HEREDITARY PROPERTIES OF HYPERSPACES

R. B. BESHIMOV

ABSTRACT. In this paper, we investigate hereditary properties of hyperspaces. Our basic cardinals are the Suslin hereditary number, the hereditary π -weight, the Shanin hereditary number, the hereditary density, the hereditary cellularity. We prove that the hereditary cellularity, the hereditary π -weight, the Shanin hereditary number, the hereditary density, the hereditary cellularity for any Eberlein compact and any Danto space and their hyperspaces coincide.

1. Introduction

For a topological T_1 -space X we denote

$$\exp X = \{F : F \subset X, F \neq \emptyset, F \text{ is a closed subset of } X\}.$$

Consider the family \mathcal{B} of all sets in the form of

$$O\langle U_1, \dots, U_n \rangle = \Big\{ F \in \exp X : F \subset \bigcup_{i=1}^n U_i, \ F \cap U_i \neq \emptyset, \ i = 1, 2, \dots, n \Big\},$$

where U_1, U_2, \ldots, U_n are arbitrary open sets in X. The family \mathcal{B} generates a topology on the set $\exp X$. This topology is called the Vietoris topology. The set $\exp X$ with the Vietoris topology is called the exponential space or the hyperspace of the space X.

Let X be a topological T_1 -space. We denote by $\exp_n X$ the family of all non-empty closed subsets of the space X of the cardinality not greater than cardinal number n, i.e., $\exp_n X = \{F \in \exp X : |F| \le n\}$. Put $\exp_c X = \{F \in \exp X : F \text{ is a compact in } X\}$. It is clear that

$$\exp_n X \subset \exp_\omega X \subset \exp_c X \subset \exp X$$
.

It is not difficult to see that $\exp_{\omega} X$ is everywhere dense in $\exp X$, hence, $\exp_{c} X$ is also everywhere dense in $\exp X$ [1].

A cardinal number $\tau > \aleph_0$ is said to be a caliber [2] of the space X if for any family $\mu = \{U_\alpha : \alpha \in A\}$ of non-empty open in X sets such that $|A| = \tau$, there exists $B \subset A$ such that $|B| = \tau$ and the family $\cap \{U_\alpha : \alpha \in B\} \neq \emptyset$.

Put $k(X) = \{\tau : \tau \text{ is a caliber for } X\}.$

A cardinal number $\tau > \aleph_0$ is said to be a precaliber [2] of the space X if for any family $\mu = \{U_\alpha : \alpha \in A\}$ of non-empty open in X sets such that $|A| = \tau$, there exists $B \subset A$ such that $|B| = \tau$ and the family $\{U_\alpha : \alpha \in B\}$ is centered.

Put $pk(X) = \{\tau : \tau \text{ is a precaliber for } X\}.$

The cardinal number $\min\{\tau : \tau^+ \text{ is a caliber of } X\}$ is called the Shanin number of the space X. This cardinal number is denoted sh(X).

Further, the cardinal number $psh(X) = \min\{\tau : \tau^+ \text{ is a precaliber of } X\}$ is called the preshanin number.

In 1996, V. Fedorchuk proved the following.

 $^{2000\} Mathematics\ Subject\ Classification.\ 54B20,\ 54A25.$

Key words and phrases. Hyperspace, compact space.

Theorem 1.1. ([3]). Let X be an infinite compact. Then

$$c(\exp X) = \sup \left\{ c(X^n) : n \in \mathbb{N} \right\}.$$

The following result was proved in [4].

Theorem 1.2. ([4]). Let X be an infinite T_1 -space. Then

- 1) $\pi \chi(X) = \pi \chi(\exp_n X) = \pi \chi(\exp_\omega X) \le \pi \chi(\exp_c X) \le \pi \chi(\exp X)$,
- 2) $\varphi(X) = \varphi(\exp_n X) = \varphi(\exp_\omega X) = \varphi(\exp_c X) = \varphi(\exp X),$ where φ is one of the following cardinal function: wd, πw , k, pk, psh.

Let us recall the following definition [5]. If a is any condinal inversions the

Let us recall the following definition [5]. If φ is any cardinal invariant, then the new cardinal invariant defined by the formula

$$h\varphi(X) = \sup\{\varphi(Y) : Y \subset X\}$$

is denoted $h\varphi$.

The invariants hc(X), hd(X), $h\pi w(X)$, hsh(X) mean the Suslin hereditary number (or the hereditary cellularity), the hereditary density, the hereditary π -weight, and the Shanin hereditary number, respectively. The spread [5] s(X) of the space X is the least infinite cardinal τ such that the power of a discrete subspace of X doesn't exceed τ , i.e., $s(X) = \sup\{\tau : \tau = |Y|, Y \subset X, Y \text{ is discrete}\}$. It is easy to see that the Suslin hereditary number hc(X) of the space X coincides with its spread s(X).

We need the following result of B. E. Shapirovski.

Theorem 1.3. ([6]). Let X be a compact. Then

$$hd(X) = h\pi w(X) = hsh(X).$$

2. Basic results

We begin this part with the following.

Example 2.1. Let X^{**} be a compact of two Alexandrov arrows. Then

- 1) $hd(\exp X^{**}) \neq hd(X^{**});$
- 2) $h\pi w(\exp X^{**}) \neq h\pi w(X^{**});$
- 3) $hsh(\exp X^{**}) \neq hsh(X^{**});$
- 4) $hc(\exp X^{**}) \neq hc(X^{**});$
- 5) $s(\exp X^{**}) \neq s(X^{**})$.

Indeed, consider the space "one arrow" $X^* = [0,1)$, the base of which is formed by subsets of the form $[\alpha, \beta)$ where $0 \le \alpha < 1$, $\alpha < \beta \le 1$. Consider, in $\exp_2^0(X^*)$, the following set:

$$Y = \left\{ F_t = \{t, 1 - t\} : 0 < t < \frac{1}{2} \right\}.$$

Let us show that Y is a discrete set of the power continuum. Let $OF_t = \langle O_1^t, O_2^t \rangle$ where $O_1^t = \left[t, \frac{1}{2}\right)$, $O_2^t = \left[1 - t, 1\right)$. We show that $OF_t \cap Y = F_t$. In fact, let $F_{t'} \subset OF_t$. Since $t' < \frac{1}{2}$, then $t' \in O_1^t$ therefore t' > t. But $t' \in O_1^t$ implies that $1 - t' \in O_2^t$, so 1 - t' > 1 - t, which yields -t' > -t or t' < t. The obtained contradiction proves that $OF_t \cap Y = F_t$, hence Y is a discrete set of the power continuum c.

By definition of the spread, $s(\exp_2^0 X^*) = c$. It is known that the space X^* is topologically embedded in X^{**} , which implies $s(\exp_2^0 X^{**}) = c$, hence $hd(\exp_2^0 X^{**}) = c$.

We have from Theorem 1.3 that $hd(X) = h\pi w(X) = hsh(X)$ for any compact X, what is more hc(X) = s(X). So, we obtain

$$c = hd(\exp X^{**}) = h\pi w(\exp X^{**}) = hsh(\exp X^{**}) \neq hd(X^{**})$$
$$= h\pi w(X^{**}) = hsh(X^{**}) \leq \aleph_0$$

and

$$c = s(\exp X^{**}) = hx(\exp X^{**}) \neq s(X^{**}) = hc(X^{**}) = \aleph_0.$$

Proposition 2.1. Let X be an infinite compact. Then

- 1) $hd(\exp X) \le 2^{hd(X)}$;
- 2) $h\pi w(\exp X) \le 2^{h\pi w(X)};$
- 3) $hsh(\exp X) \le 2^{hsh(X)}$.

Proof. B. E. Shapirovski [7] showed that if X is a regular space of pointwise countable type, then $w(X) \leq 2^{c(X) \cdot t(X)}$. Since $t(X) \leq hd(X)$ and $c(X) \leq hd(X)$, we have that $hd(\exp X) \leq w(\exp X) = w(X) \leq 2^{c(X) \cdot t(X)} \leq 2^{hd(X)}$. Relations 2) and 3) follow from the equality $hdX() = h\pi w(X) = hsh(X)$ for any compact X.

Remark 2.1. Proposition 2.1 is valid for spaces $\exp_n X$, $\exp_{\omega} X$, and $\exp_c X$.

Theorem 2.1. Let X be an infinite compact such that $C_p(X)$ is a Lindelöf Σ -space. Then

- 1) $c(\exp X) \le c(X)$,
- 2) $hc(\exp X) = hc(X)$,
- 3) $hd(\exp X) = hd(X)$,
- 4) $h\pi w(\exp X) = h\pi w(X)$,
- 5) $hsh(\exp X) = hsh(X)$.

Proof. 1) By the Argiros-Negrepontis theorem [8], if X is a compact and $C_p(X)$ is a Lindelöf Σ -space, then c(X) = w(X). Hence we have

$$c(\exp X) = w(\exp X) = w(X) = c(X).$$

- 2) $hc(X) \le hc(\exp X)$ because X id a subspace of X, and it is evident that $hc(\exp X) \le w(\exp X) = w(X) = c(X) \le hc(X)$. So, we have $hc(X) = hc(\exp X)$.
- 3) It is clear that $hd(X) \leq w(X)$ and $c(X) \leq hd(X)$. It is known that $hd(X) \leq hd(\exp X)$. Let us prove the converse inequality $hd(X) \geq hd(\exp X)$. In fact, $hd(\exp X) \leq w(\exp X) = w(X) = c(X) \leq hd(X)$. Therefore, $hd(\exp X) = hd(X)$.
- 4) Relations 4) and 5) follow immediately from the equality $hsh(X) = h\pi w(X) = hd(X)$ for any compact X.

Remark 2.2. Theorem 2.1 is valid for the spaces $\exp_n X$, $\exp_{\omega} X$, $\exp_{\omega} X$.

Let us recall that a compact F is called an *Eberlein compact* if there exists a compact X such that F is homeomorphic to the subspace $C_p(X)$.

Since the class of the Eberlein compacts is contained in the class of compacts for which $C_p(X)$ is a Lindelöf space, we obtain from Theorem 2.1 the following.

Corollary 2.1. For any Eberlein compact X, we have

- 1) $c(X) \le c(\exp X)$,
- 2) $hc(X) = hc(\exp X)$,
- 3) $hd(X) = hd(\exp X)$,
- 4) $h\pi w(X) = h\pi w(\exp X)$,
- 5) $hsh(X) = hsh(\exp X)$.

Let A_{τ} be the compactification by a point (in the sense of P. S. Alexandrov) of a discrete space of the power $\tau \geq \aleph_0$. Since A_{τ} is an Eberlein compact for any τ and $w(A_{\tau}) = \tau$ [8], we obtain the following.

Corollary 2.2. We have always that

- 1) $c(\exp A_{\tau}) \leq c(A_{\tau}),$
- 2) $hc(\exp A_{\tau}) = hc(A_{\tau}),$
- 3) $hd(\exp A_{\tau}) = hd(A_{\tau}),$
- 4) $h\pi w(\exp A_{\tau}) = h\pi w(A_{\tau}),$
- 5) $hsh(\exp A_{\tau}) = hsh(A_{\tau}).$

Corollary 2.3. Let X be a pseudocompact subset of a Banach space Y in the weak topology. Then

- 1) $c(\exp X) \le c(X)$,
- 2) $hc(\exp X) = hc(X)$,
- 3) $hd(\exp X) = hd(X)$,
- 4) $h\pi w(\exp X) = h\pi w(X)$,
- 5) $hsh(\exp X) = hsh(X)$.

Proof of this corollary is based on the fact that a pseudocompact subset of a Banach space in the weak topology is an Eberlein compact [8].

The Corson compacts [8] are compact subsets of the Σ -product of separable metrizable spaces (or, what is the same, compact subsets of the Σ -product of segments).

Proposition 2.2. Let X be an infinite Corson compact such that $C_p(C_p(X))$ is the Lindelöf Σ -space. Then

- 1) $c(\exp X) \le c(X)$,
- 2) $hc(\exp X) = hc(X)$,
- 3) $hd(\exp X) = hd(X)$,
- 4) $h\pi w(\exp X) = h\pi w(X)$,
- 5) $hsh(\exp X) = hsh(X)$.

Proof of this proposition is based on the fact that if X is a Corson compact for which $C_p(C_p(X))$ is the Lindelöf Σ -space, then $C_p(X)$ is the Lindelöf Σ -space and hence c(X) = w(X) [9].

Let τ be an infinite cardinal number, X be a topological space, and X' be its subspace. The subspace X' is said to be τ -monolithic [10] in X if for any $A \subset X'$ such that $|A| \leq \tau$, $[A]_X$ is a compact of the weight $\leq \tau$.

We say that X τ -suppresses X' [10] if $\lambda \geq \tau$ and $A \subset X'$, $|A| \leq 2^{\lambda}$, imply that there exists $A' \subset X$ such that $[A'] \supset A$ and $|A'| \leq \lambda$.

A topological space X is called a *Danto space* [10] if for any infinite cardinal number τ there exists an everywhere dense in X subspace X' which is simultaneously

- 1) τ -monolithic in itself,
- 2) τ -suppressed by the space X.

Theorem 2.2. Let X be an infinite Danto space. Then

- 1) $\chi(\exp X) = \chi(X)$,
- 2) $t(\exp X) = t(X)$,
- 3) $hd(\exp X) = hd(X)$,
- 4) $h\pi w(\exp X) = h\pi w(X)$,
- 5) $hsh(\exp X) = hsh(X)$,
- 6) $hc(\exp X) = hc(X)$.

Proof. Let X be an infinite Danto space. Then it is compact and w(X) = t(X) [11]. By compactness of the space X, $t(X) \leq hc(X)$ and $w(X) = w(\exp X)$. So:

- 1) $\chi(X) \le \chi(\exp X) \le w(\exp X) = w(X) = t(X) \le \chi(X)$. We have from here that $\chi(X) = \chi(\exp X)$.
 - 2) $t(X) \le t(\exp X) \le w(\exp X) = w(X) = t(X)$. This implies that $t(X) = t(\exp X)$.
- 3) $hd(X) \le hd(\exp X) \le w(\exp X) = w(X) = t(X) \le hd(X)$, which implies $hd(X) = hd(\exp X)$.

Relations 4) and 5) follow immediately from the equality $hd(X) = h\pi w(X) = hsh(X)$ for any compact X.

6) $hc(X) \le hc(\exp X) \le w(\exp X) = w(X) = t(X) \le hc(X)$. We have from here that $hc(X) = hc(\exp X)$.

Corollary 2.4. Let X be a diadic compact. Then

1) $\chi(\exp X) = \chi(X)$, 2) $t(\exp X) = t(X)$, 3) $hd(\exp X) = hd(X)$, 4) $h\pi w(\exp X) = h\pi w(X)$, 5) $hsh(\exp X) = hsh(X)$, 6) $hc(\exp X) = hc(X)$.

Proof. Since any diadic compact is a Danto compact [11], relations 1), 2), 3), 4), 5), 6) follow immediately from Theorem 2.2. \Box

References

- 1. V. V. Fedorchuk, V. V. Filippov, General Topology. Basic Constructions, Moscow State University, Moscow, 1988. (Russian)
- R. Engelking, General Topology, Mir, Moscow, 1986. (Russian); PWN, Warszawa, first edition, 1977.
- V. V. Fedorchuk, The Suslin number of the functor of probability measures, Topology and its Applications 84 (1996), no. 1, 55-60.
- R. B. Beshimov, On some cardinal invariants of hyperspaces, Mathematychni Studii 24 (2005), no. 2, 197–202.
- A. V. Arkhangelskii, V. I. Ponomarev, Basics of the General Topology in Problems and Exercises, Nauka, Moscow, 1974. (Russian)
- B. E. Shapirovski, On the π-character and π-weight in compacts, Doklady AN SSSR 223 (1975), no. 4, 799–802. (Russian)
- B. E. Shapirovski, On cardinal topological invariants, Ph.D. Thesis, Moscow State University, Moscow, 1975. (Russian)
- 8. A. G. Leiderman, On properties of Corson compacta, 5th Tiraspol Symposium on the General Topology and Its Applications, Kishenev, Shtintsa, 1985, pp. 136–137. (Russian)
- 9. H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), no. 1, 1–15.
- A. V. Arkhangelskii, Topological Spaces of Functions, Moscow State University, Moscow, 1989. (Russian)
- A. V. Arkhangelskii, Approximation of the theory of diadic compacts, Doklady AN SSSR 184 (1969), no. 4, 767–770. (Russian)

NATIONAL MIRZO ULUGBEK UNIVERSITY OF UZBEKISTAN, VUZGORODOK, TASHKENT, 100184, UZBEKISTAN

 $E\text{-}mail\ address{:}\ \texttt{rbeshimov@mail.ru}$

Received 13/06/2008; Revised 25/06/2009