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SOME RESULTS ON THE UNIFORM BOUNDEDNESS THEOREM IN
LOCALLY CONVEX CONES

ASGHAR RANJBARI AND HUSAIN SAIFLU

Abstract. Walter Roth studied one form of the uniform boundedness theorem in [3].
We investigate some other versions of the uniform boundedness theorem for barreled
and upper-barreled locally convex cones. Finally, we show some applications of this
theorem.

1. Introduction

The general theory of locally convex cones as developed in [1] deals with preordered
cones. We review some of the main concepts and refer to [1] for details.

A cone is a set P endowed with an addition and a scalar multiplication for non-negative
real numbers. The addition is associative and commutative, and there is a neutral element
0 ∈ P. For the scalar multiplication the usual associative and distributive properties hold.
We have 1a = a and 0a = 0 for all a ∈ P. The cancellation law, sating that a + c = b + c
implies a = b, however, is not required in general. It holds if and only if the cone P may
be embedded into a real vector space. A preordered cone (ordered cone for short) is a
cone with a preorder, that is, a reflexive transitive relation ≤ which is compatible with
the algebraic operations.

For cones P and Q a mapping t : P → Q is called a linear operator if t(a + b) =
t(a) + t(b) and t(αa) = αt(a) hold for a, b ∈ P and α ≥ 0. A linear functional on P is a
linear operator µ : P → R, where R = R ∪ {+∞}.

A subset V of the preordered cone P is called an (abstract) 0-neighborhood system, if
the following properties hold:

(v1) 0 < v for all v ∈ V;
(v2) for all u, v ∈ V there is a w ∈ V with w ≤ u and w ≤ v;
(v3) u + v ∈ V and αv ∈ V whenever u, v ∈ V and α > 0.
For every a ∈ P and v ∈ V we define

v(a) = {b ∈ P : b ≤ a + v}, resp. (a)v = {b ∈ P : a ≤ b + v},
to be a neighborhood of a in the upper, resp. lower topologies on P. Their common
refinement is called symmetric topology. We denote the neighborhoods of the symmetric
topology as v(a) ∩ (a)v or v(a)v for a ∈ P and v ∈ V. We call (P,V) is a full locally
convex cone, if each element of P is bounded blow, i.e. for every a ∈ P and v ∈ V we have
0 ≤ a + ρv for some ρ > 0. Each subcone of P, not necessarily containing V, is called a
locally convex cone. An element a of locally convex cone (P,V) is called bounded if it
is also upper bounded, i.e. for every v ∈ V there is a ρ > 0 such that a ≤ ρv. On P we
define the global preorder � as: a � b if and only if a ≤ b + v for all v ∈ V.
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Let P be a cone. For U, V ⊆ P2, by U ◦ V we mean the set of all (a, b) ∈ P2 such
that there is a c ∈ P with (a, c) ∈ U and (c, b) ∈ V , U−1 = {(b, a) : (a, b) ∈ U} and
4 = {(a, a) : a ∈ P} }. A collection U of convex subsets U ⊂ P2 = P × P is called a
convex quasiuniform structure, if the following properties hold:

(U1) 4 ⊂ U for every U ∈ U ;
(U2) for all U, V ∈ U there is a W ∈ U such that W ⊂ U ∩ V ;
(U3) λU ◦ µU ⊂ (λ + µ)U for all U ∈ U and λ, µ > 0;
(U4) λU ∈ U for all U ∈ U and λ > 0.

To every quasiuniform structure U on P we associate a preorder defined by a ≤ b if
and only if (a, b) ∈ U for all U ∈ U and, two topologies: the neighborhood bases for an
element a in the upper and lower topologies are given by the sets

U(a) = {b ∈ P : (b, a) ∈ U}, resp. (a)U = {b ∈ P : (a, b) ∈ U}, U ∈ U .

The topology associated with the uniform structure Us = {U ∩ U−1 : U ∈ U} is the
common refinement of the upper and lower topologies.

The notions of an (abstract) 0-neighborhood system V and a convex quasiuniform
structure U for a cone P are equivalent in the following sense.

For a locally convex cone (P,V), and each v ∈ V, we put

ṽ = {(a, b) ∈ P×P : a ≤ b + v}.

The collection Ṽ = {ṽ : v ∈ V} is a convex quasiuniform structure on P, which induces
the global preorder on P and the same upper, lower and symmetric topologies. On the
other hand: if P is a cone with a convex quasiuniform structure U , then one can find a
preorder and an (abstract) 0-neighborhood system V such that the convex quasiuniform
structure Ṽ is equivalent to U (see [1], I.5.5).

If P with V is a locally convex cone, then each element of P is bounded below, and
hence

for all a ∈ P and ṽ ∈ Ṽ there is some ρ > 0 such that (0, a) ∈ ρṽ.

Conversely, if a convex quasiuniform structure U on P satisfies also

(U5) for all a ∈ P and U ∈ U there is some ρ > 0 such that (0, a) ∈ ρU,

then the generated preordered cone would be locally convex.
For locally convex cones P and Q, with convex quasiuniform structures U and V,

respectively, a linear mapping t : P → Q is called uniformly continuous (u-continuous)
if for every V ∈ V one can find a U ∈ U such that (a, b) ∈ U implies (t(a), t(b)) ∈ V , or
T (U) ⊂ V , T = t× t. If V and W are (abstract) 0-neighborhood systems on P and Q,
respectively, t is u-continuous if and only if for every w ∈ W there is a v ∈ V such that
(a, b) ∈ ṽ implies (t(a), t(b)) ∈ w̃, or equivalently, t(a) ≤ t(b) + w whenever a ≤ b + v.
Uniform continuity implies continuity with respect to the upper, lower and symmetric
topologies on P and Q.

Endowed with the (abstract) 0-neighborhood system ε = {ε ∈ R : ε > 0}, R is a
full locally convex cone. The u-continuous linear functionals on the locally convex cone
(P,V) form a cone with the usual addition and scalar multiplication of functions. This
cone is called the dual cone of P and denoted by P∗.

For a locally convex cone (P,V), the polar v◦ of v ∈ V consists of all linear functionals
µ on P satisfying µ(a) ≤ µ(b) + 1 whenever a ≤ b + v for a, b ∈ P. We have P∗ = ∪{v◦ :
v ∈ V}.

In this paper, we modify the uniform boundedness theorem which studied by W. Roth
in [3] and prove other forms of this theorem for the locally convex cones in section 2.
These forms are more similar to the case of the convex topological vector spaces. We use
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the definition of the upper-barreled cone that is stated by using of convex quasiuniform
structure and follows of the convex topological spaces (see [2]).

2. Uniform boundedness theorems for locally convex cones

One form of uniform boundedness theorem for the locally convex cones studied in [3].
We use upper-barreled notion to study another version of this theorem which is more
similar to the case of the convex topological vector spaces.

In [3] a barrel and a barreled cone has been defined as following.

Definition 2.1. Let (P,V) be a locally convex cone. A barrel is a convex subset B of
P2 with the following properties :

(B1) For every b ∈ P there is a v ∈ V such that for every a ∈ v(b)v there is a λ > 0
such that (a, b) ∈ λB.

(B2) For all a, b ∈ P such that (a, b) /∈ B there is a µ ∈ P∗ such that µ(c) ≤ µ(d) + 1
for all (c, d) ∈ B and µ(a) > µ(b) + 1.

Definition 2.2. A locally convex cone (P,V) is said to be barreled if for every barrel
B ⊆ P2 and every b ∈ P there is a v ∈ V and a λ > 0 such that (a, b) ∈ λB for all
a ∈ v(b)v.

We shall say that the locally convex cone (P,V) has the strict separation property
(SP), if: for all a, b ∈ P and v ∈ V such that a � b + ρv for some ρ > 1, there is a linear
functional µ ∈ v◦ such that µ(a) > µ(b) + 1 (see [1], page 32).

The uniform boundedness theorem stated in [3] is as following:

Theorem 2.3 ([3], Theorem 3.1). Let (P,V) and (Q,W) be locally convex cones, and
let T be a family of u-continuous linear operators from P to Q. Suppose that for every
b ∈ P and w ∈ W there is a v ∈ V such that for every a ∈ v(b)v there is a λ > 0 such
that

T (a) ≤ T (b) + λw for all T ∈ T .

If (P,V) is barreled and (Q,W) has the strict separation property, then for every inter-
nally bounded set E ⊆ P, every b ∈ E and w ∈ W there is a v ∈ V and a λ > 0 such
that

T (a) ≤ T (b) + λw for all T ∈ T
and all a ∈ v(b′) ∩ (b′′)v for some b′, b′′ ∈ E.

A locally convex cone (P,V) is said to be tightly covered by its bounded elements if for
all a, b ∈ P and v ∈ V such that a /∈ v(b) (or a � b + v) there is some bounded element
a′ ∈ P such that a′ � a and a′ /∈ v(b) ([1], II.2.13).

Theorem II.2.14 of [1] states that every locally convex cone which is tightly covered
by its bounded elements has strict separation property. Therefore if (Q,W) is tightly
covered by its bounded elements in Theorem 2.3, we obtain the same result. But there
is a direct and simple proof for this case as following:

Theorem 2.4. Under the conditions of Theorem 2.3 if (P,V) is barreled and (Q,W)
is tightly covered by its bounded elements, then for every internally bounded set E ⊆ P,
every b ∈ E and w ∈ W there is a v ∈ V and a λ > 0 such that

T (a) ≤ T (b) + λw for all T ∈ T
and all a ∈ v(b′) ∩ (b′′)v for some b′, b′′ ∈ E.

Proof. Let W̃ be the convex quasiuniform structure related to the (abstract) 0-neighborhood
system W, w̃ ∈ W̃ and t = T × T . Put

B = ∩{t−1(w̃) : T ∈ T }.
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Since Q is tightly covered by its bounded elements, then w̃ is a barrel in Q (cf. [2],
Proposition 4.3) and t−1(w̃) is a barrel in P for each t = T × T (cf. [2], Lemma 4.4).
Now we show that B is a barrel in P.

(B1) Let b ∈ P, v ∈ V as in the assumption and a ∈ v(b)v. By the condition in the
hypothesis there is a λ > 0 such that

(T (a), T (b)) ∈ λw̃

for all T ∈ T . So
(a, b) ∈ λB.

(B2) Let (a, b) /∈ B, so (a, b) /∈ t−1(w̃) for some t. Since t−1(w̃) is a barrel, there is a
µ ∈ P∗ such that µ(a) > µ(b) + 1 and µ(c) ≤ µ(d) + 1 for all (c, d) ∈ t−1(w̃) and then
for all (c, d) ∈ B.

Thus by Lemma 2.2 of [3] for every b ∈ E there is a neighborhood v ∈ V and a λ > 0
such that (a, b) ∈ λB for all a ∈ v(b′) ∩ (b′′)v for some b′, b′′ ∈ E. By the definition of B
this shows that

(T (a), T (b)) ∈ λw̃

for all T ∈ T . Hence
T (a) ≤ T (b) + λw for all T ∈ T .

�

We bring the definition of the upper-barreled cones which was defined in [2].

Definition 2.5. Let (P,V) be a locally convex cone and Ṽ be the convex quasiuniform
structure generated by V. P is called upper-barreled if for every barrel B ⊆ P2, there is
a ṽ ∈ Ṽ such that ṽ ⊆ B.

It is easy to see that every upper-barreled cone is barreled. So in the Theorems 2.3
and 2.4 we can consider (P,V) to be upper-barreled.

We do not know if there is a barreled locally convex cone which is not upper-barreled.
Now we state some other cases of the uniform boundedness theorem for locally convex

cones.
We recall the definition of the uniform equicontinuity for locally convex cones in the

following (see [1], page 69).

Definition 2.6. Let (P,V) and (Q,W) be locally convex cones. A set T of linear
operators T : P → Q is called uniformly equicontinuous (u-equicontinuous), if for every
w ∈ W there is a v ∈ V such that for all a, b ∈ P and T ∈ T

a ≤ b + v implies T (a) ≤ T (b) + w,

i.e.
(a, b) ∈ ṽ implies (T (a), T (b)) ∈ w̃.

If T is a u-equicontinuous family of linear functionals, then T ⊆ v◦ for some v ∈ V.
In particular, for each v ∈ V, the set v◦ is u-equicontinuous.

Let (P,V) and (Q,W) be locally convex cones. We saw that if T : P → Q is u-
continuous and E ⊆ P is a bounded set, then T (E) is bounded i.e. for each w ∈ W
there is a λ > 0 such that

0 ≤ T (a) + λw and T (a) ≤ λw for all T (a) ∈ T (E).

Clearly this λ depends on, both w and T . Hence for a fixed w ∈ W and different T ’s we
shall have different λ’s. But

Proposition 2.7. If T is a u-equicontinuous family of linear operators from (P,V) to
(Q,W) and E ⊆ P is (internally) bounded, then Q has an (internally) bounded subset
B such that T (E) ⊆ B for all T ∈ T .
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Proof. Put B = ∪{T (E) : T ∈ T }. For w ∈ W, since T is u-equicontinuous, there is a
v ∈ V such that for all a, b ∈ P and T ∈ T

a ≤ b + v implies T (a) ≤ T (b) + w.

Since E is bounded, there is a λ > 0 such that for all a ∈ E

0 ≤ a + λv and a ≤ λv.

Now if b ∈ B is arbitrary and a ∈ E such that b = T (a), we have

0 ≤ T (a) + λw = b + λw and b = T (a) ≤ λw.

Hence B is bounded and T (E) ⊆ B for all T ∈ T . The internally bounded case is
similarly proved. �

This means in particular that if E ⊆ P is (internally) bounded and T is u-equicontinuous,
then {T (a) : a ∈ E , T ∈ T } is also (internally) bounded. Also u-equicontinuity of T
implies the conclusions of Theorems 2.3 and 2.4.

Theorem 2.8. Let (P,V) and (Q,W) be locally convex cones, and T be a family of
u-continuous linear operators from P to Q. Suppose that for each b ∈ P and w ∈ W
there is a v ∈ V such that for every a ∈ v(b)v there is a λ > 0 such that

T (a) ≤ T (b) + λw for all T ∈ T .

If (P,V) is upper-barreled and (Q,W) has the strict separation property, then T is
u-equicontinuous.

Proof. Let w ∈ W and set

B = {(a, b) ∈ P2 : T (a) ≤ T (b) + ρw for all ρ > 1 and T ∈ T }.
We prove that B is a barrel for P ([3], proof of Theorem 3.1).

(B1) For b ∈ P choose v ∈ V as in the assumption of the theorem. Then for every
a ∈ v(b)v there is a λ > 0 such that T (a) ≤ T (b) + λw for all T ∈ T , that is (a, b) ∈ λB.

(B2) For a, b ∈ P such that (a, b) /∈ B there is a T ∈ T such that T (a) � T (b) + ρw
for some ρ > 1. Hence there is a t ∈ v◦ such that t(T (a)) > t(T (b)) + 1 (Q has (SP)
property). Set µ = T ∗(t) ∈ P∗. By [1], II.2.15, we have µ(a) = T ∗(t)(a) = t(T (a)) for
all a ∈ P. The functional µ fulfills the requirement of (B2).

Now since P is upper-barreled, 2ṽ ⊆ B for some v ∈ V. Hence if a, b ∈ P and
a ≤ b + v, i.e. (a, b) ∈ ṽ, then T (a) ≤ T (b) + ρ

2w for all ρ > 1 and T ∈ T . Putting ρ = 2,
we get T (a) ≤ T (b) + w. This shows that T is u-equicontinuous. �

Since every locally convex cone which is tightly covered by its bounded elements has
strict separation property, so we have

Corollary 2.9. Under the conditions of Theorem 2.8, if (P,V) is upper-barreled and
(Q,W) is tightly covered by its bounded elements, then T is u-equicontinuous.

Theorem 2.10. Let (P,V) and (Q,W) be locally convex cones, and T be a family of
u-continuous linear operators from P to Q such that the set {T (x) : T ∈ T } is bounded
for each x ∈ P. If (P,V) is upper-barreled and Q is tightly covered by its bounded
elements, then T is u-equicontinuous.

Proof. Let w ∈ W, t = T × T and B = ∩{t−1(w̃) : T ∈ T }. We show that B is a
barrel. (B2) holds as in the proof of the Theorem 2.4. We investigate (B1): Let b ∈ P,
v ∈ V and a ∈ v(b)v. Since

{T (a) : T ∈ T } and {T (b) : T ∈ T }
are bounded, there is a λ > 0 such that

(T (a), 0) ∈ λw̃ and (0, T (b)) ∈ λw̃
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for all T ∈ T . We have
(T (a), T (b)) ∈ 2λw̃

for all T ∈ T and then
(a, b) ∈ 2λB.

Now since P is upper-barreled, there is a ṽ ∈ Ṽ such that ṽ ⊆ B and then

t(ṽ) ⊆ w̃

for all t = T × T , T ∈ T . �

Proposition 2.11. Let (P,V) and (Q,W) be locally convex cones, and (Ts)s∈S be a
net of u-continuous linear operators from P to Q which converges pointwise to T under
the symmetric topologies on P and Q. (i.e. Ts(a) → T (a) for each a ∈ P). If (Ts) is
u-equicontinuous, then T is u-continuous.

Proof. Let w ∈ W. There is a v ∈ V such that

a ≤ b + v implies Ts(a) ≤ Ts(b) +
w

3
for all a, b ∈ P and s ∈ S. Now let a, b ∈ P and a ≤ b+v. Since (Ts) converges pointwise
to T , there is an s0 ∈ S such that

Ts(a) ∈ w

3
(T (a))

w

3
and Ts(b) ∈

w

3
(T (b))

w

3
for s ≥ s0. These render

T (a) ≤ Ts(a) +
w

3
and Ts(b) ≤ T (b) +

w

3
.

We have
T (a) ≤ T (b) + w.

�

Let (P,V) and (Q,W) be two locally convex cones. P×Q = {(a, b) : a ∈ P, b ∈ Q}
is a pre-ordered cone with

(a, b) ≤ (a′, b′) if and only if a ≤ a′ and b ≤ b′.

We consider V ×W = {(v, w) : v ∈ V, w ∈ W} as an (abstract) 0-neighborhood system
for P×Q.

Suppose P, Q and R are cones and L maps P×Q into R. L is said to be bilinear if
L is linear in each coordinates.

Theorem 2.12. Let (P,V), (Q,W) and (R,U) be locally convex cones with the sym-
metric topologies, and L : P×Q → R be a bilinear mapping which is u-continuous with
respect to the first coordinate and continuous with respect to the second coordinate. Let
(ps)s∈S and (qs)s∈S be nets in P and Q respectively such that ps → p0 and qs → q0.
Suppose for every p ∈ P, every q ∈ Q and every u ∈ U there is a v ∈ V such that for
every a ∈ v(p)v there is a λ > 0 such that

L(a, qs) ≤ L(p, qs) + λu

for all s ∈ S. If (P,V) is upper-barreled and (R,U) has the strict separation property,
then L(ps, qs) → L(p0, q0) in R.

Proof. Let u ∈ U and define bs : P → R as

bs(p) = L(p, qs) p ∈ P, s ∈ S.

By 2.8 (bs)s∈S is u-equicontinuous, so there is a v ∈ V such that

p1 ≤ p2 + v implies bs(p1) ≤ bs(p2) + u
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for all p1, p2 ∈ P and s ∈ S, i.e. if p1 ∈ v(p2)v, then L(p1, qs) ∈ u(L(p2, qs))u for all
s ∈ S. Since L is continuous in Q, there is a w ∈ W such that

q1 ∈ w(q2)w implies L(p, q1) ∈ u(L(p, q2))u

for all p ∈ P and q1, q2 ∈ Q. Since qs → q0, there is an s0 such that qs ∈ w(q0)w for all
s ≥ s0 and so L(p, qs) ∈ u(L(p, q0))u. Now if s ≥ s0 and (ps, qs) ∈ (v, w)((p0, q0))(v, w)
i.e. ps ∈ v(p0)v and qs ∈ w(q0)w, then L(ps, qs) ∈ u(L(p0, q0))u. �

Corollary 2.13. Let (P,V), (Q,W) and (R,U) be locally convex cones, and L : P ×
Q → R be a bilinear mapping which is u-continuous w.r.t. the first coordinate and
continuous w.r.t. the second coordinate. Let (ps)s∈S and (qs)s∈S be nets in P and Q
respectively such that ps → p0 and qs → q0 with respect to the symmetric topologies.
Under the conditions of Theorem 2.12, if the set

{L(p, qs) : s ∈ S}
is bounded for each p ∈ P, then L(ps, qs) → L(p0, q0) in R.

Proof. By 2.10 (b)s is u-equicontinuous and conclusion follows as the proof of Theo-
rem 2.12. �

Now we bring an example (Example 3.2 of [3]), and illustrate the Theorem 2.3.

Example 2.14. Let P be the cone of all lower semicontinuous R-valued functions f on
the interval [0, 1] such that f(x) = +∞ for all x in a neighborhood of 1, endowed with
the pointwise algebraic operations and order and the (abstract) 0-neighborhood system
ε = {ε ∈ R : ε > 0}. Thus (P,V) is a locally convex cone, but not a full cone, as the
constant functions are not contained in P. By Theorem 2.3, Lemma 2.4 and Example 3.2
of [3], the conditions of the Theorem hold. Now for each n ∈ N we set tn(x) = nxn and
define linear operators Tn : P → P by Tn(f) = tnf . These operators are u-continuous,
as f ≤ g + ε implies that Tn(f) ≤ Tn(g) + nε for all f, g ∈ P. For an internally bounded
set B ⊆ P there is 0 < δ < 1 such that g(x) = +∞ for all δ ≤ x ≤ 1 and all g ∈ B.
We choose a function g ∈ B and the neighborhood w = 1 ∈ ε. Then for every function
f ∈ P such that f ≤ g′+1 and g′′ ≤ f +1 for some g′, g′′ ∈ B we realize that f(x) = +∞
holds for all δ ≤ x ≤ 1 with the same 0 < δ < 1 from above. Therefore

Tn(f) ≤ Tn(g) + nδn,

and as nδn → 0 as n →∞, there is a λ > 0 such that

Tn(f) ≤ Tn(g) + λ

for such functions f ∈ P and n ∈ N. The constant λ > 0 depends however on the set B
and may not be chosen independently.

As it was noted in [2], every full locally convex cone (P,V) is upper-barreled. Since,
if B ⊆ P2 is a barrel, for 0 ∈ P there is a v ∈ V such that for every a ∈ v(0)v there
is a λa > 0 such that (a, 0) ∈ λaB. Since v ∈ P and v ∈ v(0)v, there is a λ > 0 such
that (v, 0) ∈ λB. Now let (a, b) ∈ ṽ and (a, b) /∈ λB. Then there is a µ ∈ P∗ such that
µ(a) > µ(b) + λ and µ(v) ≤ λ. But a ≤ b + v implies µ(a) ≤ µ(b) + µ(v) ≤ µ(b) + λ,
which is a contradiction. Hence ṽ ⊆ λB or ( 1

λv)˜⊆ B.
Now by the above consideration we illustrate Theorems 2.4, 2.8 and 2.10 and Propo-

sition 2.7 with the following example.

Example 2.15. Let E be a normed vector space with unit ball B. Let P = {a + ρB : a ∈
E , ρ ≥ 0}, endowed with the usual addition, usual multiplication of sets by non-negative
scalars and the set inclusion as order. The (abstract) 0-neighborhood system V is given
by the positive multiples of the unit ball B. Then (P,V) is a full locally convex cone
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(since V ⊆ P) and so is upper-barreled. We consider all µ ⊕ r, where r ≥ 0 and µ is a
linear functional on E such that ||µ|| ≤ r, if we define (µ⊕ r)(a+ρB) = µ(a)+ rρ. These
functionals from P to R are u-continuous. On the other hand (R, ε) is a locally convex
cone which is tightly covered by its bounded elements (and so has the strict separation
property). Let T be the set of all µ⊕ r which r ≤ 1. The Theorem 2.4 is verified similar
to the Theorem 2.3 in the Example 2.14. It is easy to see that T is u-equicontinuous.
For Proposition 2.7, let F be a bounded set in P. There is a λ > 0 such that

F ⊆ λB and {0} ⊆ F + λB.

We have
µ(a) + rρ ≤ rλ and 0 ≤ µ(a) + rρ + rλ

for all µ⊕ r ∈ T and a + ρB ∈ F . Since r ≤ 1,

−λ ≤ µ(a) + rρ ≤ λ.

This shows that (µ⊕ r)(F ) ⊆ [−λ, λ] and [−λ, λ] is a bounded set in R.
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