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POINTS OF JOINT CONTINUITY OF SEPARATELY CONTINUOUS
MAPPINGS

ALIREZA KAMEL MIRMOSTAFAEE

Abstract. Let X be a Baire space, Y be a compact Hausdorff space and f : X×Y →
R be a separately continuous mapping. For each y ∈ Y , we define a game G(Y, {y})
between players O and P , to show that if in this game either O player has a winning
strategy or X is α-favorable and P player does not have a winning strategy, then for
each countable subset E of Y , there exists a dense Gδ subset D of X such that f is
jointly continuous on D × E.

1. Introduction

Let X and Y be topological spaces and f : X × Y → R. We say that f is separately
continuous, if for every (x0, y0) ∈ X × Y , the maps

x 7−→ f(x, y0), y 7−→ f(x0, y)

are continuous. If f is continuous in every (x0, y0) with respect to the product topology,
then f is said to be jointly continuous.

R. Baire [1] proved that every separately continuous mapping f : R2 → R is jointly
continuous on a subset D × R of R2 where D is a dense Gδ subset of R. It is natural to
ask the following:

If X and Y are topological spaces and f : X × Y → R is a separately continuous
mapping, can one find a dense Gδ subset D ⊂ X such that f : D × Y → R is jointly
continuous?

Several partial results have been obtained under some geometrical restrictions on the
topological spaces X and Y (see e.g. [3]–[5], [10]–[16], [18]–[19]). For example, I. Namioka
[14] has shown that the above result holds if X is strongly countably complete (Ĉech-
complete) and Y is a compact space. It was expected that the above question must have
positive answer for every Baire space X and compact space Y . However, M. Talagrand
[19] provided an example of a separately continuous mapping f : X × Y → R, where X
is an α-favorable (hence it is Baire) and Y is compact such that for each x ∈ X , f is
not jointly continuous in some point of {x} × Y . The result of M. Talagrand raises the
following question:

What are compact spaces Y such that for every Baire (or α-favorable) space X and
separately continuous mapping f : X × Y → R, f is jointly continuous at each point of
a dense subset of X × Y ?

In the next section, we will use two person game G(Y, E) between players P and O,
where Y is a compact space and E ⊂ Y to show the following:

If f : X × Y → R is a separately continuous mapping,
i) X is a Baire space and for every y ∈ Y , O has a winning strategy on G(Y, {y}),

or
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ii) X is an α-favorable space and Y is a compact Hausdorff space such that for every
y ∈ Y , P does not have a winning strategy for the game G(Y, {y}),

then for every countable subset E of Y , there exists a dense Gδ subset DE of X such
that f is jointly continuous on DE × E.

2. Topological games and existence of a winning strategy

We start this section by introducing the following topological game, which is known
as “Banach-Mazur game” (or “Choquet game” see [2] or [17]).

Let X be a topological space. The Banach-Mazur game BM(X) is played by two
players α and β, who select alternately, nonempty open subsets of X. β starts a game
by selecting a nonempty open subset V1 of X. In return, α-player replies by selecting
some nonempty open subset W1 of V1. At the n-th stage of the game, n ≥ 1, the
player β chooses a nonempty open subset Vn ⊂ Wn−1 and α answers by choosing a
nonempty open subset Wn of Vn. Proceeding in this fashion, the players generate a
sequence (Vn,Wn)∞n=1 which is called a play. The player α is said to have won the play
(Vn,Wn)∞n=0 if

⋂
n≥1 Vn =

⋂
n≥1 Wn 6= ∅; otherwise the player β is said to have won this

play. A partial play is a finite sequence of sets consisting of the first few moves of a play.
A strategy for player α is a rule by means of which the player makes his choices. Here is a
more formal definition of the notion strategy. A strategy s for the player α is a sequence
of mappings s = {sn}, which is inductively defined as follows:

The domain of s1 is the set of all open subsets of X and s1 assigns to each nonempty
open set V1 ⊂ X, a nonempty open subset W1 = s1(V1) of V1. In general, if a partial
play (V1, . . . ,Wn−1) has already been specified, where Wi = si(V1, . . . , Vi), 1 ≤ i ≤ n−1.
Then the domain of sn would be the set

{(V1,W1, . . . ,Wn−1, V ) : V ⊂ Wn−1 can be the next move of β-player}
and it assigns to each choice Vn ⊂ Wn−1 some nonempty open subset

Wn = sn(V1,W1, . . . ,Wn−1, Vn)

of Vn.

An s-play is a play in which α selects his moves according to the strategy s. The
strategy s for the player α is said to be a winning strategy if every s-play is won by α. A
space X is called α-favorable if there exists a winning strategy for α in BM(X).

It is easy to verify that every α-favorable space X is a Baire space, that is, a space in
which the intersection of countably many dense and open subsets is dense in the space.
There are examples of Baire spaces which are not α-favorable (see for example [10]). It
is known that X is a Baire space if and only if the player β does not have a winning
strategy in the game BM(X) (see [18] Theorems 1 and 2).

Let Y be a compact Hausdorff space and E ⊂ Y , G. Gruenhage [7] introduced the
following two person game G(Y, E):

Player O goes first by selecting a nonempty open neighborhood U1 of E. P answers
by choosing a point y1 ∈ U1.

In general, in step n, if selections U1, y1, . . . , Un, yn have already been specified, O
selects a nonempty open set Un ⊃ E and then P chooses a point yn ∈ Un.

We say O wins the game g = (Un, yn)n≥1 if yn → E (i.e. every neighborhood of E
contains all but finitely many yn). If

g1 = (U1, y1), . . . , gn = (U1, y1, . . . , Un, yn)

are the first ”n” move of some play ( of the game ), we call gn the nth (partial play) of
the game.



358 ALIREZA KAMEL MIRMOSTAFAEE

By a strategy s for the player O, we mean a sequence of mappings {sn} which is
defined inductively as follows:

s1(∅) is an open neighborhood U1 of E. In step n, sn assigns to the partial play
gn−1 = (Ui, yi)i≤n−1 an open set Un ⊃ E. If s is a strategy for O, a play in which
O selects his moves according to the strategy s is called an s-play. The strategy s is
said to be a winning one if every s-play is won by O. The game G(Y, E) is called O-
favorable, if there exists winning strategy for the player O. Otherwise G(Y, E) is said
to be O-unfavorable. Similarly, winning strategy for the player P , P -favorable and P -
unfavorable G(Y, E) can be defined.

The main result of this paper is based on the following lemma:

Lemma 2.1. Let f : X × Y → R be a separately continuous mapping. If either
(1) X is a Baire space and Y is a compact Hausdorff space such that for some y0 ∈ Y ,

O has a winning strategy in the game G(Y, {y0}), or
(2) X is an α-favorable space and Y is a compact Hausdorff space such that for some

y0 ∈ Y , P does not have a winning strategy for the game G(Y, {y0}),
then for each ε > 0, and every open subset U of X, there exists a nonempty open subset
V of U and an open neighborhood H of y0 such that

diamf(V ×H) ≤ ε.

Proof. Suppose that for some ε > 0 and open subset U of X,

diamf(V ×H) > ε,

for all nonempty open subset V of U and every open neighborhood H of y0. Take some
x0 ∈ U and an open subset U1 of U such that

|f(x, y0)− f(x0, y0)| < ε/12, ∀x ∈ U1.

Let U1 be the first choice of β-player in BM(X). If H1 is the first choice of O-player in
G(Y, {y0}), we take some nonempty open subset H ′

1 of H1 such that

|f(x0, y)− f(x0, y0)| < ε/12, ∀y ∈ H ′
1.

Let V1 ⊂ U1 be the answer of α-player to U1. Then by our assumption

diamf(V1 ×H ′
1) > ε.

Therefore there exists some (x1, y1) ∈ V1 × H ′
1 such that |f(x1, y1) − f(x0, y0)| > ε/2.

The answer of β-player to (U1, V1) will be an open subset U2 of V1 which satisfies the
following

|f(x, y1)− f(x0, y0)| > ε/4 and |f(x, y1)− f(x1, y1)| < ε/12.

Let y1 be the first choice of P -player. If H2 is the answer of O-player to (H1, y1), we
take a nonempty open subset H ′

2 of H2 such that

|f(xi, y)− f(xi, y0)| < ε/12 for each y ∈ H ′
2 and i = 0, 1.

In general, if the partial play (U1, V1, . . . , Un, Vn) in BM(X) together with finite sequence
{xi}1≤i<n, where xi ∈ Vi and the partial play (H1, x1, . . . .Hn) have already been selected.
We choose an open neighborhood H ′

n of Hn, such that for all y ∈ H ′
n,

|f(xi, y)− f(xi, y0)| < ε/12, ∀i = 1, . . . , n− 1.

By our assumption,
diamf(Vn ×H ′

n) > ε.

Therefore, there is some (xn, yn) ∈ Vn ×H ′
n such that

|f(xn, yn)− f(xn−1, yn−1)| > ε/2.

Let yn be the answer of the player O to (H1, y1, . . . .Hn) and take a nonempty open
subset Un+1 of Vn such that for all x ∈ Un+1,

|f(x, yn)− f(xn−1, yn−1)| > ε/4 and |f(x, yi)− f(xn, yi)| < ε/12, for i = 0, . . . , n.
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In this way by induction on n, a strategy for β in BM(X) and a strategy for P in
G(Y, {y0}) is defined.

If (i) holds, then the strategy for β-player is not a winning one, thus some play
(Ui, Vi)i≥1 is won by α. Moreover, O has a winning strategy against the strategy of P
defined above.

If (ii) holds, then α has a winning strategy against the strategy β defined above and
since the strategy of P is not a winning one, O wins some play (Hi, yi)i≥1 described
above.

Therefore, in either case the related plays (Ui, Vi)i≥1 and (Hi, yi)i≥1 are won by α and
O respectively.

Let x ∈
⋂

i≥1 Vi and H be a neighborhood of y0 such that

|f(x, y)− f(x, y0)| < ε/12 for all y ∈ H.

Since O is the winner of the play (Hi, yi)i≥1, there exists some n0 such that for all n ≥ n0,
we have yn ∈ H. Since x ∈

⋂
i≥1 Vi,

|f(x, yn+1)− f(xn, yn)| > ε/4, ∀n ∈ N.

However, our construction shows that if n ≥ n0, we have
|f(x, yn+1)− f(xn, yn)|
≤ |f(x, yn+1)− f(x, y0)|+ |f(x, y0)− f(xn, y0)|+ |f(xn, y0)− f(xn, yn)|
< ε/12 + ε/12 + ε/12 = ε/4.

This contradiction proves the Lemma. �

We call E a W -set in Y if O has a winning strategy in the game G(Y, E). A space Y
in which each point of Y is a W -set is called a W -space. One can easily see that first
countable spaces are W -spaces and that W -spaces are Frechet (i.e., if y ∈ A, then there
exists a sequence {an} ⊂ A with an → y). We also define Y to be a w-space if for every
y ∈ Y , P fails to have a winning strategy in G(Y, {y}). It is natural to ask the following:

Is there a w-space which is not a W -space?
A. Hajnal and I. Juhasz (see [6] or [9]) have shown that if ∞ is the one point com-

pactification of an Aronszajn tree T , with the interval topology, then neither P nor O
has a winning strategy in G(T ∪ {∞}, {∞}).

Now, we are ready to state the main result of the paper.

Theorem 2.2. Let Y be a compact Hausdorff space and E be a countable subset of Y .
If either

(1) X is a Baire space and E is a W -space, or
(2) X is an α-favorable space and E is a w-space,

then for every separably continuous mapping f : X × Y → R, there is a dense Gδ subset
AE of X such that f is jointly continuous at each point of AE × E.

Proof. For each y ∈ E and n ∈ N, define

An,y = {x ∈ X : ∃ neighborhoods V of x and H of y; diamf(V ×H) ≤ 1
n
}.

It is clear that each An,y is a open subset of X. Under either conditions (1) or (2), by
Lemma 2.1, each An,y is dense in X. Put

AE =
⋂

n∈N&y∈Y

An,y.

Since E is countable and X is a Baire space, AE is dense Gδ subset of X. Clearly f is
jointly continuous on in each point of AE × E. �

Proposition 2.3. Let f : X × Y → R be a separately continuous mapping. If either
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(1) X is a Baire space and Y is a compact Hausdorff space such that for each point
y of a dense subset E of Y , O has a winning strategy in the game G(Y, {y}), or

(2) X is an α-favorable space and Y is a compact Hausdorff space such that for each
point y of a dense subset E of Y , P does not have a winning strategy for the
game G(Y, {y}),

then there exists a dense subset D of X × Y such that f is jointly continuous at each
point of D.

Proof. Let
D = {(x, y) ∈ X × Y : f is jointly continouos at (x, y)}.

Let V and W be open subsets X and Y respectively. Thanks to Theorem 2.2, for each
point y ∈ E, there exists a dense subset Ay of x such that f is jointly continuous on
Ay × {y}. Hence Ay × {y} ⊂ (V ×W ) ∩D. This means that D is dense in X × Y . �

The following question naturally arises:

Problem. Under either conditions of Proposition 2.3 with E = Y , can one find a dense
subset of A of X such that f is jointly continuous on A× Y ?
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