)(λ), P·;(j,k)(λ))L2 = 0, N ∈ N0, j = 0, . . . , N − 1, k = 0, . . . , j.

Let us fix some N ∈ N0. Consider (36) step by step w.r.t. (j, k).
1) 0 = (P·;(N,0)(λ), P·;(0,0)(λ))L2 = (δN , δ0)L2 =

∫
R dσ0N (λ).

2.1) 0 = (P·;(N,0)(λ), P·;(1,0)(λ))L2 = (δN , δ1)L2 =
∫

R dσ1N (λ),
2.2) 0 = (P·;(N,0)(λ), P·;(1,1)(λ))L2 = (δN , P·;(1,1)(λ))L2 . From Lemma 2 it follows that
P·;(1,1)(λ) is a linear combination of prime vectors δ0, δ1 and λδ0. Since δN⊥δ0, δN⊥δ1 in
L2, 0 = (P·;(N,0)(λ), P·;(1,1)(λ))L2 = (δN , λδ0)L2 =

∫
R λdσ0N (λ).

So, using Lemma 2 and (36) in the same way we obtain for L2 step by step that

δN⊥λkδj−k, j = 0, . . . , N − 1, k = 0, . . . , j.

Indeed, let us show this by induction. We suppose by induction that it is true for
0 ≤ j ≤ j0 < N − 1 and show that the vectors δj0+1, λδj0 , . . . , λ

j0+1δ0 are orthogonal
to δN . From (36) it follows that 0 = (P·;(N,0)(λ), P·;(j0+1,0)(λ))L2 = (δN , δj0+1)L2 . So,
δN⊥δj0+1. Let us suppose by induction one more time that, for 0 ≤ m < j0 + 1, the
vectors δj0+1, λδj0 , . . . , λ

mδj0+1−m are orthogonal to δN and prove that λm+1δj0−m is
orthogonal to δN . From Lemma 2 it follows that P·;(j0+1,m+1)(λ) is a linear combination of
prime vectors δ0; δ1, λδ0; . . . ; δj0 , . . . , λ

j0δ0; δj0+1, . . . , λ
mδj0+1−m, λm+1δj0−m. According

to the assumption, P·;(N,0)(λ) is orthogonal to all elements of this linear combination
except the last one, i.e., λm+1δj0−m. So, using (36) we obtain

0 = (P·;(N,0)(λ), P·;(j0+1,m+1)(λ))L2 = (P·;(N,0)(λ), λm+1δj0−m)L2 = (δN , λm+1δj0−m)L2 .

Thus, λm+1δj0−m⊥δN in L2 and this ends the proof.
In other words, we obtain following:

(37)
∫

R
λidσMN (λ) = 0, i + M < N, i, M, N ∈ N0.

Also, the following condition takes place:

(38)
∫

R
λidσMN (λ) ∈ R, i,M,N ∈ N0.

Let us prove this fact. First of all,
∫

R λidσMN (λ) = (λiδN , δM )L2 , i, M, N ∈ N0. It is
necessary to admit that δM = P·;(M,0)(λ), M ∈ N0. Since the vectors of polynomials are
real and Lemma 2 is valid, making a simple calculations it is easy to obtain that λiδN is
a linear combination of the form

λiδN =
i+N−1∑

j=0

j∑
k=0

rj,kP·;(j,k)(λ) +
i∑

k=0

ri+N,kP·;(j,k)(λ), i, N ∈ N0,

where rj,k is some real coefficient. Also this formula holds true because the vectors of
the polynomials P·;(j,k)(λ) form a basis in the real span of elements (34) (this will be
shown later). Note that ri+N,i =

∏i−1
k=0 cN+k;k,k+1, i, N ∈ N0. Since the vectors of the

polynomials are orthonormal,∫
R

λidσMN (λ) = (λiδN , δM )L2

=
( i+N−1∑

j=0

j∑
k=0

rj,kP·;(j,k)(λ) +
i∑

k=0

ri+N,kP·;(j,k)(λ), P·;(M,0)(λ)
)

L2

= rM,0 ∈ R.
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So, the spectral measure Σ(·) of the matrix J with elements (30) satisfies conditions
(35), (37), (38).

Now we proceed to consider the inverse spectral problem for the matrix J.
That is, we have an arbitrary operator-valued measure Σ(·) : B(R) → L(`2), i.e., Σ(M)

is a linear bounded operator on `2. This measure is such that:
i) Σ(·) is a nonnegative, i.e., ∀ M∈ B(R) Σ(M) is a nonnegative operator on `2;
ii) equations (35), (37), (38) are valid, where σαβ(M) := (Σ(M)δβ , δα)`2 , α, β ∈ N0,

M∈ B(R);
iii) the following inequality takes place:

(39)
∫

R
|λ|mdσαα(λ) < ∞, m = 0, 1, . . . , α = 0, 1, . . . .

Since Σ(·) is not a usual measure, we will give some necessary definitions.
Let Θ is set of elements of full measure from B(R), i.e., Θ := {θ ∈ B(R)|Σ(θ) = Σ(R)}.

The support of the measure Σ(·) can be defined in a usual way as the intersection of closed
sets of full measure, i.e., suppΣ =

⋂
τ θτ , where θτ ∈ Θ and θτ = θτ .

Remark 3. Since Σ(·) has to be a spectral measure of the operator J, which is con-
structed from a real-valued matrix J with elements (30), the above-mentioned assump-
tions are natural and, what is more, necessary for Σ(·), and this will be shown later.

Also, it is necessary to assume that here and later on, the words a ”spectral matrix
(measure)” mean that the matrix (the measure) Σ(·) is generated by some J in accordance
with the direct spectral problem, i.e., there exists a generalized Hermitian Jacobi matrix
J that generates a Hermitian or a selfadjoint operator J and such that we can construct
Σ(·) from J by the procedure described in Section 3.

From nonnegativeness of the measure Σ(·) : B(R) → L(`2), it follows that Σ(M) is a
selfadjoint operator for any fixed M∈ B(R) (see [4], Ch.8, Theorem 5.3), i.e., ∀f, g ∈ `2

(Σ(M)f, g)`2 = (f,Σ(M)g)`2 = (Σ(M)g, f)`2
.

Since Σ(·) is a selfadjoint measure, we obtain that

(40) σαβ(·) = σβα(·), α, β = 0, 1, . . . .

The measure Σ(·) we will be also understood as a matrix (σαβ(·))∞α,β=0 . Similarly to
Section 3, using measure Σ(·), we construct the space L2 := L2(R, dΣ(·)) of infinite
vectors the elements of which are complex-valued functions of real variable, with the
scalar product (·, ·)L2 .

Lemma 3. For any finite vector ξ(λ) = (ξ0(λ), ξ1(λ), . . .)T , where ξα(λ), α = 0, 1, . . . ,
are some polynomials, we have

∫
R (dΣ(λ)ξ(λ), ξ(λ))`2

< ∞, i.e. ξ(λ) ∈ L2.

Proof. This statement follows from condition (39). Indeed, let us denote ξ(λ, α) :=
(0, . . . , 0, ξα(λ), 0, . . .)T = ξα(λ)δα, where ξα(λ) is some polynomial. Then

(ξ(λ, α), ξ(λ, α))L2 =
∫

R
(dΣ(λ)ξ(λ, α), ξ(λ, α))`2 =

∫
R
|ξα(λ)|2dσαα(λ)

≤
∫

R

N0∑
i=0

|ai| |λ|jdσαα(λ) < ∞

(here, N 3 N0 is the degree of the polynomial ξα(λ), ai ∈ R). So, ξ(λ, α) ∈ L2.
From nonnegativeness of Σ(·) and (40) it follows that

0 ≤ (Σ(M)(δα − δβ), (δα − δβ))`2 = σαα(M)− σβα(M)− σαβ(M) + σββ(M)

= σαα(M) + σββ(M)− (σαβ(M) + σαβ(M)), α, β ∈ N0, M∈ B(R).
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From this inequality we obtain that Re σαβ(M) ≤ 1
2 (σαα(M) + σββ(M)), α, β ∈ N0,M∈

B(R). On the other hand, for all α, β ∈ N0 and M∈ B(R),

0 ≤ (Σ(M)(iδα − δβ), (iδα − δβ))`2 = σαα(M) + σββ(M) + (iσαβ(M) + iσαβ(M)).

Therefore, Im σαβ(M) ≤ 1
2 (σαα(M) + σββ(M)), α, β ∈ N0,M∈ B(R).

Thus, ξ(λ, α) ∈ L2 and

(41) |σαβ(M)| ≤ 1√
2
(σαα(M) + σββ(M)), α, β ∈ N0, M∈ B(R).

From these facts it follows that ξ(λ) ∈ L2, because ξ(λ) is a finite linear combination of
the corresponding ξ(λ, α), α = 0, 1, . . . �

Let us consider a system of vectors (34) in the space L2 and we will suppose that
system (34) ∀ (j, k) : j = 0, 1, . . . , k = 0, . . . , j, consists of linearly independent elements.

Here we assume that system (34) consists of linearly independent vectors. The follow-
ing statement gives a necessary and sufficient condition for this assumption.

Theorem 1. Let Σ(·) = (σαβ(·))∞α,β=0 be a nonnegative operator-valued measure. Vec-
tors of system (34) are linearly independent in the space L2 for all permitted j, k, i.e.
j, k : j = 0, 1, . . . , k = 0, . . . , j, if and only if the support of the measure Σ(·) has an
infinite set of points.

Proof. Necessity. Let us suppose the opposite, i.e., let Σ(·) have a finite support. Then
for some fixed α0 ∈ N0, σα0α0(·) also has a support with a finite set of points. Let
us construct a polynomial T (λ) := Tnλn + . . . + T0, Ti ∈ R, i ∈ N0, λ ∈ R, such that
∃λ0 ∈ R : T (λ0) 6= 0 and

I :=
∫

R
|T (λ)|2dσα0α0(λ) = 0.

Consider ξ(λ) := T (λ)δα0 . Then

(ξ(λ), ξ(λ))L2 = I = 0,

i.e., the elements of system (34) are linearly dependent. We obtain a contradiction.
Sufficiency. Let us consider some monotone increasing sequence (qα)∞α=0 such that

∀α ∈ N0, qα > 0 and
∑∞

α=0
1

qα
< ∞. Let us construct the measure µ(·) =

∑∞
α=0

σαα(·)
qα

on R. This measure has also an infinite support.
From (35) it follows that the measure µ(·) is finite. Since (41) holds, ∀α, β ∈ N0,

|σαβ(·)| ≤ qmax {α,β}µ(·). Therefore, the measure Σ(·) is absolutely continuous w.r.t. µ(·).
Thus, Radon-Nikodym theorem takes place, i.e., there is a nonnegative matrix M(λ) =
(Mα,β(λ))∞α,β=0 such that dΣ(λ) = M(λ)dµ(λ), where Mα,β(λ) is a finite integrable
function for all α, β ∈ N0. This matrix is positive on the set of full measure for dµ(λ).

Assume that some linear combination ξ(λ), λ ∈ R, of vectors (34) is equal to zero in
the space L2, i.e.,

0 = ‖ξ(λ)‖2L2 =
∫

R
(dΣ(λ)ξ(λ), ξ(λ))`2 =

∫
R
(M(λ)ξ(λ), ξ(λ))`2dµ(λ).

Then (M(λ)ξ(λ), ξ(λ))`2 = 0 for µ-almost all λ ∈ R. But M(λ) is positive on the set
of full measure for dµ(λ); therefore ξ(λ) = (ξ0(λ), ξ1(λ), . . .) = 0̄ for µ-almost all λ.
The functions ξi(λ), i ∈ N0, are some ordinary polynomials. Since dµ(λ) has an infinite
support, equality to zero of functions ξi(λ), i ∈ N0, means that all their coefficients are
also equal to zero. So, the vectors of system (34) are linearly independent in L2 for all
j, k : j = 0, 1, . . . , k = 0, . . . , j. �
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Now we will make (34) orthonormal in L2. We will apply the orthonormalization
procedure to (34) in following order:

λ2δ0

↑ ↘
λδ0 λδ1

↑ ↘ ↑
δ0 → δ1 δ2 . . .

and in a classical way.
According to this procedure we obtain some vectors of polynomials Qj;k(λ) which are

defined in a unique way and they form the following system:

(42)

Qj;k(λ)

Q2;2(λ)
...

Q1;1(λ) Q2;1(λ) Qj;1(λ)
Q0;0(λ) Q1;0(λ) Q2;0(λ) . . . Qj;0(λ)

From the construction and (37) it follows that the following orthogonality relations hold:

(43) (Qj;k(λ), Qm;l(λ))L2 = δj,mδk,l, j,m = 0, 1, . . . , k = 0, . . . , j, l = 0, . . . ,m.

From the procedure of constructing Qj;k(λ), it is easy to see that ∀j ∈ N0, k = 0, . . . , j,

(44) Qj;k(λ) = qj;kλkδj−k + Sj;k(λ),

where qj;k is some positive constant and Sj;k(λ) denotes the linear combination with real
coefficients of vectors (34) without λkδj−k.

Let us show this by using induction. From (35) it follows that Q0;0(λ) = δ0. From
(35) and (37) we have that Q1;0(λ) = δ1. The construction of Q1;1(λ) is the following.
Consider the linear combination Q′

1;1(λ) = λδ0+k1;0Q1;0(λ)+k0;0Q0;0(λ), where k1;0, k0;0

are some complex constants. According to the construction, Q′
1;1(λ)⊥Q1;0(λ) in L2. So,

from (35) and (37) it follows that

0 = k1;0 + (λδ0, δ1)L2 = k1;0 +
∫

R
λdσ10(λ).

Therefore, from (38) we obtain that k1;0 = −
∫

R λdσ10(λ) ∈ R. In the same way it is easy

to show that k0;0 = −
∫

R λdσ00(λ) ∈ R. Since Q1;1(λ) = Q′
1;1(λ)

‖Q′
1;1(λ)‖

L2
, from the above it

follows that Q1;1(λ) is a linear combination with real coefficient of the vectors δ0; δ1, λδ0.
Let us suppose by induction that for some fixed j, k , Qm;l(λ) is a linear combination
with real coefficient of the respective vectors in the set (34) for all (m, l) ∈ ∆j,k, where

∆j,k = {(m, l)|if m = 0, . . . , j − 1 then l = 0, . . . ,m, and if m = j then l = 0, . . . , k}.
Now we will show that the next vector of polynomials, in sense of the order of or-
thonormalization, is a respective linear combination of elements of system (34) with
real coefficients. If k = j then from (37) it follows that Qj+1;0(λ) = δj . If k =
0, . . . , j − 1 then we have to prove that Qj;k+1(λ) is a linear combination of respec-
tive prime vectors with real coefficients. Consider the linear combination of the form
Q′

j;k+1(λ) = λk+1δj−(k+1) +
∑

(m,l)∈∆j,k
km;lQm;l(λ). According to the construction,

Qj;k+1(λ)⊥Qm;l(λ), (m, l) ∈ ∆j,k. So, from (35) it follows that

0 = (Q′
j;k+1(λ), Qm;l(λ))L2 = (λk+1δj−(k+1), Qm;l(λ))L2 + km;l, (m, l) ∈ ∆j,k.

According to the assumption, Qm;l(λ) is a linear combination with real coefficients of
respective vectors from system (34). Since condition (38) is satisfied,

(λk+1δj−(k+1), Qm;l(λ))L2 ∈ R.
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Thus, km;l ∈ R for all (m, l) ∈ ∆j,k, i.e., Q′
j;k+1(λ) is a linear combination of respective

vectors with real coefficients. Since Qm;l(λ) = Q′
m;l(λ)

‖Q′
m;l(λ)‖

L2
, Qm;l(λ) is also a linear

combination with real coefficients of elements of system (34).
In particular, from (35) and (37) it also follows that

Qj;0(λ) = δj , j ∈ N0.

So, all the elements Qj;k(λ) of (42) are linear combinations of the form (44) of simple
vectors from (34). And vise versa, any element of (34) is a linear combination of vectors
of polynomials Qj;k(λ) of (42). This follows from representation (44).

Theorem 2. Let Σ(λ) be a spectral matrix of some generalized Hermitian Jacobi matrix
J with elements (30).

Then (39) holds true and the vectors (34) are linearly independent. Thus, Qj;k(·) =
P·;(j,k)(·), j ∈ N0, k = 0, . . . , j, and the real linear span of P·;(m,l)(λ), (m, l) ∈ ∆j,k,
coincides with the real linear span of the vectors (34).

Proof. Let us show that for all u ∈ lfin, the identity (̂Jmu)(λ) = λmû(λ),m ∈ N0, takes
place, wherê is the Fourier transform defined by (21). To prove this, it is sufficient to
show that (̂Ju)(λ) = λû(λ).

Let u ∈ lfin and n0 ∈ N be such that u = (u0, . . . , un0 , 0, . . .). Then according to (21),
we have (̂Ju)0(λ) =

∑∞
k=0

(
(Ju)k, P0;(k,·)(λ)

)
Hk

. Using Green’s formula (10) we obtain

(̂Ju)0(λ) =
∞∑

k=0

(
(Ju)k, P0;(k,·)(λ)

)
Hk

=
n0+1∑
k=0

(
uk, (J(P0;(0,·)(λ), P0;(1,·)(λ), . . .)T )k

)
Hk

=
n0+1∑
k=0

(
uk, λP0;(k,·)(λ)

)
Hk

= λû0(λ).

In the same way we can prove that (̂Ju)j(λ) = λûj(λ), j = 1, 2, . . . So, (̂Ju)(λ) = λû(λ).
Using (25) for all even m ∈ N we get

∞ > (Jmeα;0, eα;0)l2 = (λmêα;0, êα;0)L2 = (λmP·;(α,0)(λ), P·;(α,0)(λ))L2

= (λmδα, δα)L2 =
∫

R
λmdσαα(λ), α = 0, 1, . . .

Therefore statement (39) holds true.
Now we show that system (34) consists of linearly independent vectors. From formulas

(32) it is easy to see that P·;(j,k)(λ), j = 0, 1, . . . , k = 0, . . . , j, is a linear combination of
vectors of system (34). Therefore the real linear span of j(j+1)

2 + k + 1 vectors of system
(34) contains the following orthonormal system of vectors in L2:

(45)

P·;(j−1,j−1)(λ)
P·;(j,k)(λ)

...
...

P·;(1,1)(λ) P·;(j−1,1)(λ) P·;(j,1)(λ)
P·;(0,0)(λ) P·;(1,0)(λ) . . . P·;(j−1,0)(λ) P·;(j,0)(λ)

The number of the vectors in system (45) is also equal to j(j+1)
2 + k + 1. From all of the

above-mentioned we obtain linear independence of vectors of system (34).
At last, the real linear span of all vectors of (34), not including λkδj−k, coincides with

the real linear span of all vectors of system (45), not including P·;(j,k)(λ). This is true,
since the latter system can be obtained from the former one by a linear combination,
and the dimensions of both systems are equal to j(j+1)

2 + k. Thus from orthogonality
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of P·;(j,k)(λ) to P·;(m,l)(λ) ((j, k) 6= (m, l)), we obtain the orthogonality of P·;(j,k)(λ) to
all the vectors in (34), except for λkδj−k. In addition, P·;(j,k)(λ) has the norm equal to
1 in L2 and the coefficient at λkδj−k is positive; this follows from (32). Since Qj;k(λ)
is obtained in a unique way, we can make the following conclusion: P·;(j,k)(·) = Qj;k(·)
∀j = 0, 1, . . . , k = 0, . . . , j in the space L2(R, dΣ(λ)). Since the measure Σ(·) has infinite
support,
∀λ ∈ R P·;(j,k)(λ) = Qj;k(λ), j = 0, 1, . . . , k = 0, . . . , j. �

Theorem 3. The aggregate l̂fin of the Fourier transforms of vectors from lfin consists
of all finite vectors of the form ξ(λ) = (ξ0(λ), ξ1(λ), . . .)T , where ξα(λ), α = 0, 1, . . .

is some polynomial of λ. If ξ(λ) ∈ l̂fin is such that (ξ(λ), ξ(λ))L2(R,dΣ(λ)) = 0, then
∀α = 0, 1, . . . ξα(λ) ≡ 0.

Proof. To prove the first statement, it is sufficient to show that all the vectors λjδk ∈
l̂fin, j, k ∈ N0. The latter follows from the fact that λjδk is a linear combination of the
corresponding vectors P·;(m,l)(λ) that are Fourier transforms of the vectors em;l ∈ lfin.

The second statement of the theorem follows from the following consideration. The
vector ξ(λ) ∈ l̂fin is a linear combination of linearly independent vectors (34). So, if
(ξ(λ), ξ(λ))L2 = 0, then all the coefficients in this combination are equal to zero. This
means that ξα(λ) ≡ 0, α = 0, 1, . . . �

Remark 4. It follows from Theorem 3 that u → û(λ) is a one-to-one mapping between
lfin and finite vectors of polynomials. Using the Parseval equality (22) we obtain that
this mapping is an isometry between lfin and l̂fin. By continuity it can be extended to
l2, and its image l̂2 is the closure of l̂fin in L2. Under the action of the isometry, the
operator J transforms into an operator Ĵ of multiplication by the independent variable
λ (i.e., the operator û(λ) → λû(λ)) that is defined on l̂fin. It can be extended by closure
to the whole domain D(Ĵ).

Theorem 4. The set of all finite vectors of polynomials, i.e. l̂fin, is dense in L2(R, dΣ(λ))
if and only if the spectral measure dΣ(λ) is generated by the ordinary resolution of iden-
tity, that is, dΣ(λ) is constructed in accordance with the direct spectral problem (see, Sec-
tion 3 or [5]) from some selfadjoint operator A in l2 generated by a generalized Hermitian
Jacobi matrix and, therefore, identity (20) holds, where E(·) is an ordinary resolution of
identity for A. Such spectral measures will be called orthogonal.

Proof. Sufficiency. Let Σ(·) = (σαβ(·))∞α,β=0 = ((E(·)eβ;0, eα;0)l2)
∞
α,β=0, where E(·)

is an ordinary resolution of identity. Let us prove that the vectors of polynomials are
dense in L2(R, dΣ(·)). Let us denote by A ⊇ J the selfadjoint extension of the operator
J in l2 responding to E(·). Also, by Rz (Im z 6= 0) we denote its resolvent. Consider
some fixed u ∈ lfin. Since Rzu ∈ D(A) ⊆ l2, for all fixed z there exists v ∈ lfin such
that ‖Rzu− v‖l2 < ε. Passing using the isometry from l2 to L2 we obtain the following:
∀û(λ)∃v̂(λ)

(46)
∥∥∥∥ û(λ)

λ− z
− v̂(λ)

∥∥∥∥
L2

< ε.

Indeed, let (A− z1)−1u = f, where 1 is the identity operator in l2. Then (A− z1)f = u

and, therefore, zf = Af −u. Using the Fourier transform we get that f̂(λ) = 1
z (̂zf)(λ) =

1
z (λf̂(λ)− û(λ)). Thus f̂(λ) = bu(λ)

λ−z . Since ε is an arbitrary positive constant in (46), any

function bu(z)
λ−z can be approximate by a vector of polynomials; in other words, bu(z)

λ−z ∈ l̂2
for any û(λ).
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Now let h(λ) ∈ L2(R, dΣ(λ)) be orthogonal to l̂2. Then for all non-real z, the following
equality takes place:∫

R

(
dΣ(λ)

û(λ)
λ− z

, h(λ)
)

`2

=
∫

R

1
λ− z

(dΣ(λ)û(λ), h(λ))`2
= 0.

Consider some fixed j ∈ N0 and put u := hj(λ)ej;0. Then û(λ) = hj(λ)P·;(j,0)(λ) =
= hj(λ)δj . So, ∫

R

1
λ− z

(dΣ(λ)hj(λ)δj , h(λ))`2 = 0.

If we consider this equality for all j and sum over all of them, then we obtain∫
R

1
λ− z

(dΣ(λ)h(λ), h(λ))`2 = 0.

Let us consider the measure η(M) =
∫

M(dΣ(λ)h(λ), h(λ))`2 , M∈ B(R).
Since

∫
R

1
λ−z dη(λ) = 0, we have η(M) ≡ 0. Therefore, h(λ) = 0. So, l̂2 = L2(R, dΣ(·)).

Necessity. Let l̂2 = L2(R, dΣ(·)). Let us show that dΣ(λ) is generated by some
selfadjoint extension A of an operator J in l2. If we pass by isometry from l2 to L2, then
the operator J is transformed into the operator Ĵ of multiplication by the independent
variable λ, which is defined, at first, on vectors of polynomials, and, later, on the whole
L2 by closure. Let us denote by Â the ordinary operator of multiplication by λ in
L2(R, dΣ(λ)). This operator is selfadjoint. Then Ĵ ⊆ Â and Σ(M) = (σαβ(M))∞α,β=0 =

((Ê(M)δβ , δα)L2)∞α,β=0, where Ê(M),M∈ B(R), is the resolution of identity corresponding
to Â and that coincides with the operator of multiplication by the characteristic function.
Since l̂2 = L2(R, dΣ(·)), we can pass via the inverse isometry from Â to the operator A
in l2. It is easy to see that this operator is the required selfadjoint operator which is an
extension of J and generates dΣ(·). �

Remark 5. In the situation described in Section 3, if the measure Σ(·) is a spectral
measure of a selfadjoint operator J generated by generalized Hermitian matrix, then l̂fin

is dense in L2.
Indeed, in the direct spectral problem for the matrix J (see, article [5]) the operator J

is constructed as a selfadjoint closure of a Hermitian operator in l2. So, the corresponding
spectral measure is generated by the ordinary resolution of identity. Thus, from Theorem
4, it follows that the set of all finite vectors of polynomials is dense in L2.

Theorem 5. Let dΣ(·) be a non-negative operator-valued measure on R and (39) hold.
If for all u, v ∈ lfin and their Fourier transforms û(λ), v̂(λ), defined by (21), the Parse-
val equality (22) holds (or, which is the same, orthogonality relations (24) holds), then
dΣ(·) is a spectral measure (matrix), i.e., in the general case, there exists a general-
ized resolution of identity constructed from a selfadjoint extension of J, and Σ(·) =
((E(·)eβ;0, eα;0)l2)

∞
α,β=0 = (σαβ(·))∞α,β=0.

Proof. Using the Parseval equality (22) we construct an isometry between l2 and l̂2 ⊆
L2(R, dΣ(λ)). This isometry transforms the operator J into the operator Ĵ of multipli-
cation by λ, which is equal to the closure of the operator of multiplication by λ, defined
on vectors of polynomials. Using this isomorphism we can pass from the initial problem
to the problem of constructing a selfadjoint extension Â of the operator Ĵ such that
Σ(·) = (σαβ(·))∞α,β=0 =
= ((Ê(·)δβ , δα)L2)∞α,β=0, where Ê(·) is a resolution of identity corresponding to Â. For
the operator Â, we can consider a selfadjoint extension of the operator of the original
multiplication by λ in L2(R, dΣ(λ)). If l̂2 = L2, then the obtained extension corresponds
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to an extension of J without leaving l2; and, in case l̂2 ⊂ L2, it is an extension with a
larger space. �

Remark 6. If we consider the case described in Remark 5, it follows that l̂fin is dense
in L2, i.e., l̂2 = L2. Therefore, if conditions of Theorem 5 are satisfied, then dΣ(·) is a
spectral measure corresponding to an ordinary resolution of identity.

Now we proceed directly to the solution of the inverse spectral problem.
Let us introduce formulas that express elements of J with in terms of P·;(j,k)(λ).

According to (11) and the definition of Pα;(j,k)(λ), α = 0, 1, . . . , j = 0, 1, . . . , k = 0, . . . , j,
we obtain

aj−1Pα;(j−1,·)(λ) + bjPα;(j,·)(λ) + cjPα;(j+1,·)(λ) = λPα;(j;·)(λ).

So, for any fixed i = 0, . . . , j, the following equalities take place:
j−1∑
k=0

aj−1;i,kPα;(j−1,k)(λ) +
j∑

k=0

bj;i,kPα;(j,k)(λ) +
j+1∑
k=0

cj;i,kPα;(j+1,k)(λ) = λPα;(j;i)(λ).

Since this equality takes place for all α = 0, 1, . . . , we get

(47)
j−1∑
k=0

aj−1;i,kP·;(j−1,k)(λ) +
j∑

k=0

bj;i,kP·;(j,k)(λ) +
j+1∑
k=0

cj;i,kP·;(j+1,k)(λ) = λP·;(j;i)(λ).

So, we can define elements of the matrix J in the same way as in (26), i.e., ∀j, k ∈ N0

(48) Jj,k;l,m =
∫

R
λ

(
dΣ(λ)P·;(k,m)(λ), P·;(j,l)(λ)

)
`2

, l = 0, . . . , j, m = 0, . . . , k.

Since P·;(k,m)(λ) is real-valued, we have: ∀j = 0, 1, . . .

aj;l,m = Jj+1,j;l,m = (λP·;(j,m)(λ), P·;(j+1,l)(λ))L2 , l = 0, . . . , j + 1, m = 0, . . . , j;

bj;l,m = Jj,j;l,m = (λP·;(j,m)(λ), P·;(j,l)(λ))L2 , l = 0, . . . , j, m = 0, . . . , j;

cj;l,m = Jj,j+1;l,m = (P·;(j+1,m)(λ), λP·;(j,l)(λ))L2 , l = 0, . . . , j, m = 0, . . . , j + 1.

(49)

Let us show that bj = (bj)T , aj = (cj)T . The matrix dΣ(·) is selfadjoint, i.e. dΣ(·) =
(dΣ(·))∗ = (dΣ(·))T . Then ∀j = 0, 1, . . .

aj;l,m =
∫

R
λ(dΣ(λ)P·;(j,m)(λ), P·;(j+1,l)(λ))`2 =

∫
R

λ(P·;(j,m)(λ), dΣ(λ)P·;(j+1,l)(λ))`2

=
∫

R
λ(dΣ(λ)P·;(j+1,l)(λ), P·;(j,m)(λ))`2 = cj;m,l, l = 0, . . . , j + 1, m = 0, . . . , j.

Therefore aj = (cj)T . In the same way we can prove that bj = (bj)T .

Now we formulate the following uniqueness theorem.

Theorem 6. Elements of the matrix J in the form (8) with coefficients in the form (30)
can be recovered by its spectral measure in a unique way.

Proof. Let dΣ(·) be a spectral matrix of J and Pα;(j,k)(λ) be the respective polynomi-
als. Then elements of the matrix J are defined by (48). Let us consider the vectors
of polynomials (42), i.e., Qj;k(λ) ∈ L2(R, dΣ(λ)). According to Theorem 2, Qj;k(λ) =
P·;(j,k)(λ), j = 0, 1, . . . , k = 0, . . . , j, and, therefore, λQj;k(λ) = λP·;(j,k)(λ), j = 0, 1, . . . , k =
0, . . . , j. So, equalities (48) have the form

Jj,k;l,m =
∫

R
λ (dΣ(λ)Qk;m(λ), Qj;l(λ))`2

, j, k ∈ N0, l = 0, . . . , j, m = 0, . . . , k
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and, particularly,
aj;l,m = Jj+1,j;l,m = (λQj;m(λ), Qj+1;l(λ))L2 , l = 0, . . . , j + 1, m = 0, . . . , j;

bj;l,m = Jj,j;l,m = (λQj;m(λ), Qj;l(λ))L2 , l = 0, . . . , j, m = 0, . . . , j;

cj;l,m = Jj,j+1;l,m = (Qj+1;m(λ), λQj;l(λ))L2 , l = 0, . . . , j, m = 0, . . . , j + 1.

(50)

These formulas show that the coefficients of the matrix J are uniquely defined by dΣ(·).
�

Remark 7. From Theorem 6, we obtain following result.
Let us consider some matrix J of form (8) with coefficients (30). Using the direct

spectral problem for this matrix we obtain some spectral measure Σ(·). Since the measure
Σ(·) is spectral, we can recover elements of some generalized Jacobi Hermitian matrix J ′

using the inverse spectral problem.
Then J = J ′.

Now we formulate the main theorem for solution of the inverse spectral problem.

Theorem 7. Let dΣ(λ) = (dσαβ(λ))∞α,β=0 be some non-negative operator-valued measure
the values of which are bounded operators in `2. Then dΣ(λ) is a spectral matrix of some
matrix J of the form (8) with coefficients (30) if and only if the following conditions are
satisfied:

1) relations (35), (37), (38) and (39) are valid, i.e. ii) and iii) hold true;
2) any system of vectors (34) is linearly independent in L2(R, dΣ(λ)) or, what is

the same, supp Σ(·) has an infinite set of points.
If 1)–2) are satisfied then the elements of the matrix J are correctly calculated by the

formulas

(51) Jj,k;l,m =
∫

R
λ (dΣ(λ)Qk;m(λ), Qj;l(λ))`2

, j, k ∈ N0, l = 0, . . . , j, m = 0, . . . , k,

i.e., all the coefficients are such that the matrix J has the form (8) with elements
aj , bj , cj , j = 0, 1, . . . , of type (30) defined by (50).

Proof. Necessity. Let dΣ(λ) be a spectral matrix of some operator J. Equalities (35),
(37), (38) were proved earlier: the proof was given when these relations were formulated.
The rest part of conditions 1) and 2) follows from Theorems 1 and 2.

Sufficiency. Let us define elements of the matrix J by (51).
First of all, we prove that all elements, which do not belong to the blocks aj , bj , cj ,

are equal to zero. Indeed, let |j−k| ≥ 2. For determinacy we consider the case j ≤ k−2.
According to (44), Qj;l(λ) = qj;lλ

lδj−l + Sj;k(λ). Consider λQj;l(λ). According to the
construction of Qj;k(λ) we can state that λQj;l(λ) is a linear combination of the vectors

(52)

λjδ0

λl+1δj−l

λ2δ0

...
...

λδ0 λδ1 . . . λδj−1 λδj

Therefore,

λQj;l(λ) =
qj;l

qj+1;l+1
Qj+1;l+1(λ) + ∗Qj+1;l(λ) + · · ·+ ∗Qj+1;0(λ)

+ ∗Qj;j(λ) + · · ·+ ∗Qj;0(λ) + · · ·+ ∗Q0;0(λ),
(53)

where ∗ denotes some real constants. Since j ≤ k− 2, from equality (51), representation
(53) and orthogonality relations (43), we obtain that Jj,k;l,m = 0 for such j, k and all
permitted l,m. It is easy to show that the matrix J is selfadjoint (in the same way as for
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the matrices defined by (49)), i.e., J = J∗ = JT or, what is the same, Jj,k;l,m = Jk,j;m,l.
Therefore, Jj,k;l,m = 0 for j ≥ k − 2 and all permitted l, m.

Let us show that for all j and all permitted m ≥ l + 2, cj;l,m = 0. From definition
(50), representation (53) and orthogonality relations (43) it is easy to see that λQj;l(λ) ⊥
Qj+1;m(λ). So, cj;l,m = 0. Since aj = (cj)∗, for all j and all permitted l ≥ m+2 aj;l,m = 0.

Now we show that for all j = 0, 1, . . . , cj;l,l+1 = aj;l+1,l > 0, l = 0, . . . , j. Since
aj = (cj)∗, it sufficient to prove that cj;l,l+1 > 0. From equalities (50), representation
(53) and orthogonality relations (43) we obtain that Qj+1;l+1(λ) is orthogonal in L2 to
all summands in the right-hand side of (53), except for the first one. Therefore, we get

(54) cj;l,l+1 =
qj;l

qj+1;l+1
> 0.

And, all the other elements of the matrices aj , bj , cj , i.e., not mentioned above, are
some real constants in the general case. This is easy to see from definition (50), repre-
sentation (53) and orthogonality relations (43).

Let us define ∀j ∈ N0

Ω :=
j−1∑
m=0

aj−1;l,mQj−1;m(λ) +
j∑

m=0

bj;l,mQj;m(λ) +
j+1∑
m=0

cj;l,mQj+1;m(λ), l = 0, . . . , j,

where Q−1;m(λ) := 0. Now we will show that ∀j, p ∈ N0

(55) (Ω, Qp;q(λ))L2 = (λQj;l(λ), Qp;q(λ))L2 , l = 0, . . . , j, q = 0, . . . , p.

Indeed, let |j−p| ≥ 2. Then (Ω, Qp;q(λ))L2 = 0. Let, for determinacy, p ≥ j +2. From
representation (53) and orthogonality relations (43) we get that (λQj;l(λ), Qp;q(λ))L2 =
0. It is easy to see (arguing in the same way as in above-mentioned proof for correctness
of the coefficients) that the same equality takes place if p ≤ j +2. Therefore, in this case,
the equality (55) is valid.

Let j = p. Then from (43) we get that (Ω, Qp;q(λ)) = bj;l,q. From equality (53) it
follows that (λQj;l(λ), Qp;q(λ))L2 = bj;q,l. Since bj = (bj)∗, equality (55) holds true.

Let j + 1 = p. Then from (43) and the definition of Ω, we obtain that (Ω, Qp;q(λ)) =
cj;l,q. Also, from equalities (53) and (50) it follow that (λQj;l(λ), Qp;q(λ))L2 = aj;q,l. So,
(55) true.

And the last one, if j − 1 = p, then (Ω, Qp;q(λ))L2 = aj−1;l,q = cj−1;m,l =
= (λQj;l(λ), Qp;q(λ))L2 . So, the proof of (55) is completed.

Since Ω and λQj;l(λ) are linear combinations of respective sets of vectors of type (34),
they are linear combinations of the vectors Qp;q(λ). Since p and q are arbitrary in (55),
Ω = λQj;l(λ), λ ∈ R. Thus, ∀j ∈ N0, l = 0, . . . , j

(56)
j−1∑
m=0

aj−1;l,mQj−1;m(λ) +
j∑

m=0

bj;l,mQj;m(λ) +
j+1∑
m=0

cj;l,mQj+1;m(λ) = λQj;l(λ).

So, the sequence Qj;l(λ) ∈ L2(R, dΣ(λ)), j = 0, 1, . . . , l = 0, . . . , j, is a solution of the
equation (56) with the initial conditions Q−1;l(λ) = 0, Qj;0(λ) = δj . On the other
hand, the orthogonal polynomials P·;(j,l)(λ) also satisfy the difference expression (56)
(see (47)) and the same initial conditions. The solution of equation (56) is unique;
therefore Qj;l(λ) = P·;(j,l)(λ), j = 0, 1, . . . , l = 0, . . . , j. From this fact and (43) it fol-
lows that P·;(j,l)(λ) satisfy the orthogonality relations. Thus, the orthogonal polynomials
constructed from difference expressions satisfy the orthogonality relations in the space
L2(R, dΣ(·)). Using Theorem 5 we can state that dΣ(·) is a spectral matrix (measure)
constructed from the matrix J. �
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5. On the inverse spectral problem for a generalized Jacobi Hermitian
matrix

In Section 4 we have investigated the inverse spectral problem for some type of gen-
eralized Jacobi Hermitian matrices. It is necessary to admit that the theory described
in Section 4 can be easily transferred to such type of matrices where the procedure of
calculating P·;(j,k)(λ) is quite simple, in other words, if it is easy to understand the pro-
cedure of orthogonalization. For example, this is the case if cn is a matrix with mixed
rows in a matrix of form (30).

In article [5] we consider a direct spectral problem for generalized Jacobi Hermitian
matrices. In this article we solved the inverse spectral problem just for the type of gene-
ralized Jacobi Hermitian matrices elements of which satisfy condition (30). So, a natural
question arises: what is the situation in the general case ?

First of all, it is necessary to say that the matrices J of type (8) with coefficients (30)
also appear in article [3]. In that paper they were related to a complex moment problem.
But there is a completely different situation with the direct and the inverse spectral
problems. Since the introduced matrix induced a normal operator, in the direct spectral
problem there appear only one boundary condition (in our case there is an infinite vector
of them) and, therefore, the respective spectral measure is scalar-valued.

Secondly, it is easy to see that in the general case the vector of polynomials P·;(j,k)(λ)
for some j, k can be such that none of its coefficients is positive. Therefore, there is no
way to obtain our polynomials by a standard orthogonalization of a system similar to
(34).

And the last one, in general case the construction of polynomials Pα;(j,k)(λ) is quite
complicated. It follows from (12) and examples 1, 2. So, if we even apply some pseudo-
orthogonalization procedure, it is not quite clear what system is necessary to orthogo-
nalize.

But in spite of all this difficulties, in my next works I will try to solve the inverse
spectral problem in the general case or to prove that it is not possible to do.
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Basel–Boston–Berlin, 1996.(Russian edition: Vyscha shkola, Kiev, 1990).

5. I. Ya. Ivasiuk, Direct spectral problem for the generalized Jacobi Hermitian matrices, Methods
Funct. Anal. Topology 15 (2009), no. 1, 3–14.

Department of Mathematical Analysis, Faculty of Mechanics and Mathematics, National
Taras Shevchenko University of Kyiv, 64 Volodymyrs’ka, Kyiv, 01033, Ukraine

E-mail address: vanobsb@gmail.com

Received 09/02/2009; Revised: 08/07/2009


