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HEREDITARY PROPERTIES OF HYPERSPACES

R. B. BESHIMOV

Abstract. In this paper, we investigate hereditary properties of hyperspaces. Our
basic cardinals are the Suslin hereditary number, the hereditary π-weight, the Shanin
hereditary number, the hereditary density, the hereditary cellularity. We prove that
the hereditary cellularity, the hereditary π-weight, the Shanin hereditary number,
the hereditary density, the hereditary cellularity for any Eberlein compact and any
Danto space and their hyperspaces coincide.

1. Introduction

For a topological T1-space X we denote

expX = {F : F ⊂ X, F 6= ∅, F is a closed subset of X}.

Consider the family B of all sets in the form of

O〈U1, . . . , Un〉 =
{

F ∈ expX : F ⊂
n⋃

i=1

Ui, F ∩ Ui 6= ∅, i = 1, 2, . . . , n
}

,

where U1, U2, . . . , Un are arbitrary open sets in X. The family B generates a topology
on the set expX. This topology is called the Vietoris topology. The set exp X with the
Vietoris topology is called the exponential space or the hyperspace of the space X.

Let X be a topological T1-space. We denote by expn X the family of all non-empty
closed subsets of the space X of the cardinality not greater than cardinal number n, i.e.,
expn X = {F ∈ expX : |F | ≤ n}. Put expc X = {F ∈ expX : F is a compact in X}. It
is clear that

expn X ⊂ expω X ⊂ expc X ⊂ expX.

It is not difficult to see that expω X is everywhere dense in expX, hence, expc X is also
everywhere dense in expX [1].

A cardinal number τ > ℵ0 is said to be a caliber [2] of the space X if for any family
µ = {Uα : α ∈ A} of non-empty open in X sets such that |A| = τ, there exists B ⊂ A
such that |B| = τ and the family ∩{Uα : α ∈ B} 6= ∅.

Put k(X) = {τ : τ is a caliber for X}.
A cardinal number τ > ℵ0 is said to be a precaliber [2] of the space X if for any family

µ = {Uα : α ∈ A} of non-empty open in X sets such that |A| = τ, there exists B ⊂ A
such that |B| = τ and the family {Uα : α ∈ B} is centered.

Put pk(X) = {τ : τ is a precaliber for X}.
The cardinal number min{τ : τ+ is a caliber of X} is called the Shanin number of the

space X. This cardinal number is denoted sh(X).
Further, the cardinal number psh(X) = min{τ : τ+ is a precaliber of X} is called the

preshanin number.
In 1996, V. Fedorchuk proved the following.
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Theorem 1.1. ([3]). Let X be an infinite compact. Then

c(expX) = sup {c(Xn) : n ∈ N} .

The following result was proved in [4].

Theorem 1.2. ([4]). Let X be an infinite T1-space. Then
1) πχ(X) = πχ(expn X) = πχ(expω X) ≤ πχ(expc X) ≤ πχ(expX),
2) ϕ(X) = ϕ(expn X) = ϕ(expω X) = ϕ(expc X) = ϕ(expX),

where ϕ is one of the following cardinal function: wd, πw, k, pk, psh.

Let us recall the following definition [5]. If ϕ is any cardinal invariant, then the new
cardinal invariant defined by the formula

hϕ(X) = sup{ϕ(Y ) : Y ⊂ X}
is denoted hϕ.

The invariants hc(X), hd(X), hπw(X), hsh(X) mean the Suslin hereditary number
(or the hereditary cellularity), the hereditary density, the hereditary π-weight, and the
Shanin hereditary number, respectively. The spread [5] s(X) of the space X is the least
infinite cardinal τ such that the power of a discrete subspace of X doesn’t exceed τ, i.e.,
s(X) = sup{τ : τ = |Y |, Y ⊂ X, Y is discrete}. It is easy to see that the Suslin hereditary
number hc(X) of the space X coincides with its spread s(X).

We need the following result of B. E. Shapirovski.

Theorem 1.3. ([6]). Let X be a compact. Then

hd(X) = hπw(X) = hsh(X).

2. Basic results

We begin this part with the following.

Example 2.1. Let X∗∗ be a compact of two Alexandrov arrows. Then
1) hd(expX∗∗) 6= hd(X∗∗);
2) hπw(expX∗∗) 6= hπw(X∗∗);
3) hsh(expX∗∗) 6= hsh(X∗∗);
4) hc(expX∗∗) 6= hc(X∗∗);
5) s(expX∗∗) 6= s(X∗∗).

Indeed, consider the space “one arrow” X∗ = [0, 1), the base of which is formed by
subsets of the form [α, β) where 0 ≤ α < 1, α < β ≤ 1. Consider, in exp0

2(X
∗), the

following set:

Y =
{

Ft = {t, 1− t} : 0 < t <
1
2

}
.

Let us show that Y is a discrete set of the power continuum. Let OFt = 〈Ot
1, O

t
2〉

where Ot
1 =

[
t, 1

2

)
, Ot

2 = [1− t, 1). We show that OFt ∩ Y = Ft. In fact, let Ft′ ⊂ OFt.

Since t′ < 1
2 , then t′ ∈ Ot

1 therefore t′ > t. But t′ ∈ Ot
1 implies that 1 − t′ ∈ Ot

2, so
1 − t′ > 1 − t, which yields −t′ > −t or t′ < t. The obtained contradiction proves that
OFt ∩ Y = Ft, hence Y is a discrete set of the power continuum c.

By definition of the spread, s(exp0
2 X∗) = c. It is known that the space X∗ is topolog-

ically embedded in X∗∗, which implies s(exp0
2 X∗∗) = c, hence hd(exp0

2 X∗∗) = c.
We have from Theorem 1.3 that hd(X) = hπw(X) = hsh(X) for any compact X,

what is more hc(X) = s(X). So, we obtain
c = hd(expX∗∗) = hπw(expX∗∗) = hsh(expX∗∗) 6= hd(X∗∗)

= hπw(X∗∗) = hsh(X∗∗) ≤ ℵ0

and
c = s(expX∗∗) = hx(expX∗∗) 6= s(X∗∗) = hc(X∗∗) = ℵ0.
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Proposition 2.1. Let X be an infinite compact. Then
1) hd(expX) ≤ 2hd(X);
2) hπw(expX) ≤ 2hπw(X);
3) hsh(expX) ≤ 2hsh(X).

Proof. B. E. Shapirovski [7] showed that if X is a regular space of pointwise countable
type, then w(X) ≤ 2c(X)·t(X). Since t(X) ≤ hd(X) and c(X) ≤ hd(X), we have that
hd(expX) ≤ w(expX) = w(X) ≤ 2c(X)·t(X) ≤ 2hd(X). Relations 2) and 3) follow from
the equality hdX() = hπw(X) = hsh(X) for any compact X. �

Remark 2.1. Proposition 2.1 is valid for spaces expn X, expω X, and expc X.

Theorem 2.1. Let X be an infinite compact such that Cp(X) is a Lindelöf Σ-space.
Then

1) c(expX) ≤ c(X),
2) hc(expX) = hc(X),
3) hd(expX) = hd(X),
4) hπw(expX) = hπw(X),
5) hsh(expX) = hsh(X).

Proof. 1) By the Argiros-Negrepontis theorem [8], if X is a compact and Cp(X) is a
Lindelöf Σ-space, then c(X) = w(X). Hence we have

c(expX) = w(expX) = w(X) = c(X).

2) hc(X) ≤ hc(expX) because X id a subspace of X, and it is evident that hc(expX)≤
w(expX) = w(X) = c(X) ≤ hc(X). So, we have hc(X) = hc(expX).

3) It is clear that hd(X) ≤ w(X) and c(X) ≤ hd(X). It is known that hd(X) ≤
hd(expX). Let us prove the converse inequality hd(X) ≥ hd(expX). In fact, hd(expX) ≤
w(expX) = w(X) = c(X) ≤ hd(X). Therefore, hd(expX) = hd(X).

4) Relations 4) and 5) follow immediately from the equality hsh(X) = hπw(X) =
hd(X) for any compact X. �

Remark 2.2. Theorem 2.1 is valid for the spaces expn X, expω X, expc X.

Let us recall that a compact F is called an Eberlein compact if there exists a compact
X such that F is homeomorphic to the subspace Cp(X).

Since the class of the Eberlein compacts is contained in the class of compacts for which
Cp(X) is a Lindelöf space, we obtain from Theorem 2.1 the following.

Corollary 2.1. For any Eberlein compact X, we have
1) c(X) ≤ c(expX),
2) hc(X) = hc(expX),
3) hd(X) = hd(expX),
4) hπw(X) = hπw(expX),
5) hsh(X) = hsh(expX).

Let Aτ be the compactification by a point (in the sense of P. S. Alexandrov) of a
discrete space of the power τ ≥ ℵ0. Since Aτ is an Eberlein compact for any τ and
w(Aτ ) = τ [8], we obtain the following.

Corollary 2.2. We have always that
1) c(expAτ ) ≤ c(Aτ ),
2) hc(expAτ ) = hc(Aτ ),
3) hd(expAτ ) = hd(Aτ ),
4) hπw(expAτ ) = hπw(Aτ ),
5) hsh(expAτ ) = hsh(Aτ ).
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Corollary 2.3. Let X be a pseudocompact subset of a Banach space Y in the weak
topology. Then

1) c(expX) ≤ c(X),
2) hc(expX) = hc(X),
3) hd(expX) = hd(X),
4) hπw(expX) = hπw(X),
5) hsh(expX) = hsh(X).

Proof of this corollary is based on the fact that a pseudocompact subset of a Banach
space in the weak topology is an Eberlein compact [8].

The Corson compacts [8] are compact subsets of the Σ-product of separable metrizable
spaces (or, what is the same, compact subsets of the Σ-product of segments).

Proposition 2.2. Let X be an infinite Corson compact such that Cp(Cp(X)) is the
Lindelöf Σ-space. Then

1) c(expX) ≤ c(X),
2) hc(expX) = hc(X),
3) hd(expX) = hd(X),
4) hπw(expX) = hπw(X),
5) hsh(expX) = hsh(X).

Proof of this proposition is based on the fact that if X is a Corson compact for
which Cp(Cp(X)) is the Lindelöf Σ-space, then Cp(X) is the Lindelöf Σ-space and hence
c(X) = w(X) [9].

Let τ be an infinite cardinal number, X be a topological space, and X ′ be its subspace.
The subspace X ′ is said to be τ -monolithic [10] in X if for any A ⊂ X ′ such that

|A| ≤ τ, [A]X is a compact of the weight ≤ τ.
We say that X τ -suppresses X ′ [10] if λ ≥ τ and A ⊂ X ′, |A| ≤ 2λ, imply that there

exists A′ ⊂ X such that [A′] ⊃ A and |A′| ≤ λ.
A topological space X is called a Danto space [10] if for any infinite cardinal number

τ there exists an everywhere dense in X subspace X ′ which is simultaneously
1) τ -monolithic in itself,
2) τ -suppressed by the space X.

Theorem 2.2. Let X be an infinite Danto space. Then
1) χ(expX) = χ(X),
2) t(expX) = t(X),
3) hd(expX) = hd(X),
4) hπw(expX) = hπw(X),
5) hsh(expX) = hsh(X),
6) hc(expX) = hc(X).

Proof. Let X be an infinite Danto space. Then it is compact and w(X) = t(X) [11]. By
compactness of the space X, t(X) ≤ hc(X) and w(X) = w(expX). So:

1) χ(X) ≤ χ(expX) ≤ w(expX) = w(X) = t(X) ≤ χ(X). We have from here that
χ(X) = χ(expX).

2) t(X) ≤ t(expX) ≤ w(expX) = w(X) = t(X). This implies that t(X) = t(expX).
3) hd(X) ≤ hd(expX) ≤ w(expX) = w(X) = t(X) ≤ hc(X) ≤ hd(X), which implies

hd(X) = hd(expX).
Relations 4) and 5) follow immediately from the equality hd(X) = hπw(X) = hsh(X)

for any compact X.
6) hc(X) ≤ hc(expX) ≤ w(expX) = w(X) = t(X) ≤ hc(X). We have from here that

hc(X) = hc(expX). �

Corollary 2.4. Let X be a diadic compact. Then
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1) χ(expX) = χ(X),
2) t(expX) = t(X),
3) hd(expX) = hd(X),
4) hπw(expX) = hπw(X),
5) hsh(expX) = hsh(X),
6) hc(expX) = hc(X).

Proof. Since any diadic compact is a Danto compact [11], relations 1), 2), 3), 4), 5), 6)
follow immediately from Theorem 2.2. �
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