
Methods of Functional Analysis and Topology
Vol. 16 (2010), no. 1, pp. 6–16

THE INTEGRATION BY PARTS FORMULA IN THE MEIXNER
WHITE NOISE ANALYSIS

N. A. KACHANOVSKY

Abstract. Using a general approach that covers the cases of Gaussian, Poissonian,
Gamma, Pascal and Meixner measures on an infinite- dimensional space, we construct
a general integration by parts formula for analysis connected with each of these
measures. Our consideration is based on the constructions of the extended stochastic
integral and the stochastic derivative that are connected with the structure of the
extended Fock space.

Introduction

Let γ be the Gaussian measure on the Schwartz distributions space D′ = D′(R+),
L2(D′, γ) be the space of complex-valued functions on D′, square integrable with respect
to γ, L2(R+) be the space of complex-valued functions on R+ square integrable with
respect to the Lebesgue measure. Denote by

∫
R+
◦(s) d̂Ws : L2(D′, γ) ⊗ L2(R+) →

L2(D′, γ) the extended (Hitsuda-Skorohod) stochastic integration operator (here W· is a
Wiener process). As is well known, for G ∈ L2(D′, γ) and h ∈ L2(R+) such that G ⊗ h

is integrable in the extended sense,
∫

R+
Gh(s) d̂Ws 6= G

∫
R+

h(s) d̂Ws, generally speaking
(in spite of the fact that G does not depend on s). In fact, for stochastically differentiable
F ∈ L2(D′, γ),

(0.1) E
[
F

∫
R+

Gh(s) d̂Ws

]
= E[G(DF )(h)]

(here and below (D◦)(h) is a stochastic derivative, E denotes an expectation), while if
F and G are stochastically differentiable then

(0.2) E
[
FG

∫
R+

h(s) d̂Ws

]
= E[G(DF )(h) + F (DG)(h)].

Formula (0.2) is called the integration by parts formula in the Gaussian analysis.
If instead of the Gaussian case one considers the Poissonian one, formula (0.1) holds

true with replacement of
∫

R+
◦(s) d̂Ws by the extended stochastic integration operator

with respect to a Poissonian process and with a use of the corresponding stochastic
derivative; but the analog of (0.2) is more complicated: instead of D in a one of terms
in the right hand side one has to use a more complicated operator. A similar situation
holds true if instead of W·, one considers a so-called normal martingale with the chaos
representation property (CRP) (Wiener and Poissonian processes can be considered as
particular cases of such martingales), see, e.g., [20] and references therein for details.

Another way of generalization of the Gaussian analysis consists in considering the
so-called Meixner classes of probability measures and corresponding stochastic processes
(these processes, with the exception of Wiener and Poissonian ones, have no CRP), see,
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e.g., [21, 9, 8, 3, 18, 19, 22, 15, 14]. During recent years such investigations became
an object of interest of many specialists. In particular, in [2] a stochastic integral was
introduced and studied for a wide class of stochastic processes and in [1] it was proved
that a Meixner process satisfies the conditions [2]; in [9, 8] a stochastic integration theory
with applications was constructed for Meixner processes and its generalizations; in [3]
Meixner classes were derived as a renormalized square of white noise. In the papers
[18, 19] E. W. Lytvynov offered a natural generalization of the classical results [21] to
the infinite-dimensional case and made some applications in the stochastic analysis, his
approach is based on the so-called Jacobi fields theory (e.g., [4]). In the paper [22]
I. V. Rodionova constructed the infinite-dimensional ”Meixner analysis” that is based on
a generalization of results [19], considering the Gaussian, Poissonian, Gamma, Pascal and
Meixner cases from a common point of view. It is worth noticing that the white noise in
[22] is not a Lévy one, generally speaking (not time homogeneous). In the investigations
of [18, 19, 22] an important role belongs to the so-called extended Fock space [17, 5], this
space is naturally arises in the ”Meixner analysis”.

In the papers [16, 10, 12, 11] the author investigated the extended stochastic integral
and stochastic derivatives in the so-called Gamma-analysis (i.e., in the analysis connected
with the Gamma-measure – a particular case of the generalized Meixner measure [22]);
the constructions in these papers are based on the structure of (the Gamma-version of)
the extended Fock space. In the papers [15, 14] the author introduced and studied the
extended stochastic integral and stochastic derivatives in the ”Meixner analysis”, these
papers can be considered as enhanced generalizations of [16, 10, 12, 11]. The main aim
of the present paper is to construct the integration by parts formula (the generalization
of (0.2)) in the ”Meixner analysis”, using as a base the construction of the extended
stochastic integral and the stochastic derivative from [15, 14].

The paper is organized in the following manner. In the first section we recall necessary
definitions and results (the generalized Meixner measure, the corresponding orthogonal
polynomials, the extended stochastic integral, the stochastic derivative etc.). For conve-
nience of the reader, we give even a little more detailed presentation than it is necessary
for understanding of the present paper. In the second section we construct the integration
by parts formula.

1. Preliminaries

Let σ be a measure on (R+,B(R+)) (here B denotes the Borel σ-algebra, R+ := [0,∞))
satisfying the following assumptions:

1) σ is absolutely continuous with respect to the Lebesgue measure and the density
is an infinite differentiable function on R+;

2) σ is a nondegenerate measure, i.e., for each nonempty open set O ⊂ R+, σ(O) >
0.

Remark 1.1. Note that these assumptions are the “simplest sufficient ones” for our
considerations; actually it is possible to consider a much more general σ.

By D denote the set of all real-valued infinite differentiable functions on R+ with
compact supports. This set can be naturally endowed with a (projective limit) topology
of a nuclear space by analogy with, e.g., [6] (see, e.g., [15] for details), hence in what
follows, we understand D as the corresponding topological space. Let D′ be the set of
linear continuous functionals on D, H := L2(R+, σ) be the space of square integrable
with respect to σ real-valued functions on R+. One can understand D′ as the negative
(endowed with the inductive limit topology) space of the chain

D′ ⊃ H ⊃ D



8 N. A. KACHANOVSKY

(e.g., [15]). Denote by 〈·, ·〉 the dual pairing between elements of D′ and D that is gene-
rated by the scalar product in H; this notation will be preserved for tensor powers and
complexifications of spaces.

Remark 1.2. Note that all scalar products and pairings in this paper are real. In this
case norms are connected with scalar products by the formula ‖ · ‖2 := (·, ·).

Let us fix arbitrary functions α, β : R+ → C that are smooth and satisfy the following
conditions:

θ := −α− β : R+ → R, η := αβ : R+ → R+,

θ and η are bounded on R+. Further, let for each u ∈ R+ υ̃(α(u), β(u), ds) be a proba-
bility measure on R that is defined by its Fourier transform,∫

R
eiλsυ̃(α(u), β(u), ds) = exp

{
− iλ(α(u) + β(u))

+ 2
∞∑

m=1

(α(u)β(u))m

m

[ ∞∑
n=2

(−iλ)n

n!
(βn−2(u) + βn−3(u)α(u) + · · ·+ αn−2(u))

]m}
,

υ(α(u), β(u), ds) := 1
s2 υ̃(α(u), β(u), ds).

Let C(D′) be the generated by cylinder sets σ-algebra on D′; denote by a subindex C
the complexifications of spaces.

Definition 1.1. We say that a probability measure µ on the measurable space (D′, C(D′))
with a Fourier transform∫

D′
ei〈x,ξ〉µ(dx) = exp

{∫
R+

σ(du)
∫

R
υ(α(u), β(u), ds)(eisξ(u) − 1− isξ(u))

}
(here ξ ∈ D) is called the generalized Meixner measure.

Theorem 1.1. ([22]). The generalized Meixner measure µ is a generalized stochastic
process with independent values in the sense of [7]. The Laplace transform of µ is a
holomorphic at 0 ∈ DC function.

Note that accordingly to the classical classification [21] (see also [18, 19, 22]) for
constants α and β if α = β = 0 then µ is the Gaussian measure; if α 6= 0, β = 0 then µ is
the centered Poissonian measure; if α = β 6= 0 then µ is the centered Gamma measure;
if α 6= β, αβ 6= 0, α, β : R+ → R then µ is the centered Pascal measure; if α = β,
Im(α) 6= 0 then µ is the centered Meixner measure.

Denote by (L2) := L2(D′, µ) the space of complex-valued square integrable with re-
spect to µ functions on D′. Now we will construct a natural orthogonal basis in this
space. Let ⊗̂ denote a symmetric tensor product. A function

D′ 3 x 7→ F (x) =
n∑

k=0

〈x⊗k, f (k)〉 ∈ C, f (k) ∈ D
b⊗k
C , f (n) 6= 0

is called a continuous polynomial on D′ of power n. Since the measure µ has a holomor-
phic at 0 ∈ DC Laplace transform (Theorem 1.1), the set of all continuous polynomials on
D′ is dense in (L2) ([23]). For n ∈ Z+ let Pn be the set of all continuous polynomials on
D′ of power ≤ n, P̃n be the closure of Pn in (L2). For n ∈ N denote (L2

n) := P̃n	P̃n−1–

the orthogonal difference in (L2), (L2
0) := C. Then (L2) =

∞
⊕

n=0
(L2

n). For each f (n) ∈ D
b⊗n
C

we define : 〈x⊗n, f (n)〉 : as the orthogonal projection of 〈x⊗n, f (n)〉 onto (L2
n). It follows

from results of [22] that : 〈x⊗n, f (n)〉 : = 〈Pn(x), f (n)〉, where Pn(x) ∈ D′ b⊗n and for
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µ-almost all x ∈ D′ P0(x) = 1, P1(x) = x, and for all f (n) ∈ D
b⊗n
C , h ∈ DC

(1.1)

〈Pn+1(x), f (n)⊗̂h〉 = 〈Pn(x), f (n)〉〈P1(x), h〉

− n〈Pn(x), P r(θ(·)h(·)f (n)(·, ·2, . . . , ·n))〉

− n〈Pn−1(x), 〈f (n), h〉〉

− n(n− 1)〈Pn−1(x), P r(η(·)h(·)f (n)(·, ·, ·3 . . . , ·n))〉,

where Pr is the symmetrization operator,

(1.2) 〈f (n), h〉 :=
∫

R+

f (n)(s, ·2, . . . , ·n)h(s)σ(ds) ∈ D
b⊗n−1
C

(moreover, it is proved in [22] that {〈Pn(x), f (n)〉 : n ∈ Z+, f (n) ∈ D
b⊗n
C } are Schefer

polynomials with the generating function

exp
{
−

∫
R+

(λ(s)2

2
+

∞∑
n=3

λ(s)n

n
(α(s)n−2 + α(s)n−3β(s) + · · ·+ β(s)n−2)

)
σ(ds)

+
〈
x, λ +

∞∑
n=2

λn

n
(αn−1 + αn−2β + · · ·+ βn−1)

〉}
,

where λ ∈ U0 ⊂ DC, x ∈ D′, U0 is some neighborhood of 0 ∈ DC).

Definition 1.2. We will call the polynomials 〈Pn, f (n)〉, f (n) ∈ D
b⊗n
C , n ∈ Z+, the

generalized Meixner polynomials.

Remark 1.3. Let α and β be constants. Then the generalized Meixner polynomials can
be the generalized Hermite polynomials (α = β = 0); the generalized Charlier polyno-
mials (α 6= 0, β = 0); the generalized Laguerre polynomials (α = β 6= 0); the Meixner
polynomials (α 6= β, αβ 6= 0, α, β : R+ → R); the Meixner-Pollaczek polynomials (α = β,
Im(α) 6= 0).

Let H(n)
ext be a Hilbert space that is obtained as the closure of D

b⊗n
C (n ∈ Z+) with

respect to the norm | · |ext, this norm is generated by the scalar product

〈f (n), g(n)〉ext :=
1
n!

∫
D′
〈Pn(x), f (n)〉〈Pn(x), g(n)〉µ(dx), f (n), g(n) ∈ D

b⊗n
C .

It is not difficult to prove by analogy with [5] that the spaceH(n)
ext is, generally speaking,

the orthogonal sum of Hb⊗n
C ≡ L2(R+, σ)b⊗n

C and some other Hilbert spaces (as a ”limit
case” one can consider η = 0, in this caseH(n)

ext = Hb⊗n
C ). In this senseH(n)

ext is an extension
of Hb⊗n

C .
One can give another explanation of the fact that H(n)

ext is a wider space than Hb⊗n
C .

Namely, let F (n) ∈ Hb⊗n
C (F (n) is an equivalence class in Hb⊗n

C ). We select a representative
(a function) F̃ (n) ∈ F (n) with a ”zero diagonal”, i.e., F̃ (n)(t1, . . . , tn) = 0 if there exist
i, j ∈ {1, . . . , n} such that i 6= j but ti = tj . This function generates an equivalence class
F̂ (n) in H(n)

ext that can be identified with F (n) (see [15] for details).

Definition 1.3. For F (n) ∈ H(n)
ext (n ∈ Z+) we define 〈Pn, F (n)〉 ∈ (L2) as an (L2)-limit

〈Pn, F (n)〉 := lim
k→∞

〈Pn, f
(n)
k 〉,

where (f (n)
k ∈ D

b⊗n
C )∞k=1 is a sequence of ”smooth” functions such that f

(n)
k → F (n) in

H(n)
ext as k →∞.
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The following statement easily follows from the construction of the generalized Meixner
polynomials (see also [22]).

Theorem 1.2. A function F ∈ (L2) if and only if there exists a sequence of kernels
(F (n) ∈ H(n)

ext)∞n=0 such that F can be presented in the form

(1.3) F =
∞∑

n=0

〈Pn, F (n)〉,

where the series converges in (L2), i.e., the (L2)-norm of F

‖F‖2(L2) =
∞∑

n=0

n!|F (n)|2ext < ∞.

Furthermore, the system {〈Pn, F (n)〉, F (n) ∈ H(n)
ext , n ∈ Z+} plays a role of an orthogonal

basis in (L2) in the sense that for F,G ∈ (L2)

(F,G)(L2) =
∞∑

n=0

n!〈F (n), G(n)〉ext,

where F (n), G(n) are the kernels from decompositions (1.3) for F,G. Finally, an explicit
formula for the scalar product 〈·, ·〉ext has the form

〈F (n), G(n)〉ext =
∑

k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk,
l1s1+···+lksk=n

n!
ls1
1 . . . lsk

k s1! . . . sk!

×
∫

Rs1+···+sk
+

F (n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)

×G(n)(t1, . . . , t1︸ ︷︷ ︸
l1

, . . . , ts1 , . . . , ts1︸ ︷︷ ︸
l1

, . . . , ts1+···+sk
, . . . , ts1+···+sk︸ ︷︷ ︸

lk

)η(t1)l1−1 . . . η(ts1)
l1−1

× η(ts1+1)l2−1 . . . η(ts1+s2)
l2−1 . . . η(ts1+···+sk−1+1)lk−1 . . . η(ts1+···+sk

)lk−1

× σ(dt1) . . . σ(dts1+···+sk
).

In particular, for n = 1, 〈F (1), G(1)〉ext = 〈F (1), G(1)〉 =
∫

R+
F (1)(s)G(1)(s)σ(ds) (there-

fore H(1)
ext = HC); for n = 2,

〈F (2), G(2)〉ext = 〈F (2), G(2)〉+
∫

R+

F (2)(s, s)G(2)(s, s)η(s)σ(ds).

If η = 0 (this means that µ is the Gaussian or Poissonian measure) then 〈F (n), G(n)〉ext =
〈F (n), G(n)〉 for all n ∈ Z+; in general, 〈F (n), G(n)〉ext = 〈F (n), G(n)〉+ . . . .

Now we recall the construction of the extended stochastic integral in the Meixner
analysis (see [15] for a detailed presentation).

Let F ∈ (L2)⊗HC. It follows from Theorem 1.2 that F can be presented in the form

(1.4) F (·) =
∞∑

n=0

〈Pn, F
(n)
· 〉, F

(n)
· ∈ H(n)

ext ⊗HC

with

‖F‖2(L2)⊗HC
=

∞∑
n=0

n!|F (n)
· |2

H(n)
ext⊗HC

< ∞.
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Lemma 1.1. ([15]). For given F
(n)
· ∈ H(n)

ext ⊗ HC, n ∈ Z+, we construct the element
F̂ (n) ∈ H(n+1)

ext in the following way. Let Ḟ
(n)
· ∈ F

(n)
· be some representative (function)

from the equivalence class F
(n)
· . We set

˜̇F (n)

(u1, . . . , un, u) :=

{
Ḟ

(n)
u (u1, . . . , un), if u 6= u1, . . . , u 6= un,

0, in other cases,
,

̂̇F (n)

:= Pr ˜̇F (n)

, where Pr is the symmetrization operator. Let F̂ (n) ∈ H(n+1)
ext be the

generated by ̂̇F (n)

equivalence class in H(n+1)
ext . This class is well-defined, does not depend

on the representative Ḟ
(n)
· , and |F̂ (n)|ext ≤ |F (n)

· |H(n)
ext⊗HC

.

Denote by 1A(·) the indicator of a set A. Let {Ms := 〈P1, 1[0,s]〉}s≥0 be a Meixner
random process (this process is a locally square integrable normal martingale with inde-
pendent increments, see [15, 22] for more details).

Definition 1.4. Let F ∈ (L2)⊗HC be such that

(1.5)
∞∑

n=0

(n + 1)!|F̂ (n)|2ext < ∞,

where F̂ (n) ∈ H(n+1)
ext (n ∈ Z+) are constructed in Lemma 1.1 starting from the kernels

F
(n)
· ∈ H(n)

ext ⊗ HC from decomposition (1.4) for F . We define the extended stochastic
integral with respect to the Meixner process

∫
R+

F (s) d̂Ms ∈ (L2) by setting∫
R+

F (s) d̂Ms :=
∞∑

n=0

〈Pn+1, F̂
(n)〉.

Since ‖
∫

R+
F (s) d̂Ms‖2(L2) =

∑∞
n=0(n + 1)!|F̂ (n)|2ext < ∞, this definition is correct.

Remark 1.4. Note that for h ∈ HC,
∫

R+
h(s) d̂Ms = 〈P1, h〉.

It was proved in [15] that
∫

R+
◦(s) d̂Ms is a generalization of the Itô stochastic integral.

Finally we recall the construction of the stochastic derivative on (L2) (see [14] for
details).

Lemma 1.2. ([15]). For a given F (n) ∈ H(n)
ext (n ∈ N) we construct an element

F (n)(·) ∈ H(n−1)
ext ⊗ HC in the following way. Let Ḟ (n) ∈ F (n) be some representative

(function) from the equivalence class F (n). We consider Ḟ (n)(·) (i.e., separate one argu-
ment of Ḟ (n)). Let F (n)(·) ∈ H(n−1)

ext ⊗HC be the generated by Ḟ (n)(·) equivalence class
in H(n−1)

ext ⊗HC. This class is well-defined, does not depend on the representative Ḟ (n),
and |F (n)(·)|H(n−1)

ext ⊗HC
≤ |F (n)|ext.

Using this result, for F (n) ∈ H(n)
ext (n ∈ N) and h ∈ HC, we define 〈F (n), h〉 ∈ H(n−1)

ext

by formula (1.2), now ([15])

(1.6) |〈F (n), h〉|ext ≤ |F (n)|ext|h|ext.

Definition 1.5. For each h ∈ HC we define an operator (D◦)(h) : (L2) → (L2) with the
domain

(1.7) dom(D◦)(h) = {F ∈ (L2) :
∞∑

n=1

n!n|〈F (n), h〉|2ext < ∞}
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(here F (n) ∈ H(n)
ext , n ∈ N are the kernels from decomposition (1.3) for F ) by the formula

(1.8) (DF )(h) :=
∞∑

n=1

n〈Pn−1, 〈F (n), h〉〉.

The following statement is a reformulation of the corresponding results from [14].

Theorem 1.3. The operators (D◦)(h) (h ∈ HC) and
∫

R+
◦h(s) d̂Ms are adjoint each

other: for F ∈ dom(D◦)(h) (see (1.7)) and G ∈ dom
∫

R+
◦h(s) d̂Ms ⊂ (L2) (see (1.5))

E
[
F

∫
R+

Gh(s) d̂Ms

]
=

( ∫
R+

Gh(s) d̂Ms, F
)

(L2)
=

(
G, (DF )(h)

)
(L2)

= E[G(DF )(h)]

(cf. (0.1)), where E denotes an expectation. In particular, (D◦)(h) is closed.

2. The integration by parts formula

As a base for construction of the integration by parts formula in the ”Meixner ana-
lysis” we use relation (1.1). First we generalize this relation as follows. Let h ∈ DC,
by Pr denote the symmetrization operator. By analogy with [22] we introduce, for each
n ∈ Z+, creation and neutral operators a+

n (h) : H(n)
ext → H(n+1)

ext and a0
n(h) : H(n)

ext →
H(n)

ext correspondingly by setting for F (n) ∈ D
b⊗n
C a+

n (h)F (n) := F (n)⊗̂h, a0
n(h)F (n) :=

nPr
(
θ(·)h(·)F (n)(·, ·2, . . . , ·n)

)
and continue to H(n)

ext by continuity. This is possible be-
cause, as it follows from the calculations in [22], |a+

n (h)F (n)|ext ≤
√

n + 1c1(h)|F (n)|ext,
|a0

n(h)F (n)|ext ≤ nc2(h)|F (n)|ext with some positive c1(h), c2(h). Further, let us define
the annihilation operators a−n (h) := a+

n (h)∗ : H(n+1)
ext → H(n)

ext : for all F (n) ∈ H(n)
ext ,

G(n+1) ∈ H(n+1)
ext 〈a+

n (h)F (n), G(n+1)〉ext = 〈F (n), a−n (h)G(n+1)〉ext. It is easy to calcu-
late ([22]) that a−n (h) = a−n,1(h) + a−n,2(h), where for G(n+1) ∈ D

b⊗n+1
C a−n,1(h)G(n+1) =

〈G(n+1), h〉 (see (1.2)), a−n,2(h)G(n+1) = nPr
(
η(·)h(·)G(n+1)(·, ·, ·2, . . . , ·n)

)
(it follows

from (1.6) that a−n,1(h) and, therefore, a−n,2(h) can be continued to continuous operators

acting from H(n+1)
ext to H(n)

ext). Finally we note that a−n,1(h)∗ : H(n)
ext → H(n+1)

ext has the

form a−n,1(h)∗F (n) = F (n) �h, |F (n) �h|ext ≤ |F (n)|ext|h|ext, where ([14]) for F (n) ∈ H(n)
ext ,

h ∈ DC F (n) � h is an equivalence class in H(n+1)
ext that is generated by the function

Ḟ (n)(u1, . . . , un)h(u)1{u1 6=u,...,un 6=u}, where Ḟ (n) ∈ F (n) is a representative of F (n); 1A

here and below denotes the indicator of an event A. Now (1.1) can be rewritten in the
form

(2.1)

〈Pn, F (n)〉〈P1, h〉 = 〈Pn+1, a
+
n (h)F (n)〉+ 〈Pn, a0

n(h)F (n)〉

+ n〈Pn−1, a
−
n−1,1(h)F (n)〉+ n〈Pn−1, a

−
n−1,2(h)F (n)〉

= 〈Pn+1, a
+
n (h)F (n)〉+ 〈Pn, a0

n(h)F (n)〉+ n〈Pn−1, a
−
n−1(h)F (n)〉, h ∈ DC,

and this formula holds true for F (n) ∈ H(n)
ext .

Remark 2.1. One can interpret formula (2.1) as follows: the operator of multiplication
by the generalized Meixner process can be identified with the sum of the creation, neutral
and annihilation operators. The reader can find more details in [17, 18, 19, 22]; here we
note only that such results are well-known in the Gaussian and Poissonian analysis (in
the Gaussian case, in particular, the neutral operator is equal to zero).

Let now

(2.2) F =
∞∑

n=0

〈Pn, F (n)〉, G =
∞∑

m=0

〈Pm, G(m)〉 ∈ (L2),
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h ∈ DC. As above, denote by E an expectation. Using (2.1) we obtain informally

GF

∫
R+

h(s) d̂Ms = GF 〈P1, h〉 =
∞∑

n,m=0

[
〈Pm, G(m)〉〈Pn+1, a

+
n (h)F (n)〉

+ 〈Pm, G(m)〉〈Pn, a0
n(h)F (n)〉+ n〈Pm, G(m)〉〈Pn−1, a

−
n−1(h)F (n)〉

]
,

therefore calculating (again informally !) the expectation of this product we have

E
[
GF

∫
R+

h(s) d̂Ms

]
=

∞∑
n=0

[
(n + 1)!〈G(n+1), a+

n (h)F (n)〉ext

+ n!〈G(n), a0
n(h)F (n)〉ext + 1{n>0}n!〈G(n−1), a−n−1(h)F (n)〉ext

]
.

On the other hand, using (1.8) we obtain (DF )(h) =
∑∞

n=1 n〈Pn−1, a
−
n−1,1(h)F (n)〉,

hence for F ∈ dom(D◦)(h), G ∈ (L2) E[G(DF )(h)] =
∑∞

n=1 n!〈G(n−1), a−n−1,1(h)F (n)〉ext

and (informally !)

E
[
FG

∫
R+

h(s) d̂Ms

]
−E[G(DF )(h)] =

∞∑
n=0

[
(n + 1)!〈G(n+1), a+

n (h)F (n)〉ext

+ n!〈G(n), a0
n(h)F (n)〉ext + 1{n>0}n!〈G(n−1), a−n−1,2(h)F (n)〉ext

]
=

∞∑
n=0

[
(n + 1)!〈a−n (h)G(n+1), F (n)〉ext + n!〈a0

n(h)G(n), F (n)〉ext

+ 1{n>0}n!〈a−n−1,2(h)∗G(n−1), F (n)〉ext

]
=

∞∑
n=0

n!〈F (n), (n + 1)a−n (h)G(n+1) + a0
n(h)G(n)

+ 1{n>0}(a+
n−1(h)− a−n−1,1(h)∗)G(n−1)〉ext = E[F (D̃G)(h)],

where

(2.3)
(D̃G)(h) :=

∞∑
n=0

〈Pn, (n + 1)a−n (h)G(n+1) + a0
n(h)G(n)

+ 1{n>0}(a+
n−1(h)− a−n−1,1(h)∗)G(n−1)〉.

In order to make our calculations rigorous, let us estimate the (L2)-norm of (D̃G)(h).
We have

‖(D̃G)(h)‖2(L2) =
∞∑

n=0

n!|(n + 1)a−n (h)G(n+1) + a0
n(h)G(n)

+ 1{n>0}(a+
n−1(h)− a−n−1,1(h)∗)G(n−1)|2ext

≤ 4
∞∑

n=0

n!
[
(n + 1)2|a−n (h)G(n+1)|2ext + |a0

n(h)G(n)|2ext

+ 1{n>0}|a+
n−1(h)G(n−1)|2ext + 1{n>0}|a−n−1,1(h)∗G(n−1)|2ext

]
≤ 4

∞∑
n=0

n!
[
n2c1(h)2 + n2c2(h)2 + (n + 1)2c1(h)2 + (n + 1)|h|2ext

]
|G(n)|2ext < ∞

if

(2.4)
∞∑

n=1

n!n2|G(n)|2ext < ∞.
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Therefore if F ∈ dom(D◦)(h) and G ∈ (L2) satisfies (2.4) then G(DF )(h) and F (D̃G)(h)
belong to L1(D′, µ). Moreover, it is easy to verify that under these conditions the ex-
pectation of FG

∫
R+

h(s) d̂Ms is well-defined and we obtained the following.

Theorem 2.1. Let h ∈ DC, F ∈ dom(D◦)(h), G ∈ (L2) satisfy (2.4). Then

(2.5) E
[
FG

∫
R+

h(s) d̂Ms

]
= E[G(DF )(h) + F (D̃G)(h)],

where the operator (D̃◦)(h) : (L2) → (L2) is defined by (2.3).

Formula (2.5) is called the integration by parts formula in the ”Meixner analysis”.
Note that estimate (2.4) (that describes the domain of (D̃◦)(h)) is simple, universal

for all subclasses of the generalized Meixner measure; but too restrictive. For example, in
the Gaussian case (α = β = 0, see Preliminaries) (D̃◦)(h) = (D◦)(h), but (2.4) is much
more restrictive than the condition in (1.7). Fortunately, Theorem 2.1 can be enhanced
in order to avoid this defect.

Lemma 2.1. Let h ∈ DC. The operator (D̃◦)(h) : (L2) → (L2) is closable.

Proof. We have to show that if dom(D̃◦)(h) 3 Gk → 0 in (L2) as k →∞ and (D̃Gk)(h) →
E in (L2) as k →∞ then E = 0 in (L2). Since for each k

Gk =
∞∑

n=0

〈Pn, G
(n)
k 〉

and

‖Gk‖2(L2) =
∞∑

n=0

n!|G(n)
k |2ext → 0

as k →∞, for each n ∈ Z+ |G(n)
k |ext → 0 as k →∞. Further,

(D̃Gk)(h) =
∞∑

n=0

〈Pn, E
(n)
k 〉 ≡

∞∑
n=0

〈Pn, (n + 1)a−n (h)G(n+1)
k + a0

n(h)G(n)
k

+ 1{n>0}(a+
n−1(h)− a−n−1,1(h)∗)G(n−1)

k 〉,

and therefore, for each n ∈ Z+, |E(n)
k |ext → 0 as k → ∞ because the operators a−n (h),

a0
n(h), a+

n−1(h) and a−n−1,1(h)∗ are continuous. Finally, by the condition of the lemma

(D̃Gk)(h) → E =
∞∑

n=0

〈Pn, E(n)〉

in (L2) as k →∞, therefore,

‖E − (D̃Gk)(h)‖2(L2) =
∞∑

n=0

n!|E(n) − E
(n)
k |2ext → 0

as k →∞, hence, for each n ∈ Z+, |E(n) −E
(n)
k |ext → 0 as k →∞. But in this case, for

each n ∈ Z+, |E(n)|ext = 0 (because

|E(n)|ext = |E(n) − E
(n)
k + E

(n)
k |ext ≤ |E(n) − E

(n)
k |ext + |E(n)

k |ext →
k→∞

0),

hence E = 0 in (L2). �

Denote by (D̂◦)(h) the closure of (D̃◦)(h). Now we have the following “enhanced”
variant of Theorem 2.1.
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Theorem 2.2. Let h ∈ DC, F ∈ dom(D◦)(h), G ∈ dom(D̂◦)(h), and the expectation of
FG

∫
R+

h(s) d̂Ms be well-defined. Then

E
[
FG

∫
R+

h(s) d̂Ms

]
= E[G(DF )(h) + F (D̂G)(h)].

Remark 2.2. The expectation of FG
∫

R+
h(s)d̂Ms is well-defined if, for example, kernels

from decompositions (2.2) for F and G satisfy the estimates
∞∑

n=0

n!n|F (n)|2ext < ∞,

∞∑
n=0

n!n|G(n)|2ext < ∞.

Remark 2.3. As we noted above, in the Gaussian case (D̃G)(h) = (DG)(h), and therefore
in the integration by parts formula one can use “nonsmooth” h ∈ HC. In the general
case such a generalization is impossible; but one can easily generalize the results of
Theorems 2.1,2.2 at least for bounded σ-a.e. h ∈ HC.

Remark 2.4. In the paper [13] the stochastic integral and the stochastic derivative
(D◦)(h) on the so-called parametrized Kondratiev-type spaces of test and generalized
functions were considered ((L2) is a particular case of these spaces). Note that the inte-
gration by parts formula (2.5) holds true for a test function F and a generalized function
G. As for the case of generalized functions F and G, in this case, expectations are not
determined, but can be replaced by the corresponding pairings.

Acknowledgments. I am very grateful to Professor E. W. Lytvynov for helpful com-
ments.
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