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OPERATORS DEFINED ON L1 WHICH “NOWHERE” ATTAIN
THEIR NORM

I. V. KRASIKOVA, V. V. MYKHAYLYUK, AND M. M. POPOV

Abstract. Let E be either `1 of L1. We consider E-unattainable continuous linear
operators T from L1 to a Banach space Y , i.e., those operators which do not attain
their norms on any subspace of L1 isometric to E. It is not hard to see that if T :
L1 → Y is `1-unattainable then it is also L1-unattainable. We find some equivalent
conditions for an operator to be `1-unattainable and construct two operators, first
`1-unattainable and second L1-unattainable but not `1-unattainable. Some open
problems remain unsolved.

1. Preliminaries

Concerning standard definitions and notation we follow mainly [9] and [10]. By
L(X, Y ) we denote the space of all continuous linear operators acting from a Banach space
X to a Banach space Y . The symbol L(X) is used for L(X, X). The closed linear span of a
sequence (xn) in a Banach space X is denoted by [xn]. If (Ω, Σ, µ) is a measure space and
x ∈ L1(µ) then by supp x we denote the support {ω ∈ Ω : x(ω) 6= 0} of x which is defined
as a set, up to a measure null subset. Besides, for A ∈ Σ+ (i.e., for A ∈ Σ, µ(A) > 0),
the symbol L1(A) is reserved for the subspace {x ∈ L1(µ) : supp x ⊆ A} of L1(µ) and
L+

1 (A) is the positive cone of this subspace {x ∈ L1(A) : x ≥ 0} (note that x ≤ y means
that x(ω) ≤ y(ω) for almost all ω ∈ Ω). For A,B, C ∈ Σ by C = A t B we mean that
both C = A ∪ B and A ∩ B = ∅ hold. Analogously, for x, y, z ∈ L1(µ) the equality
x = y t z means that x = y + z and supp y ∩ supp z = ∅.

If Y is a Banach space, T ∈ L
(
L1(µ), Y

)
and A ∈ Σ+ then by TA we denote the

restriction of T to the subspace L1(A). The positive and the negative parts of an element
x ∈ L1(µ) are defined as x+(ω) = x(ω) when x(ω) ≥ 0 and x+(ω) = 0 when x(ω) < 0
and x− = x+ − x. The characteristic function of a set A ∈ Σ is denoted by 1A. A
sequence (xn) in L1(µ) is called disjoint provided supp xi ∩ supp xj = ∅ for i 6= j.

By B we denote the Borel σ-field on [0, 1] and by λ the Lebesgue measure on B.
Let X and Y be Banach spaces over the reals with X infinite dimensional. We say

that an operator T ∈ L(X, Y )
- attains its norm at an element x ∈ X \ {0} if ‖Tx‖ = ‖T‖‖x‖;
- attains its norm provided that it attains its norm at some x ∈ X;
- attains its norm on a subspace X1 ⊆ X if the restriction T |X1 ∈ L(X1, Y ) of T to

X1 attains its norm;
- is E-unattainable if does not attain its norms on any subspace of L1 isometric to E1;
- nowhere attains its norm if T does not attain its norm on any infinite dimensional

subspace X1 ⊆ X.
The set of all operators from L(X, Y ) attaining their norm is denoted by NA (X, Y ).
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The famous Bishop-Phelps theorem (1961) [2] asserts that for any Banach space X
the set NA (X, R) of all norm attaining functionals f ∈ X∗ is dense in X∗. As it
was shown by Lindenstrauss (1963) [8], this theorem is not longer true for operators.
Among positive results in this direction it is ought to mention Bourgain’s theorem on
the denseness of NA (X, Y ) in L(X, Y ) in the case when X has the Radon-Nikodým
property. The corresponding sets are dense in L(L1) [4] and L

(
C[0, 1]

)
[5], but is not

dense in L
(
L1, C[0, 1]

)
[13]. We refer the reader to [1] for more details.

Some related facts on the structure of the set of those elements x ∈ L1 at which a
given operator T ∈ L(L1, Y ) attains its norm are given in [11].

2. Introduction

It is an easy exercise to construct an operator T ∈ L(L1) that does not attain its

norm. Let [0, 1] =
∞⊔

n=1
An be any decomposition, An ∈ B+ and αn ↑ 1 be a sequence of

positive numbers. Then the operator T : L1 → L1 given by

Tx =
∞∑

n=1

( αn

λ(An)

∫
An

xdλ
)
1An , x ∈ L1,

does not attain its norm. Indeed, since

(2.1) ‖Tx‖ ≤
∞∑

n=1

αn

λ(An)

∫
An

|x|dλ ‖1An‖ <

∞∑
n=1

∫
An

|x|dλ = ‖x‖

for each x ∈ L1, one has that ‖T‖ ≤ 1. On the other hand, ‖T1Am
‖ = αm‖1Am

‖ for
any m ∈ N and, hence, ‖T‖ = 1. The same strict inequality (2.1) yields that T does
not attain its norm at any element. Nevertheless, the restriction TAn to any subspace
L1(An), n ∈ N, attains its norm at every element x ∈ L+

1 (An).
Consider the following question.

Problem 2.1. Let X and Y be Banach spaces with X infinite dimensional. Does there
exist an operator T ∈ L(X, Y ) which nowhere attains its norm? What if X = L1?

The following example due to M. Ostrovskii (private communication) gives a positive
answer to this problem for classical sequence spaces.

Example 2.2 (M. Ostrovskii). Let E = `p with 1 ≤ p < ∞, or E = c0 and (αn)∞1 be a
sequence of scalars such that 0 < αn ↑ 1. Then the operator T ∈ L(E), given by

T (ξ1, . . . , ξn, . . .) = (α1ξ1, . . . , αnξn, . . .),

nowhere attains its norm.

Indeed, since ‖Tx‖ < ‖x‖ for each x ∈ E \ {0}, it is enough to prove that ‖T |X‖ = 1
for each infinite dimensional subspace X ⊆ E. Given such an X, for every n ∈ N by En

we denote the set of all vectors from E with zero coordinates from the first up to n-th.
Since En has finite codimension in E and X is an infinite dimensional subspace of E,
we obtain that X ∩ En 6= {0} for each n. Now fix any ε > 0 and pick an n such that
αn > 1− ε, and choose x = (0, . . . , 0, ξn, ξn+1, . . .) ∈ X ∩ En 6= {0} with ‖x‖ = 1. Then

‖Tx‖ =
∥∥(0, . . . , 0, αnξn, αn+1ξn+1, . . .)

∥∥ ≥ αn‖x‖ > 1− ε.

By arbitrariness of ε, one gets ‖T |X‖ = 1.
As the proof shows, this example remains correct for the case of any sequence space

E for which the inequality∥∥(ξ1, . . . , ξn, . . .)
∥∥ >

∥∥(α1ξ1, . . . , αnξn, . . .)
∥∥
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holds for every nonzero vector (ξ1, . . . , ξn, . . .) ∈ E. Note also that the space `∞ does
not have this property and the example is not longer valid, because the corresponding
operator attains its norm at (1, 1, . . .).

Remark also that the idea of Example 2.2 cannot be applied to operators from L(X, Y )
if X has the Daugavet property, e.g., X = L1. Recall that a Banach space X is said
to have the Daugavet property (DP, in short) if ‖Id + K‖ = 1 + ‖K‖ for every rank
one (equivalently, every weakly compact) operator K ∈ L(X) where Id is the identity of
X [7].

Indeed, the main point of Example 2.2 is that T ∈ L(X, Y ) possesses the properties:
‖T‖ = 1 and

for every ε > 0 there exists a finite codimensional subspace X0 ⊆ X with

(2.2) inf
{
‖Tx‖ : x ∈ SX0

}
> 1− ε.

The following statement shows that if X has the DP then such an operator must be an
isometric embedding and hence attains its norm.

Proposition 2.3. Let X, Y be Banach spaces with X having the DP, T ∈ L(X, Y ), ‖T‖ =
1, 0 < a < 1, and inf

{
‖Tx‖ : x ∈ SX

}
< 1 − a. Then for every finite codimensional

subspace X0 ⊆ X one has that

(2.3) inf
{
‖Tx‖ : x ∈ SX0

}
< 1− a

2
.

Proof. Fix an x0 ∈ SX with ‖Tx0‖ < 1−a and an x∗0 ∈ SX∗ with x∗0(x0) = 1. Given any
finite codimensional subspace X0 ⊆ X, we set X1 = X0 ∩ ker x∗0 and X2 = lin {x0, X1}.
Since X2 is a finite codimensional subspace of a Banach space with the DP, it itself
has the DP [7]. This implies that the natural projection P : X2 → X1 defined by
Px = x− x∗0(x)x0 has norm 1 + 1 = 2. So, for every ε > 0 there exists an u ∈ SX2 with
‖Pu‖ > 2− ε. Now, since Pu/‖Pu‖ ∈ SX0 , we have that

inf
{
‖Tx‖ : x ∈ SX0

}
≤

∥∥∥∥ TPu

‖Pu‖

∥∥∥∥ <
‖TPu‖
2− ε

=

∥∥T
(
u− x∗0(u)x0

)∥∥
2− ε

=

∥∥Tu− x∗0(u)Tx0

∥∥
2− ε

<
1 + 1− a

2− ε
=

2− a

2− ε
.

By the arbitrariness of ε, the proposition is proved. �

Thus, it remains to observe that both conditions (2.2) and (2.3) imply that T is an
isometric embedding.

This paper is devoted to some questions close to the second part of Problem 2.1
concerning L1. More precisely, we investigate the following particular question.

Problem 2.4. Do there exist a Banach space X and an E-unattainable operator T ∈
L(L1, X) for E = `1 or E = L1?

3. `1-unattainable operators

Observe that if Y is a Banach space and an operator T ∈ L(L1, Y ) is `1-unattainable
then T does not attain its norm. Indeed, let T attain its norm at some element x1 ∈
L1 \{0}. Without loss of generality we may assume that λ([0, 1]\supp x1) > 0, otherwise
we decompose x1 = y t z with y, z 6= 0 and T must attain its norm at least on one of
the elements y, z, which obviously satisfies the desired condition. Next we choose any
disjoint sequence of nonzero elements x2, x3, . . . ∈ L1([0, 1]\ supp x1). Then T attains its
norm on the subspace [xn]∞n=1 which is isometric to `1. The same argument shows that
the following statement is true.
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Proposition 3.1. Let Y be a Banach space. If an operator T ∈ L(L1, Y ) is `1-
unattainable then T is L1-unattainable.

Now we are going to choose more deep properties of `1-unattainable operators. Ac-
cording to Pe lczyński [12], a subspace X ⊆ L1 is isometric to `1 if and only if it is spanned
by a disjoint sequence (xn), X = [xn]. Besides, we shall use the following simple obser-
vation: if Y is a Banach space and T ∈ L(`1, Y ), then ‖T‖ = sup

n
‖Ten‖, where (en) is

the standard basis for `1. Thus, if (xn) is a normalized disjoint sequence in L1, X = [xn]
+ T ∈ L(L1, Y ), then ‖T |X‖ = sup

n
‖Txn‖.

Theorem 3.2. Let Y be a Banach space and T ∈ L(L1, Y ) with ‖T‖ = 1. Then the
following assertions are equivalent:

(i) T is `1-unattainable;
(ii) for any normalized disjoint sequence (xn) in L1 one has

sup
m
‖Txm‖ > ‖Txn‖ for every n ∈ N;

(iii) for any normalized disjoint sequence (xn) in L1 one has

‖Txn‖ < 1 for every n ∈ N and lim
i→∞

‖Txi‖ = 1;

(iv) for any normalized sequence (xn) in L1 with lim
n→∞

λ (supp xn) = 0 one has

‖Txn‖ < 1 for every n ∈ N and lim
i→∞

‖Txi‖ = 1.

Proof. Equivalence (i) ⇔ (ii) follows from Pe lczyński’s theorem and the above remark.
Besides, implications (iv) ⇒ (iii) ⇒ (ii) are obvious.

(ii) ⇒ (iii). Let (ii) holds for a given operator T ∈ L(L1, Y ). First we prove that T
does not attain its norm, i.e., ‖Tx‖ < 1 for each x ∈ S(L1). Suppose to the contrary
that ‖Tx‖ = 1 for some x ∈ S(L1). Choose any disjoint sequence An ∈ B+ with

supp x =
∞⊔

n=1
An and set yn = x · 1An for each n ∈ N. Then from

1 =
∥∥∥ ∞∑

n=1

Tyn

∥∥∥ ≤ ∞∑
n=1

‖Tyn‖ ≤ 1
∞∑

n=1

‖yn‖ = 1

we deduce that
∞∑

n=1
‖Tyn‖ = 1

∞∑
n=1

‖yn‖. But this easily implies that ‖Tyn‖ = 1‖yn‖ for

each n. Thus, for the normalized disjoint sequence xn = yn/‖yn‖ one has ‖Txn‖ = 1 for
each n, which contradicts (ii).

Now we prove the second part of (iii). Suppose to the contrary that there exists a
normalized disjoint sequence (ui) in L1 such that the equality lim

i→∞
‖Tui‖ = 1 does not

hold. Then there are a number δ > 0 and a normalized disjoint sequence (xn) in L1

such that ‖Txn‖ < 1 − δ for each n ∈ N. Note that, without loss of generality, we may

assume that
∞⊔

n=1
suppxn = [0, 1]. Indeed, if λ(A) > 0 where A = [0, 1] \

∞⊔
n=1

suppxn then

we choose a γ > 0 so that ‖Tx′1‖ < 1− δ where

x′1 =
x1 + γ1A

‖x1 + γ1A‖
and consider the sequence x′1, x2, x3, . . ..

We pick x ∈ S(L1) so that ‖Tx‖ ≥ 1−δ and set yn = x ·1suppxn for each n ∈ N. Since
∞∑

n=1

‖yn‖
(
1− δ

)
= 1− δ ≤ ‖Tx‖ =

∥∥∥T

∞∑
n=1

yn

∥∥∥ ≤ ∞∑
n=1

‖Tyn‖,
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there is a number n0 such that ‖Ty0‖ ≥
(
1 − δ

)
‖yn0‖. Then putting zn = xn for

n 6= n0 and zn0 = yn0/‖yn0‖, for the normalized disjoint sequence (zn) one obtains
sup

n
‖Tzn‖ = ‖Tzn0‖ what contradicts (ii).

(iii) ⇒ (iv). Suppose that (iii) fulfills, however there exist a δ > 0 and a normalized
sequence xn ∈ L1 such that ‖Txn‖ ≤ 1(1− δ) for each n ∈ N and lim

n→∞
λ (supp xn) = 0.

Without loss of generality, we may assume that the series
∞∑

n=1
λ (supp xn) converges

(otherwise we pass to a subsequence). Then we choose a subsequence (xnk
) such that

‖uk‖ < δ/3 for each k ∈ N where uk = xnk
· 1 ∞S

i=k+1
supp xni

. Now for each k ∈ N we set

yk = xnk
−uk and zk = yk/‖yk‖. Then for the normalized disjoint sequence (zk) we have

‖Tzk‖ =
‖Txnk

− Tuk‖
‖xnk

− uk‖
≤ ‖Txnk

‖+ ‖Tuk‖
‖xnk

‖ − ‖uk‖
≤

1(1− δ) + 1 δ
3

1− δ
3

= 1
1− 2δ

3

1− δ
3

for each k that contradicts (iii). �

For convenience of the notation, if for a given T ∈ L(L1, Y ) and an A ∈ B+ the
restriction TA is not an isomorphic embedding, we then set ‖T−1

A ‖ = ∞.

Theorem 3.3. Let Y be a Banach space. Then an operator T ∈ L(L1, Y ) with ‖T‖ = 1
is `1-unattainable if and only if the following conditions hold:

(a) there exists a δ > 0 such that TA is an isomorphic embedding which does not attain
its norm whenever A ∈ B+ and λ(A) < δ;

(b) ‖TA‖ = 1 and ‖TA‖‖T−1
A ‖ > 1 for every A ∈ B+;

(c) lim
λ(A)→0

‖TA‖‖T−1
A ‖ = 1.

Proof. The ”only if” part. (a). Suppose to the contrary that there exists a sequence of
sets An ∈ B+ such that λ(An) ≤ 2−n and the operators TAn are unbounded from below
for each n ∈ N. For each n ∈ N we pick xn ∈ S

(
L1(An)

)
so that ‖Txn‖ < 2−n. Then

we choose a sequence of numbers 1 ≤ k1 < k2 < . . . so that for yn = xkn · 1Akn\Akn+1

we have
∥∥xkn − yn

∥∥ < 2−n. Then the sequence zn = yn/‖yn‖ is normalized and disjoint.
Besides,

1 =
∥∥xkn

∥∥ ≥ ‖yn‖ ≥ 1−
∥∥xkn − yn

∥∥ ≥ 1− 1
2n

,

whence
∣∣∣‖yn‖ − 1

∣∣∣ < 2−n. Therefore∥∥xkn
− zn

∥∥ ≤ ∥∥xkn − yn

∥∥ + ‖yn − zn‖ <
1
2n

+ ‖yn‖
∣∣∣1− 1

‖yn‖

∣∣∣ <
1

2n−1
.

Thus,

‖Tzn‖ ≤
∥∥Txkn

∥∥ + 1
∥∥xkn − zn

∥∥ <
1

2kn
+ 1

1
2n−1

,

and hence lim
n→∞

‖Tzn‖ = 0, which contradicts Theorem 3.2.

(b). Given A ∈ B+, we choose any sequence An ∈ B+ with An ⊆ A and lim
n→∞

λ(An) =

0. Then putting xn = 1An/λ(An) for each n ∈ N, we obtain that ‖TA‖ ≥ ‖Txn‖ for each
n. By Theorem 3.2 (iv), ‖TA‖ ≥ 1, i.e., ‖TA‖ = 1.

If we had
∥∥TA

∥∥∥∥T−1
A

∥∥ = 1 for a given A ∈ B+ then TA would attain its norm at each
element x ∈ L1(A), x 6= 0. Indeed,

‖TAx‖ ≤ ‖TA‖‖x‖ = ‖TA‖‖T−1
A (TAx)‖ ≤ ‖TA‖‖T−1

A ‖‖TAx‖ = ‖TAx‖,

whence ‖TAx‖ = ‖TA‖‖x‖.
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(c). By (a), T−1
A exists and is bounded for each A ∈ B+. Without loss of generality,

we assume that 1 = 1. Suppose that (c) does not hold. Since ‖T−1
A ‖ > 1 for each A ∈ B+

by (b), there are a δ > 0 and a sequence An ∈ B+ such that ‖T−1
A ‖ > 1 + δ for every

n ∈ N. Now pick a normalized sequence xn ∈ L1(An) so that ‖Txn‖ ≤ 1
1+δ for each

n ∈ N. This contradicts Theorem 3.2 (iv).
The ”if” part. It is enough to consider the case 1 = 1. Let (xn) be any normalized

sequence with lim
n→∞

λ(An) = 0 where An = supp xn. By the theorem assumptions,

lim
n→∞

∥∥T−1
An

∥∥ = 1. Since
∥∥T−1

An

∥∥ ≥ ‖xn‖
‖Txn‖ , we have that

∥∥T−1
An

∥∥−1 ≤ ‖Txn‖ ≤ 1 for each

n ∈ N. Thus, lim
n→∞

‖Txn‖ = 1. By Theorem 3.2, T is `1-unattainable. �

Consider the following example. We define an operator T ∈ L(L1) by putting for each
x ∈ L1

Tx = x− 1
2

∫
xdλ · 1,

where 1 = 1[0,1]. Observe that if y = Tx then
∫

ydλ − 1/2
∫

xdλ and hence x =
y+

∫
ydλ·1. Thus, T is an isomorphic embedding with ‖T−1‖ ≤ 2. Obviously, ‖TA‖ = 3/2

for each A ∈ B+. We show that the operators TA do not attain their norm. Let x ∈ S(L1)
and ‖Tx‖ = 3/2. Since

∣∣∫ xdλ
∣∣ = 1, we have that either x ≥ 0 or x ≤ 0. Suppose that

x ≥ 0. We set B =
{
t ∈ [0, 1] : x(t) ≥ 1/2

}
. Then λ(B) > 0 and

‖Tx‖ =
∥∥∥x− 1

2
1
∥∥∥ =

∫
B

(
x(t)− 1

2

)
dλ(t) +

∫
[0,1]\B

( 1
2
− x(t)

)
dλ(t)

≤ ‖x‖ − λ(B)
2

+
1− λ(B)

2
=

3
2
− λ(B),

a contradiction.
On the other hand, ‖T−1

A ‖ ≥ 1 for every A ∈ B+, because Tx = x for each x ∈ L1(A)
with

∫
xdλ = 0. Thus, condition (c) from Theorem 3.3 does not hold.

This example shows that conditions (a) and (b) for an operator do not imply that this
operator is `1-unattainable. Besides, it is not very hard to verify concerning our example
that T fulfills conditions (ii) − (iv) from Theorem 3.2 for the case when xn ≥ 0 for all
n in these conditions. This shows that conditions (ii) − (iv) in Theorem 3.2 cannot be
stated for positive sequences only.

Theorem 3.4. There exists an `1-unattainable operator T ∈ L(L1).

First we need the following auxiliary construction.

Lemma 3.5. Given any sets A,B ∈ B with [0, 1] = A t B and λ(A) = λ(B) = 1/2,
there exists an operator T = TA,B ∈ L

(
L1, L1(A×B)

)
with the following properties:

(1) for each C ∈ B one has that ‖T1C‖ = λ(C) if and only if either C ⊆ A or
C ⊆ B;

(2) ‖T‖ = 1;
(3) ‖Tx‖ ≥ 1− 2λ(supp x) for every x ∈ L1.

Proof. For each x ∈ L1 we define a function Tx ∈ L1(A×B) of two variables as follows

(Tx)(s, t) = 2x|A(s)− 2x|B(t)

(here by x|C we denote the restriction of x to a set C ∈ B, i.e. x|C = x · 1C).
(1) Fix any C ∈ B. We set CA = C ∩A and CB = C ∩B. Then one has

(3.1)
∥∥T1C

∥∥ = 2
∫ ∫

A×B

∣∣1C(s)− 1C(t)
∣∣dsdt = 2

∫ ∫
A×B

∣∣1CA
(s)− 1CB

(t)
∣∣dsdt.



OPERATORS DEFINED ON L1 WHICH “NOWHERE” ATTAIN THEIR NORM 23

On the other hand,

(3.2)

2
∫ ∫

A×B

(
1CA

(s) + 1CB
(t)

)
dsdt = 2λ(B)

∫
A

1CA
(s)ds

+ 2λ(A)
∫
B

1CB
(t) dt = λ(CA) + λ(CB) = λ(C).

From (3.1) and (3.2) we conclude that ‖T1C‖ = λ(C) if and only if∫ ∫
A×B

∣∣1CA
(s)− 1CB

(t)
∣∣dsdt =

∫ ∫
A×B

(
1CA

(s) + 1CB
(t)

)
dsdt,

what is possible if and only if

(3.3)
∣∣1CA

(s)− 1CB
(t)

∣∣ = 1CA
(s) + 1CB

(t)

for almost all (s, t) ∈ A×B. Since (3.3) does not hold if (s, t) ∈ CA×CB , we obtain that
λ(CA×CB) = λ(CA)× λ(CB) = 0. Thus, either λ(CA) = 0 or λ(CB) = 0. Equivalently,
either C ⊆ A or B ⊆ A.

(2) In view of (1), it is enough to show that ‖T‖ ≤ 1. For each x ∈ L1 one has

‖Tx‖ ≤ 2
∫ ∫

A×B

∣∣x|A(s)
∣∣ ds dt + 2

∫ ∫
A×B

∣∣x|B(t)
∣∣dsdt

= 2λ(B)
∫
A

|x(s)|ds + 2λ(A)
∫
B

|x(t)|dt = ‖x‖.

(3) Given any x ∈ S(L1), we set D = supp x, A1 = A ∩D and B1 = B ∩D. Then

‖Tx‖ =
∫ ∫

A×B

∣∣2x|A(s)− 2x|B(t)
∣∣dsdt

≥
∫ ∫

A1×(B\B1)

∣∣2x|A(s)− 2x|B(t)
∣∣dsdt +

∫ ∫
(A\A1)×B1

∣∣2x|A(s)− 2x|B(t)
∣∣dsdt

= 2
∫ ∫

A1×(B\B1)

|x(s)|dsdt + 2
∫ ∫

(A\A1)×B1

|x(t)|dsdt

= 2
(
λ(B)− λ(B1)

) ∫
A1

|x(s)|ds + 2
(
λ(A)− λ(A1)

) ∫
B1

|x(t)|dt

≥
(
1− 2λ(D)

)(∫
A1

|x(s)|ds +
∫
B1

|x(t)|dt
)

= 1− 2λ(D).

�

Proof of Theorem 3.4. For each n ∈ N decompose [0, 1] = An tBn with An, Bn ∈ B+ so
that λ(An) = λ(Bn) = 1/2 and

(∗) λ
( n⋂

k=1

Ck

)
= 2−n for each n and Ck ∈ {Ak, Bk}

(for example, one can set An = {t ∈ [0, 1] : rn(t) = 1} where (rn) is the Rademacher

system on [0, 1]). Then decompose [0, 1] =
∞⊔

n=1
Dn with Dn ∈ B+. For every n ∈ N let

TAn,Bn : L1 → L1(An×Bn) be an operator having properties (1)− (3) from Lemma 3.5.
Let Jn : L1(An×Bn) → L1(Dn) be any linear isometric embedding for each n. Then set
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Tn = Jn ◦ TAn,Bn
and observe that Tn ∈ L

(
L1, L1(Dn)

)
has properties (1)− (3) for each

n as well. Finally we put T =
∞∑

n=1
2−nTn. Obviously, T ∈ L(L1) with ‖T‖ ≤ 1. Our goal

is to show that T satisfies condition (iii) from Theorem 3.2. Let (xi) be any normalized
disjoint sequence in L1. Then by definition of T and property (3) for Tn’s we obtain

‖Txi‖ =
∞∑

n=1

2−n‖Tnxi‖ ≥ 1− 2λ(supp xi) −→ 1 as i →∞.

Hence ‖T‖ = 1 and lim
i→∞

‖Txi‖ = ‖T‖. It remains to show that T does not attain its

norm. Suppose to the contrary that T attains its norm. Then by Lemma 3.2 of [11],
there exists a set A ∈ B+ such that T attains its norm on the positive cone L+

1 (A). In

particular, ‖T1A‖ = λ(A). On the other hand, ‖T1A‖ =
∞∑

n=1
2−n‖Tn1A‖. We claim

that ‖Tn1A‖ = λ(A) for each n. Indeed, if we suppose that ‖Tn01A‖ < λ(A) for some
n0 then, taking into account that ‖Tn1A‖ ≤ λ(A) for each n, we would obtain that
‖T1A‖ < λ(A). Thus, ‖Tn1A‖ = λ(A) for each n is established. By condition (1) of
Lemma 3.5, for each n we have that A ⊆ Cn where Cn ∈ {An, Bn}. Thus, for each n

one has that A ⊆
n⋂

k=1

Ck whence λ(A) ≤ 2−n by choice of the sets An, Bn. But this

contradicts the condition λ(A) > 0. �

4. An L1-unattainable operator, which is not `1-unattainable

Lemma 4.1. Let X and Y be Banach spaces, T ∈ L(X, Y ) and x, y, z ∈ X satisfy
x = y + z and ‖x‖ = ‖y‖+ ‖z‖. If

(4.1)
‖Tx‖
‖x‖

≥ max
{‖Ty‖
‖y‖

,
‖Tz‖
‖z‖

}
,

then the following equalities hold:

(i) ‖Tx‖ = ‖Ty‖+ ‖Tz‖;

(ii)
‖Tx‖
‖x‖

=
‖Ty‖
‖y‖

=
‖Tz‖
‖z‖

.

Proof. (i). We set α = ‖Tx‖
‖x‖ . Then by (4.1),

α‖y‖+ α‖z‖ = α‖x‖ = ‖Tx‖ ≤ ‖Ty‖+ ‖Tz‖ ≤ α‖y‖+ α‖z‖,

which implies (i).
(ii). If we suppose that ‖Ty‖

‖y‖ < α, then ‖Ty‖+ ‖Tz‖ < α‖y‖+ α‖z‖, a contradiction.
�

Note that (4.1) is valid if T attains its norm at x.

Theorem 4.2. Let (Ω, Σ, µ) be a measure space, Y be a Banach space and an operator
T ∈ L

(
L1(µ), Y

)
attains its norm at x ∈ L+

1 (µ). Then T atains its norm at any element
0 6= y ∈ L+

1 (supp x).

Proof. It is enough to prove that T attains its norm at any element of some dense subset
M ⊆ L+

1 (supp x), since if y ∈ L+
1 (supp x), yn ∈ M and lim

n→∞
yn = y then

‖Ty‖
‖y‖

= lim
n→∞

‖Tyn‖
‖yn‖

= ‖T‖.
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For every n ∈ N we put An = {ω ∈ Ω : x(ω) ≥ 1/n} and M =
∞⋃

n=1
L+
∞(An). Fix any

u ∈ M , say, u ∈ L∞(Am). Then for

y =
u

m ‖u‖∞
one obtains that 0 ≤ y ≤ x. Thus, for x, y + z = x − y the assumptions of Lemma
4.1 are satisfied. By item (ii) of this lemma, T attains its norm at y, and hence, at u.

It is enough to note that M is dense in L+
1 (supp x), because supp x =

∞⋃
n=1

An, up to a

measure null set. �

The following statement clarifies Lemma 3.2 of [11].

Corollary 4.3. Let (Ω, Σ, µ) be a measure space, Y be a Banach space and an operator
T ∈ L

(
L1(µ), Y

)
attains its norm at x ∈ L1(µ). Then T attains its norm at any element

0 6= y ∈ L+
1 (supp x+) ∪ L+

1 (supp x−).

Proof. Using Lemma 4.1 (ii) for y = x+ and z = −x−, we obtain that T attains its norm
at each element x+, x−. Then use Theorem 4.2 for x+ and x−. �

The functional f(x) =
1
2∫
0

xdλ−
1∫
1
2

xdλ, which attains its norm at x = 1[0,1/2)−1[1/2,1],

however does not attain its norm at any element of the form y = 1A, where λ
(
A ∩

[0, 1/2)
)

= λ(A)/2 (one has that f(y) = 0 in this case), shows that the positivity con-
dition on x in Theorem 4.2 is essential, and that of any x we cannot say more than
Corollary 4.3 gives.

Recall that a Banach space Y is said to be strictly convex if for any elements x 6= y
of S(Y ) one has ‖x + y‖ < 2, or equivalently, if S(Y ) contains no segment.

Theorem 4.4. Let Y be a strictly convex Banach space, x ∈ L1, A1 = supp x+ and
A2 = supp x−. Suppose that an operator T ∈ L(L1, Y ) attains its norm at x. Then TAi

are rank one operators for i = 1, 2.

Proof. We prove the theorem for i = 1 (the proof for i = 2 is analogous). By Corollary
4.3, T attains its norm at x+. Let v ∈ L+

∞(A1) be any nonzero element. We set
β = ‖Tv‖

‖T (x+)‖ . Since T attains its norm at v (cf. Theorem 4.2), one has, in particular,
that β > 0. Theorem 4.2 implies also that T attains its norm at w = βx+ + v. Since
‖w‖ = ‖βx+‖ + ‖v‖, using Lemma 4.1, we obtain that ‖Tw‖ = ‖T (βx+)‖ + ‖Tv‖. On
the other hand, ‖T (βx+)‖ = ‖Tv‖ by definition of β. If we suppose T (βx+) 6= Tv, then
the strict convexity of Y gives

2‖Tv‖ = ‖T (βx+)‖+ ‖Tv‖ = ‖Tw‖ = ‖T (βx+) + Tv‖ < 2‖Tv‖,

a contradiction. Thus, Tv = βT (x+) = ‖Tv‖
‖T (x+)‖ T (x+). Suppose now that v ∈ L∞(A1)

be any element. Then

Tv = T (v+)− T (v−) =
‖T (v+)‖ − ‖T (v−)‖

‖T (x+)‖
T (x+).

�

A Banach space Y is called locally uniformly convex, provided for each x, xn ∈ Y, n ∈
N the conditions ‖xn‖ −→ ‖x‖ and ‖xn + x‖ −→ 2‖x‖ yield ‖xn − x‖ −→ 0. It is
easy to see that a locally uniformly convex Banach space is strictly convex. In 1959
M. I. Kadec proved [6] that in every separable Banach space there exists an equivalent
locally uniformly convex (in particular, strictly convex) norm.
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So, there exists a strictly convex Banach space Y , isomorphic to L1. Let T : L1 → Y
be an isomorphism. Since T is one-to-one, T cannot be a rank one operator when being
restricted to any infinite dimensional subspace.

Thus, Theorem 4.4 has the following consequence.

Corollary 4.5. Let Y be a strictly convex Banach space and T : L1 → Y be an injective
operator. Then T is L1-unattainable.

Theorem 4.6. There exists a Banach space Y and an isomorphism T : L1 → Y which
is L1-unattainable but is not `1-unattainable.

Proof. Let Y be a strictly convex Banach space isomorphic to L1 and T : L1 → Y be
an isomorphism. By Corollary 4.5, T does not attain its norm on each subspace of L1

isometric to L1.
Fix any normalized disjoint sequence (xn) in L1 and set X = [xn]. Choose δ ∈(

0, 1
‖T‖‖T−1‖

)
and n0 ∈ N so that (1 + δ)‖Txn0‖ ≥ sup

m
‖Txm‖. Now define an operator

S ∈ L(L1, Y ) by putting for each x ∈ L1

Sx = Tx + δ
( ∫
supp xn0

x dλ
)

Txn0 .

Remark that S is an isomorphic embedding, because for each x ∈ L1 one has

‖Sx‖ ≥ ‖Tx‖ − δ‖x‖‖Txn0‖ ≥
‖x‖
‖T−1‖

− δ‖T‖‖x‖ = η‖x‖,

where η = ‖T−1‖−1−δ‖T‖ > 0 by the choice of δ. By Corollary 4.5, S is L1-unattainable.
Now observe that ‖Sxn‖ = ‖Txn‖ if n 6= n0 and

‖Sxn0‖ = (1 + δ)‖Txn0‖ ≥ sup
m
‖Txm‖ = ‖T |X‖

by the choice of n0. Thus, S attains its norm on X which is isometric to `1. �

5. Some open problems

Problem 5.1. Do there exist a Banach space Y and an operator T ∈ L(L1, Y ) which
nowhere attains its norm?

We also do not know, what if one replace ”isometric” with ”isomorphic” in problem 2.4.

Problem 5.2. Does for every Banach space Y and every operator T ∈ L(L1, Y ) there
exists a subspace of L1 isomorphic to `1 on which T attains its norm?

Problem 5.3. Does for every Banach space Y and every operator T ∈ L(L1, Y ) there
exists a subspace of L1 isomorphic to L1 on which T attains its norm?

Acknowledgments. The authors thank M. I. Ostrovskii for helpful discussions and the
referee for valuable remarks, especially for communicating us Proposition 2.3.
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