ON *-REPRESENTATIONS OF THE PERTURBATION OF TWISTED CCR

KONSTANTIN M. SUKRETNYĬ

Abstract

A classification of irreducible *-representations of a certain deformation of twisted canonical commutation relations is given.

1. Introduction

In this note we study representations of a $*$-algebra A_{α} defined by generators a_{i}, a_{i}^{*}, $i=1, \ldots, d$, satisfying the commutation relations of the following form:

$$
\begin{align*}
a_{i}^{*} a_{i} & =1+\alpha_{i}^{2} a_{i} a_{i}^{*}-\sum_{j<i}\left(1-\alpha_{j}^{2}\right) a_{j} a_{j}^{*} \\
a_{i}^{*} a_{j} & =\alpha_{i} a_{j} a_{i}^{*}, \quad i<j \tag{1}\\
a_{j} a_{i} & =\alpha_{i} a_{i} a_{j}, \quad i, j=1, \ldots, d, \quad i<j,
\end{align*}
$$

where we additionally suppose that $\alpha_{i}^{2}=\mu^{n_{i}}, 0<\mu<1, n_{i} \in \mathbb{N}, i=1, \ldots, d$. When $n_{i}=$ $2, i=1, \ldots, d$, we get the twisted canonical commutation relations (TCCR) constructed and studied by W. Pusz and S. L. Woronowicz, see [5]. These relations also belong to the class of generalized canonical commutation relations (GCCR), defined in [3].

The aim of this paper is to study irreducible representations of A_{α} by, possibly unbounded, Hilbert space operators. Note that representations of TCCR were classified in [5]. The description of bounded representations of GCCR was obtained in [3]. In [2] the authors proved that the Fock representation of the universal enveloping C^{*}-algebra generated by GCCR is faithful.

To deal with the unbounded representations one has firstly to give a precise definition of a family of unbounded operators satisfying relations (1). To do so, let us perform some formal manipulations with generators and relations.

Construct the polar decompositions of $a_{i}^{*}, a_{i}^{*}=U_{i} C_{i}$, where $C_{i}^{2}=a_{i} a_{i}^{*}, U_{i}$ is a partial isometry and $\operatorname{ker} U_{i}=\operatorname{ker} C_{i}=\operatorname{ker} a_{i}^{*}$. Then the commutation relations (1) take the following form:

$$
\begin{align*}
C_{i}^{2} U_{i}^{*} & =U_{i}^{*}\left(1+\alpha_{i}^{2} C_{i}^{2}-\sum_{j<i}\left(1-\alpha_{j}^{2}\right) C_{j}^{2}\right), \\
C_{i}^{2} U_{j}^{*} & =\alpha_{j}^{2} U_{j}^{*} C_{i}^{2}, \quad j<i, \tag{2}\\
C_{i}^{2} U_{j}^{*} & =U_{j}^{*} C_{i}^{2}, \quad j>i, \\
C_{i} C_{j} & =C_{j} C_{i}, \quad U_{j} U_{i}=U_{i} U_{j}, \quad U_{j}^{*} U_{i}=U_{i} U_{j}^{*}, \quad i \neq j . \tag{3}
\end{align*}
$$

[^0]Consider the functions

$$
\begin{aligned}
F_{j}\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, \ldots, x_{j-1}, 1+\right. & \alpha_{j}^{2} x_{j}-\sum_{k<j}\left(1-\alpha_{k}^{2}\right) x_{k}
\end{aligned}, \quad \begin{aligned}
& \left.\alpha_{j}^{2} x_{j+1}, \ldots, \alpha_{j}^{2} x_{d}\right), \quad j=1, \ldots, d .
\end{aligned}
$$

Then, in a compact form, relations (2) can be written as follows:

$$
\left(C_{1}^{2}, \ldots, C_{d}^{2}\right) U_{j}^{*}=U_{j}^{*} F_{j}\left(C_{1}^{2}, \ldots, C_{d}^{2}\right), \quad j=1, \ldots, d
$$

Note that, in the bounded case, the relations (1) and $(2,3)$ are equivalent.
Definition 1. (see [4]). Let a family of self-adjoint operators $\mathcal{C}=\left\{C_{i}^{2}, i=1, \ldots, d\right\}$ commute on a dense invariant domain of analytic vectors. We say that the family \mathcal{C} and partial isometries $\left\{U_{i}, i=1, \ldots, d\right\}$ satisfy relations (2) if for any Borel set $\Delta \subset \mathbb{R}^{d}$ and any $j=1, \ldots, d$ one has

$$
E_{\mathcal{C}}(\Delta) U_{j}^{*}=U_{j}^{*} E_{\mathcal{C}}\left(F_{j}^{-1}(\Delta)\right)
$$

where $E_{\mathcal{C}}(\cdot)$ is the joint resolution of identity of the family \mathcal{C}.
Definition 2. Let families \mathcal{C} and $\left\{U_{i}, i=1, \ldots, d\right\}$ satisfy the conditions of the definition above and $\operatorname{ker} U_{i}=\operatorname{ker} C_{i}, i=1, \ldots, d$, then we say that the family of operators $a_{i}^{*}=$ $U_{i} C_{i}, i=1, \ldots, d$ is an unbounded representation of relations (1).

2. Representations of \mathcal{A}_{α}

In this section we will use a dynamical system method developed in a series of papers by Yu. Samoilenko, V. Ostrovkyi, L. Turowska, E. Vaisleb et al., see [4] and the references therein.

Our considerations will be based on an analysis of the spectrum of C_{1}^{2} in the irreducible representation. Since

$$
C_{1}^{2} U_{1}^{*}=U_{1}^{*}\left(1+\alpha_{1}^{2} C_{1}^{2}\right), \quad C_{1}^{2} U_{j}^{*}=U_{j}^{*} C_{1}^{2}, C_{1} C_{j}=C_{j} C_{1}, \quad j \geq 2
$$

in an irreducible representation of $(2,3)$, the spectrum of C_{1}^{2} is coincides with the positive orbit of the dynamical system $\left(f_{1}, \mathbb{R}\right)$, where $f_{1}(t)=1+\alpha_{1}^{2} t$, see [4]. Such orbits can be subdivided onto the following three types:
(1) Fock orbit, $O_{F}=\left\{\frac{1-\alpha_{1}^{2 n}}{1-\alpha_{1}^{2}}, n \in \mathbb{Z}_{+}\right\}$;
(2) fixed point $O_{f i x}=\left\{\frac{1}{1-\alpha_{1}^{2}}\right\}$;
(3) unbounded orbits, labeled by $x_{1} \in \tau_{y_{1}}=\left(1+\alpha_{1}^{2} y_{1}, y_{1}\right], y_{1}>\frac{1}{1-\alpha_{1}^{2}}$ is fixed,

$$
O_{x_{1}}=\left\{\frac{1-\alpha_{1}^{2 n}}{1-\alpha_{1}^{2}}+\alpha_{1}^{2 n} x_{1}, n \in \mathbb{Z}\right\}
$$

In the following propositions we give a description of irreducible representations of A_{α} when the spectrum of C_{1}^{2} is assumed to coincide with one of the orbits above.

We start with the most simple case.
Proposition 1. Let in irreducible representation of A_{α} one has $\sigma\left(C_{1}^{2}\right)=\overline{O_{F}}$, then, up to a unitary equivalence, $\mathcal{H}=l_{2}\left(\mathbb{Z}_{+}\right) \otimes \mathcal{K}$ and

$$
\begin{aligned}
& C_{1}^{2}=d\left(f_{1}\right) \otimes \mathbf{1}, \quad U_{1}^{*}=S \otimes \mathbf{1} \\
& C_{i}^{2}=d\left(\alpha_{1}^{2}\right) \otimes \widehat{C}_{i}^{2}, \quad U_{i}^{*}=\mathbf{1} \otimes \widehat{U}_{i}^{*}, \quad i=2, \ldots, d,
\end{aligned}
$$

where, for the standard basis of $l_{2}\left(\mathbb{Z}_{+}\right)$denoted by $\left\{e_{n}, n \in \mathbb{Z}_{+}\right\}$, one has

$$
d\left(f_{1}\right) e_{n}=f_{1}^{n}(0) e_{n}=\frac{1-\alpha_{1}^{2 n}}{1-\alpha_{1}^{2}} e_{n}, \quad d\left(\alpha_{1}^{2}\right) e_{n}=\alpha_{1}^{2 n} e_{n}, \quad n \in \mathbb{Z}_{+}
$$

and the family of the operators $\left\{\widehat{C}_{i}, \widehat{U}_{i}, i=2, \ldots, d\right\}$ is irreducible on \mathcal{K} and satisfies the relations (2,3) with $d-1$ generators.

Proof. The proof is analogous to the proof of the propositions below and the most trivial among them, so we omit it here.

Let us now suppose that $\sigma\left(C_{1}^{2}\right)=\left\{\frac{1}{1-\alpha_{1}^{2}}\right\}$ and $d>3$. Fix $y_{2}>0$, put $\sigma_{y_{2}}=\left(\mu^{l} y_{2}, y_{2}\right]$, where $l=\mathbf{G C D}\left(n_{1}, n_{2}\right), \alpha_{i}^{2}=\mu^{n_{i}}, i=1,2$. Let also $n_{i}=l k_{i}, i=1,2$ and $l=$ $n_{1} m_{1}+n_{2} m_{2}$.

Proposition 2. If $d>2$ and $\sigma\left(C_{1}^{2}\right)=\left\{\frac{1}{1-\alpha_{1}^{2}}\right\}$ and $C_{2}^{2} \neq 0$ in the irreducible representation, then, up to a unitary equivalence, $\mathcal{H}=l_{2}(\mathbb{Z}) \otimes \bigotimes_{i=3}^{d} l_{2}\left(\mathbb{Z}_{+}\right)$and

$$
\begin{aligned}
& C_{1}^{2}=\frac{1}{1-\alpha_{1}^{2}} \mathbf{1} \otimes \bigotimes_{2<k \leq d} \mathbf{1}, \\
& U_{j}^{*}=e^{i \phi_{j}} E^{k_{j}} \otimes \bigotimes_{2<k \leq d}^{d} 1, \quad j=1,2, \quad m_{1} \phi_{1}+m_{2} \phi_{2}=0, \quad \bmod 2 \pi, \\
& C_{2}^{2}=x_{2} D\left(\mu^{l}\right) \otimes \bigotimes_{2<k \leq d} 1, \quad x_{2} \in \sigma_{y_{2}}, \\
& C_{i}^{2}=D\left(\mu^{l}\right) \otimes \bigotimes_{2<k<i} \widehat{d}\left(\alpha_{k}^{2}\right) \otimes \widehat{d}\left(h_{i}\left(0, x_{2}\right)\right) \otimes \bigotimes_{i<k \leq d} \mathbf{1}, \quad i=3, \ldots, d, \\
& U_{i}^{*}=1 \otimes \bigotimes_{2<k<i} 1 \otimes \widehat{S} \otimes \bigotimes_{i<k \leq d} 1, \quad i=3, \ldots, d,
\end{aligned}
$$

and

$$
D\left(\mu^{l}\right), \quad E: l_{2}(\mathbb{Z}) \rightarrow l_{2}(\mathbb{Z}), \quad D\left(\mu^{l}\right) e_{n}=\mu^{n l} e_{n}, \quad E e_{n}=e_{n+1}, \quad n \in \mathbb{Z}
$$

where $\left\{e_{n}, n \in \mathbb{Z}\right\}$ is the standard basis of $l_{2}(\mathbb{Z})$;

$$
\begin{aligned}
& h_{i}\left(t, x_{2}\right)=-\left(1-\alpha_{2}^{2}\right) x_{2}+\alpha_{i}^{2} t \\
& \widehat{d}\left(h_{i}\left(0, x_{2}\right)\right), \quad \widehat{S}, \quad \widehat{d}(\lambda): l_{2}\left(\mathbb{Z}_{-}\right) \rightarrow l_{2}\left(\mathbb{Z}_{-}\right), \quad \widehat{S} e_{0}=0, \quad \widehat{S} e_{-n}=e_{-n+1}, \quad n \geq 1, \\
& \widehat{d}\left(h_{i}\left(0, x_{2}\right)\right) e_{-n}=h_{i}^{-n}\left(0, x_{2}\right) e_{-n}, \quad \widehat{d}(\lambda) e_{-n}=\lambda^{-n} e_{-n}, \quad n \in \mathbb{Z}_{+}
\end{aligned}
$$

where $\left\{e_{-n}, n \in \mathbb{Z}_{+}\right\}$is the standard basis of $l_{2}\left(\mathbb{Z}_{-}\right)$.
Proof. Since $C_{1}^{2}=\frac{1}{1-\alpha_{1}^{2}} \mathbf{1}$ and $\operatorname{ker} U_{1}=\operatorname{ker} U_{1}^{*}=\{0\}, U_{1}$ is a unitary operator. Furthermore, one has

$$
C_{i}^{2} U_{i}^{*}=U_{i}^{*}\left(\alpha_{i}^{2} C_{i}^{2}-\sum_{1<j<i}\left(1-\alpha_{j}^{2}\right) C_{j}^{2}\right), \quad i \geq 2
$$

In particular, $C_{2}^{2} U_{i}^{*}=\alpha_{i}^{2} U_{i}^{*} C_{2}^{2}, i=1,2$. Since $C_{2}^{2} U_{j}=U_{j} C_{2}^{2}, C_{2}^{2} C_{j}^{2}=C_{j}^{2} C_{2}^{2}, j>2$, the spectrum of C_{2}^{2} is concentrated on the positive orbit of the mapping $t \mapsto \mu^{l} t, l=$ $\operatorname{GCD}\left(n_{1}, n_{2}\right)$. If $C_{2}^{2} \neq 0$, then $\sigma\left(C_{2}^{2}\right)=\left\{\mu^{n l} x_{2}, n \in \mathbb{Z}\right\}$ for some $x_{2} \in \sigma_{y_{2}}$ and all eigenvalues have the same multiplicities, see [4]. Then one can choose a basis in the representation space \mathcal{H} so that $\mathcal{H} \simeq l_{2}(\mathbb{Z}) \otimes \mathcal{K}_{1}$ and

$$
C_{2}^{2}=x_{2} D\left(\mu^{l}\right) \otimes \mathbb{1}
$$

Let $l=n_{1} m_{1}+n_{2} m_{2}, m_{1}, m_{2} \in \mathbb{Z}$, put $U:=U_{1}^{m_{1}} U_{2}^{m_{2}}$, then

$$
C_{2}^{2} U^{*}=\mu^{l} U^{*} C_{2}^{2}
$$

and using unitary equivalence one can get $U^{*}=E \otimes 1$. Then the relations

$$
C_{2}^{2} U_{i}^{*}=\mu^{n_{2}} U_{i}^{*} C_{2}^{2}, \quad U U_{i}=U_{i} U, \quad i=1,2
$$

imply that $U_{i}^{*}=E^{k_{i}} \otimes \widetilde{U}_{i}^{*}$, where $n_{i}=l k_{i}, i=1,2$, and $\widetilde{U}_{1}, \widetilde{U}_{2}$ are unitaries. Analogously, from

$$
C_{2}^{2} C_{j}^{2}=C_{j}^{2} C_{2}^{2}, \quad C_{j}^{2} U^{*}=\mu^{l} U^{*} C_{j}^{2}, \quad U U_{j}=U_{j} U, \quad C_{2}^{2} U_{j}=U_{j} C_{2}^{2}, \quad j>2
$$

we have $C_{j}^{2}=D\left(\mu^{l}\right) \otimes \widetilde{C}_{j}^{2}$ and $U_{j}=\mathbf{1} \otimes \widetilde{U}_{j}, j>2$.
One can verify directly that the family $\left\{C_{i}^{2}, U_{i}, i=1, \ldots, d\right\}$ is irreducible iff the family $\left\{\widetilde{C}_{i}^{2}, i>2, \widetilde{U}_{i}, i=1, \ldots, d\right\}$ is irreducible and the second family determines the first one up to a unitary equivalence.

Let us now rewrite the relations $(2,3)$ in terms of the operators $\widetilde{C}_{i}^{2}, \widetilde{U}_{i}$. It is easy to show that $(2,3)$ are equivalent to

$$
\begin{equation*}
\widetilde{C}_{j}^{2} \widetilde{U}_{i}^{*}=\widetilde{U}_{i}^{*} \widetilde{C}_{j}^{2}, \quad \widetilde{U}_{i} \widetilde{U}_{j}=\widetilde{U}_{j} \widetilde{U}_{i}, \quad i=1,2, \quad j>2 \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& \widetilde{C}_{i}^{2} \widetilde{U}_{i}^{*}=\widetilde{U}_{i}^{*}\left(-\left(1-\alpha_{2}^{2}\right) x_{2}+\alpha_{i}^{2} \widetilde{C}_{i}^{2}-\sum_{3 \leq j<i}\left(1-\alpha_{j}^{2}\right) \widetilde{C}_{j}^{2}\right), \quad i=3, \ldots, d, \\
& \widetilde{C}_{i}^{2} \widetilde{U}_{j}^{*}=\alpha_{j}^{2} \widetilde{U}_{j}^{*} \widetilde{C}_{i}^{2}, \quad i>j, \quad \widetilde{C}_{i}^{2} \widetilde{U}_{j}^{*}=\widetilde{U}_{j}^{*} \widetilde{C}_{i}^{2}, \quad i<j, \tag{5}\\
& \widetilde{U}_{i} \widetilde{U}_{j}^{*}=\widetilde{U}_{j}^{*} \widetilde{U}_{i}, \quad \widetilde{U}_{i} \widetilde{U}_{j}=\widetilde{U}_{j} \widetilde{U}_{i}, \quad \widetilde{C}_{i} \widetilde{C}_{j}=\widetilde{C}_{j} \widetilde{C}_{i}, \quad i \neq j .
\end{align*}
$$

Since $\widetilde{U}_{i}, i=1,2$ are unitaries, the Schur lemma and relations (4) imply that $\widetilde{U}_{i}=e^{\imath \phi_{i}} \mathbf{1}$, $i=1,2, \phi_{1} m_{1}+\phi_{2} m_{2}=0 \bmod 2 \pi$.

Furthermore, since

$$
\widetilde{C}_{3}^{2} \widetilde{U}_{3}^{*}=\widetilde{U}_{3}^{*}\left(-\left(1-\alpha_{2}^{2}\right) x_{2}+\alpha_{3}^{2} \widetilde{C}_{3}^{2}\right), \quad \widetilde{C}_{3}^{2} \widetilde{U}_{j}^{*}=\widetilde{U}_{j}^{*} \widetilde{C}_{3}^{2}, \quad j>3
$$

in the irreducible representation, the spectrum of \widetilde{C}_{3}^{2} is concentrated on the positive orbit of the mapping

$$
h_{3}\left(t, x_{2}\right)=-\left(1-\alpha_{2}^{2}\right) x_{2}+\alpha_{3}^{2} t
$$

For this mapping we have the unique positive orbit, the anti-Fock one

$$
\sigma\left(\widetilde{C}_{3}^{2}\right)=\overline{\left\{h_{3}^{-n}\left(0, x_{2}\right), n \in \mathbb{Z}_{+}\right\}}
$$

and, as above, all eigenvalues have the same multiplicities. Then $\mathcal{K}_{1}=l_{2}\left(\mathbb{Z}_{-}\right) \otimes \mathcal{K}_{2}$ and, up to a unitary equivalence,

$$
\widetilde{C}_{3}^{2}=\widehat{d}\left(h_{3}\left(0, x_{2}\right)\right) \otimes \mathbf{1}, \quad \widetilde{U}_{3}^{*}=\widehat{S} \otimes \mathbf{1}
$$

and the relations (5) imply that

$$
\widetilde{C}_{j}^{2}=\widehat{d}\left(\alpha_{3}^{2}\right) \otimes \widehat{C}_{j}^{2}, \quad \widetilde{U}_{j}^{*}=\mathbf{1} \otimes \widehat{U}_{j}^{*}, \quad j>3
$$

where the family $\left\{\widehat{C}_{j}, \widehat{U}_{j}, j>3\right\}$ should be irreducible and satisfy the relations (5) with $d-3$ generators. Finally, note that the family $\left\{\widehat{C}_{j}, \widehat{U}_{j}, j>3\right\}$ determines the family $\left\{\widetilde{C}_{j}, \widetilde{U}_{j}, j>2\right\}$ up to a unitary equivalence. Then the evident induction on the number of generators completes the proof.

It remains only to consider the third type of orbits.
Proposition 3. Let

$$
\sigma\left(C_{1}^{2}\right)=\overline{\left\{\frac{1-\alpha_{1}^{2 n}}{1-\alpha_{1}^{2}}+\alpha_{1}^{2 n} x_{1}, n \in \mathbb{Z}\right\}}
$$

in an irreducible representation of A_{α} for some fixed $x_{1} \in \tau_{y_{1}}$. Then, up to a unitary equivalence, the representation space is $\mathcal{H}=l_{2}(\mathbb{Z}) \otimes \bigotimes_{k=2}^{d} l_{2}\left(\mathbb{Z}_{-}\right)$and

$$
\begin{aligned}
& C_{1}^{2}=D\left(f_{1}, x_{1}\right) \otimes \bigotimes_{2 \leq k \leq d} \mathbf{1}, \quad U_{1}^{*}=E \otimes \bigotimes_{2 \leq k \leq d} \mathbf{1}, \\
& C_{i}^{2}=D\left(\alpha_{1}^{2}\right) \otimes \bigotimes_{2 \leq k<i} \widehat{d}\left(\alpha_{k}^{2}\right) \otimes \widehat{d}\left(u_{i}\left(0, x_{1}\right)\right) \otimes \bigotimes_{i<k \leq d} \mathbf{1}, \\
& U_{i}^{*}=\mathbf{1} \otimes \bigotimes_{2 \leq k<i} \mathbf{1} \otimes \widehat{S} \otimes \bigotimes_{i<k \leq d} \mathbf{1}, \quad i=2, \ldots, d,
\end{aligned}
$$

where

$$
D\left(f_{1}, x_{1}\right): l_{2}(\mathbb{Z}) \rightarrow l_{2}(\mathbb{Z}), \quad D\left(f_{1}, x_{1}\right) e_{n}=\left(\frac{1-\alpha_{1}^{2 n}}{1-\alpha_{1}^{2}}+\alpha_{1}^{2 n} x_{1}\right) e_{n}, \quad n \in \mathbb{Z}
$$

and $u_{i}\left(t, x_{1}\right)=1-x_{1}+\alpha_{i}^{2} t, i=2, \ldots, d$,

$$
\widehat{d}\left(u_{i}\left(0, x_{1}\right)\right): l_{2}\left(\mathbb{Z}_{-}\right) \rightarrow l_{2}\left(\mathbb{Z}_{-}\right), \quad \widehat{d}\left(u_{i}\left(0, x_{1}\right)\right) e_{-n}=u_{i}^{-n}\left(0, x_{1}\right) e_{-n}, \quad n \in \mathbb{Z}_{+}
$$

Proof. As in the proof of Proposition 2, we will use induction on the number of generators. If $\sigma\left(C_{1}^{2}\right)=\overline{O_{x_{1}}}$, then, up to a unitary equivalence, $\mathcal{H}=l_{2}(\mathbb{Z}) \otimes \mathcal{K}_{1}$ and

$$
C_{1}^{2}=D\left(f_{1}, x_{1}\right) \otimes \mathbf{1}, \quad U_{1}^{*}=E \otimes \mathbf{1}
$$

The relations $(2,3)$ imply that

$$
C_{i}^{2}=D\left(\alpha_{1}^{2}\right) \otimes \widetilde{C}_{i}^{2}, \quad U_{i}^{*}=\mathbf{1} \otimes \widetilde{U}_{i}^{*}, \quad i \geq 2
$$

where the family $\left\{\widetilde{C}_{i}, \widetilde{U}_{i}, i \geq 2\right\}$ is irreducible and determines $\left\{C_{i}, U_{i}, i \geq 1\right\}$ up to a unitary equivalence. Moreover, the following relations are satisfied:

$$
\begin{align*}
& \widetilde{C}_{i}^{2} \widetilde{U}_{i}^{*}=\widetilde{U}_{i}^{*}\left(1-x_{1}+\alpha_{i}^{2} \widetilde{C}_{i}^{2}-\sum_{2 \leq j \leq i-1}\left(1-\alpha_{j}^{2}\right) \widetilde{C}_{j}^{2}\right), \quad i=2, \ldots, d, \\
& \widetilde{C}_{i}^{2} \widetilde{U}_{j}^{*}=\alpha_{j}^{2} \widetilde{U}_{j}^{*} \widetilde{C}_{i}^{2}, \quad i>j, \quad \widetilde{C}_{i}^{2} \widetilde{U}_{j}^{*}=\widetilde{U}_{j}^{*} \widetilde{C}_{i}^{2}, \quad i<j, \tag{6}\\
& \widetilde{U}_{i} \widetilde{U}_{j}^{*}=\widetilde{U}_{j}^{*} \widetilde{U}_{i}, \quad \widetilde{U}_{i} \widetilde{U}_{j}=\widetilde{U}_{j} \widetilde{U}_{i}, \quad \widetilde{C}_{i} \widetilde{C}_{j}=\widetilde{C}_{j} \widetilde{C}_{i} \quad i \neq j
\end{align*}
$$

In particular, the spectrum of \widetilde{C}_{2}^{2} is concentrated on the positive orbit of the mapping

$$
u_{2}\left(t, x_{1}\right)=1-x_{1}+\alpha_{2}^{2} t
$$

since $x_{1}>\frac{1}{1-\alpha_{1}^{2}}>1$ and $\alpha_{2}^{2}<1$, the unique positive orbit of $u_{2}\left(t, x_{1}\right)$ is the anti-Fock orbit. Then the proof is analogous to the final part of the proof of Proposition 2.

To get a general description of representations of A_{α}, we have to combine the results of Propositions $1,2,3$. Namely, let us construct three types of representations.

The first is the Fock one: $\mathcal{H}=\bigotimes_{k=1}^{d} l_{2}\left(\mathbb{Z}_{+}\right)$,

$$
C_{j}^{2}=\bigotimes_{k<j} d\left(\alpha_{k}^{2}\right) \otimes d\left(f_{j}\right) \otimes \bigotimes_{k>j} 1, \quad U_{j}^{*}=\bigotimes_{k<j} 1 \otimes S \otimes \bigotimes_{k>j} 1, \quad j=1, \ldots, d
$$

The second type is the representations with first $i-1$ generators as in the Fock representation and with

$$
\sigma\left(C_{i}^{2}\right)=\overline{\left\{\alpha_{1}^{2 n_{1}} \cdots \alpha_{i-1}^{2 n_{i-1}} \frac{1}{1-\alpha_{i}^{2}}, n_{1}, \ldots, n_{i-1} \in \mathbb{Z}_{+}\right\}}
$$

Let firstly $i<d$, then fix any $t_{i} \in \mathbb{Z}_{+}$such that $i+t_{i} \leq d$. If $i+t_{i}<d$ put $s_{i}:=i+t_{i}+1$ and fix $y_{s_{i}}>0, \sigma_{y_{s_{i}}}=\left(\mu^{l_{i s_{i}}} y_{s_{i}}, y_{s_{i}}\right]$, where $l_{i s_{i}}=\mathbf{G C D}\left(n_{i}, n_{s_{i}}\right), \alpha_{i}^{2}=\mu^{n_{i}}, \alpha_{s_{i}}^{2}=\mu^{n_{s_{i}}}$.

Let also $n_{i}=l_{i s_{i}} k_{i}, n_{s_{i}}=l_{i s_{i}} k_{s_{i}}$. Then construct the family of operators acting on the space

$$
\mathcal{H}=\bigotimes_{k=1}^{i-1} l_{2}\left(\mathbb{Z}_{+}\right) \otimes l_{2}(\mathbb{Z}) \otimes \bigotimes_{k=s_{i}+1}^{d} l_{2}\left(\mathbb{Z}_{-}\right)
$$

by the formulas

$$
\begin{aligned}
& C_{j}^{2}=\bigotimes_{k<j} d\left(\alpha_{k}^{2}\right) \otimes d\left(f_{j}\right) \otimes \bigotimes_{k>j, k \geq s_{i}} \mathbf{1}, \quad U_{j}^{*}=\bigotimes_{k<j} \mathbf{1} \otimes S \otimes \bigotimes_{k>j, k \geq s_{i}} \mathbf{1}, \quad j<i, \\
& C_{i}^{2}=\frac{1}{1-\alpha_{1}^{2}} \bigotimes_{k<i} d\left(\alpha_{k}^{2}\right) \otimes \bigotimes_{k \geq s_{i}} \mathbf{1}, \quad U_{i}^{*}=e^{\imath \phi_{i}} \bigotimes_{k<i} \mathbf{1} \otimes E^{k_{i}} \otimes \bigotimes_{k>s_{i}} \mathbf{1}, \\
& C_{j}^{2}=0, \quad U_{j}=0, \quad i<j<s_{i}-1, \\
& C_{s_{i}}^{2}=\bigotimes_{k<i} d\left(\alpha_{k}^{2}\right) \otimes x_{s_{i}} D\left(\mu^{l_{i s_{i}}}\right) \otimes \bigotimes_{k>s_{i}} \mathbf{1}, \quad U_{s_{i}}^{*}=e^{\imath \phi_{s_{i}}} \bigotimes_{k<i} \mathbf{1} \otimes E^{k_{s_{i}}} \otimes \bigotimes_{k>s_{i}} \mathbf{1} \\
& C_{j}^{2}=\bigotimes_{k<i} d\left(\alpha_{k}^{2}\right) \otimes D\left(\mu^{\left.l_{i s_{i}}\right) \otimes \bigotimes_{s_{i}<k<j} \widehat{d}\left(\alpha_{k}^{2}\right) \widehat{d}\left(h_{j}\left(0, x_{s_{i}}\right)\right) \otimes \bigotimes_{k>j} \mathbf{1}, \quad j>s_{i},}\right. \\
& U_{j}^{*}=\bigotimes_{k<i} \mathbf{1} \otimes \bigotimes_{s_{i} \leq k<j} \mathbf{1} \otimes \widehat{S} \otimes \bigotimes_{k>j}^{1, \quad j>s_{i}},
\end{aligned}
$$

where $m_{i} \phi_{i}+m_{s_{i}} \phi_{s_{i}}=0 \bmod 2 \pi, x_{s_{i}} \in \sigma_{y_{s_{i}}}$ is fixed, and

$$
h_{j}\left(t, x_{s_{i}}\right)=-\left(1-\alpha_{s_{i}}^{2}\right) x_{s_{i}}+\alpha_{j}^{2} t
$$

If $i=d$, then $\mathcal{H}=\bigotimes_{k=1}^{d-1} l_{2}\left(\mathbb{Z}_{+}\right)$and

$$
\begin{aligned}
& C_{j}^{2}=\bigotimes_{k<j} d\left(\alpha_{k}^{2}\right) \otimes d\left(f_{j}\right) \otimes \bigotimes_{k>j} \mathbf{1}, \quad U_{j}^{*}=\bigotimes_{k<j} \mathbf{1} \otimes S \otimes \bigotimes_{k>j} \mathbf{1}, \quad j=1, \ldots, d-1 \\
& C_{d}^{2}=\frac{1}{1-\alpha_{d}^{2}} \bigotimes_{k<d} d\left(\alpha_{k}^{2}\right), \quad U_{d}^{*}=e^{\imath \phi_{d}} \bigotimes_{k<d} \mathbf{1}
\end{aligned}
$$

In the third type representations, the generators $C_{j}^{2}, U_{j}^{*}, j=1, \ldots, i-1$, are as in the Fock representation and

$$
\sigma\left(C_{i}^{2}\right)=\overline{\left\{\alpha_{1}^{2 n_{1}} \cdots \alpha_{i-1}^{2 n_{i-1}}\left(\frac{1-\alpha_{i}^{2 n_{i}}}{1-\alpha_{i}^{2}}+\alpha_{i}^{2 n_{i}} x_{i}\right), n_{1}, \ldots, n_{i-1} \in \mathbb{Z}_{+}, n_{i} \in \mathbb{Z}\right\}}
$$

where $x_{i} \in \tau_{y_{i}}=\left(1+\alpha_{i}^{2} y_{i}, y_{i}\right], y_{i}>\frac{1}{1-\alpha_{i}^{2}}$ is fixed.
In this case we have

$$
\mathcal{H}=\bigotimes_{k<i} l_{2}\left(\mathbb{Z}_{+}\right) \otimes l_{2}(\mathbb{Z}) \otimes \bigotimes_{k>i} l_{2}\left(\mathbb{Z}_{-}\right)
$$

and

$$
\begin{aligned}
C_{j}^{2} & =\bigotimes_{k<j} d\left(\alpha_{k}^{2}\right) \otimes d\left(f_{j}\right) \otimes \bigotimes_{k>j} \mathbf{1}, \quad U_{j}^{*}=\bigotimes_{k<j} \mathbf{1} \otimes S \otimes \bigotimes_{k>j} \mathbf{1}, \quad j<i \\
C_{i}^{2} & =\bigotimes_{k<i} d\left(\alpha_{k}^{2}\right) \otimes D\left(f_{i}, x_{i}\right) \otimes \bigotimes_{k>i} \mathbf{1}, \quad U_{i}^{*}=\bigotimes_{k<i} \mathbf{1} \otimes E \otimes \bigotimes_{k>i} \mathbf{1} \\
C_{j}^{2} & =\bigotimes_{k<i} d\left(\alpha_{k}^{2}\right) \otimes D\left(\alpha_{i}^{2}\right) \otimes \bigotimes_{i<k<j} \widehat{d}\left(\alpha_{k}^{2}\right) \otimes \widehat{d}\left(u_{j}\left(0, x_{i}\right)\right) \otimes \bigotimes_{k>j}^{1, \quad j>i,} \\
U_{j}^{*} & =\bigotimes_{k<j} \mathbf{1} \otimes \widehat{S} \otimes \bigotimes_{k>j} \mathbf{1}, \quad j>i,
\end{aligned}
$$

where $u_{j}\left(t, x_{i}\right)=1-x_{i}+\alpha_{j}^{2} t$.
Combining the results of Propositions $1,2,3$ we get the following theorem.

Theorem 1. Any irreducible representation of A_{α} belongs to one of the types described above. Representations corresponding to the different types or to the different parameters within the same type are non-equivalent.

Acknowledgments. The author expresses his gratitude to Prof. Yu. Samoĭlenko and Dr. D. Proskurin for a setting of the problem and useful discussions.

References

1. P. E. T. Jørgensen, D. P. Proskurin, and Yu. S. Samoľlenko, The kernel of Fock representations of Wick algebras with braided operator of coefficients, Pacific J. Math. 198 (2001), 109-122.
2. P. E. T. Jørgensen, D. P. Proskurin, and Yu. S. Samol̆lenko, Generalized canonical commutation relations: Representations and stability of universal enveloping C^{*}-algebra, Symmetry in Nonlinear Mathematical Physics, Part 2, Proceedings of the Institute of Mathematics of the Ukrainian National Academy of Sciences: Mathematics and Its Applications, vol. 43, Kyiv, 2002, pp. 456-460.
3. V. L. Ostrovskyı̆ and D. P. Proskurin, Operator relations, dynamical systems, and representations of a class of Wick algebras, Oper. Theory Adv. Appl., vol. 118, Birkhauser Verlag, Basel, 2000, pp. 335-345.
4. V. L. Ostrovskyı̆ and Yu. Samol̆lenko, Introduction to the Theory of Representations of Finitely Presented *-Algebras, I: Representations by Bounded Operators, The Gordon and Breach Publishing Group, London, 1999.
5. W. Pusz and S. L. Woronowicz, Twisted second quantization, Rep. Math. Phys. 27 (1989), 251-263.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs'ka, Kyiv, 01601, Ukraine

E-mail address: sukretniy@gmail.com
Received 10/04/2009; Revised 15/07/2009

[^0]: 2000 Mathematics Subject Classification. Primary 47L60, 47L30, 47A67; Secondary 81R10.
 Key words and phrases. Deformed commutation relations, irreducible *-representations.

