OPERATORS DEFINED ON L_{1} WHICH "NOWHERE" ATTAIN THEIR NORM

I. V. KRASIKOVA, V. V. MYKHAYLYUK, AND M. M. POPOV

Abstract

Let E be either ℓ_{1} of L_{1}. We consider E-unattainable continuous linear operators T from L_{1} to a Banach space Y, i.e., those operators which do not attain their norms on any subspace of L_{1} isometric to E. It is not hard to see that if T : $L_{1} \rightarrow Y$ is ℓ_{1}-unattainable then it is also L_{1}-unattainable. We find some equivalent conditions for an operator to be ℓ_{1}-unattainable and construct two operators, first ℓ_{1}-unattainable and second L_{1}-unattainable but not ℓ_{1}-unattainable. Some open problems remain unsolved.

1. Preliminaries

Concerning standard definitions and notation we follow mainly [9] and [10]. By $\mathcal{L}(X, Y)$ we denote the space of all continuous linear operators acting from a Banach space X to a Banach space Y. The symbol $\mathcal{L}(X)$ is used for $\mathcal{L}(X, X)$. The closed linear span of a sequence $\left(x_{n}\right)$ in a Banach space X is denoted by $\left[x_{n}\right]$. If (Ω, Σ, μ) is a measure space and $x \in L_{1}(\mu)$ then by $\operatorname{supp} x$ we denote the support $\{\omega \in \Omega: x(\omega) \neq 0\}$ of x which is defined as a set, up to a measure null subset. Besides, for $A \in \Sigma^{+}$(i.e., for $A \in \Sigma, \mu(A)>0$), the symbol $L_{1}(A)$ is reserved for the subspace $\left\{x \in L_{1}(\mu): \operatorname{supp} x \subseteq A\right\}$ of $L_{1}(\mu)$ and $L_{1}^{+}(A)$ is the positive cone of this subspace $\left\{x \in L_{1}(A): x \geq 0\right\}$ (note that $x \leq y$ means that $x(\omega) \leq y(\omega)$ for almost all $\omega \in \Omega)$. For $A, B, C \in \Sigma$ by $C=A \sqcup B$ we mean that both $C=A \cup B$ and $A \cap B=\emptyset$ hold. Analogously, for $x, y, z \in L_{1}(\mu)$ the equality $x=y \sqcup z$ means that $x=y+z$ and $\operatorname{supp} y \cap \operatorname{supp} z=\emptyset$.

If Y is a Banach space, $T \in \mathcal{L}\left(L_{1}(\mu), Y\right)$ and $A \in \Sigma^{+}$then by T_{A} we denote the restriction of T to the subspace $L_{1}(A)$. The positive and the negative parts of an element $x \in L_{1}(\mu)$ are defined as $x^{+}(\omega)=x(\omega)$ when $x(\omega) \geq 0$ and $x^{+}(\omega)=0$ when $x(\omega)<0$ and $x^{-}=x^{+}-x$. The characteristic function of a set $A \in \Sigma$ is denoted by $\mathbf{1}_{A}$. A sequence $\left(x_{n}\right)$ in $L_{1}(\mu)$ is called disjoint provided $\operatorname{supp} x_{i} \cap \operatorname{supp} x_{j}=\emptyset$ for $i \neq j$.

By \mathcal{B} we denote the Borel σ-field on $[0,1]$ and by λ the Lebesgue measure on \mathcal{B}.
Let X and Y be Banach spaces over the reals with X infinite dimensional. We say that an operator $T \in \mathcal{L}(X, Y)$

- attains its norm at an element $x \in X \backslash\{0\}$ if $\|T x\|=\|T\|\|x\|$;
- attains its norm provided that it attains its norm at some $x \in X$;
- attains its norm on a subspace $X_{1} \subseteq X$ if the restriction $\left.T\right|_{X_{1}} \in \mathcal{L}\left(X_{1}, Y\right)$ of T to X_{1} attains its norm;
- is E-unattainable if does not attain its norms on any subspace of L_{1} isometric to E^{1};
- nowhere attains its norm if T does not attain its norm on any infinite dimensional subspace $X_{1} \subseteq X$.

The set of all operators from $\mathcal{L}(X, Y)$ attaining their norm is denoted by $\mathcal{N} \mathcal{A}(X, Y)$.

[^0]The famous Bishop-Phelps theorem (1961) [2] asserts that for any Banach space X the set $\mathcal{N} \mathcal{A}(X, \mathbb{R})$ of all norm attaining functionals $f \in X^{*}$ is dense in X^{*}. As it was shown by Lindenstrauss (1963) [8], this theorem is not longer true for operators. Among positive results in this direction it is ought to mention Bourgain's theorem on the denseness of $\mathcal{N} \mathcal{A}(X, Y)$ in $\mathcal{L}(X, Y)$ in the case when X has the Radon-Nikodým property. The corresponding sets are dense in $\mathcal{L}\left(L_{1}\right)$ [4] and $\mathcal{L}(C[0,1])$ [5], but is not dense in $\mathcal{L}\left(L_{1}, C[0,1]\right)$ [13]. We refer the reader to [1] for more details.

Some related facts on the structure of the set of those elements $x \in L_{1}$ at which a given operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ attains its norm are given in [11].

2. Introduction

It is an easy exercise to construct an operator $T \in \mathcal{L}\left(L_{1}\right)$ that does not attain its norm. Let $[0,1]=\bigsqcup_{n=1}^{\infty} A_{n}$ be any decomposition, $A_{n} \in \mathcal{B}^{+}$and $\alpha_{n} \uparrow 1$ be a sequence of positive numbers. Then the operator $T: L_{1} \rightarrow L_{1}$ given by

$$
T x=\sum_{n=1}^{\infty}\left(\frac{\alpha_{n}}{\lambda\left(A_{n}\right)} \int_{A_{n}} x d \lambda\right) \mathbf{1}_{A_{n}}, \quad x \in L_{1}
$$

does not attain its norm. Indeed, since

$$
\begin{equation*}
\|T x\| \leq \sum_{n=1}^{\infty} \frac{\alpha_{n}}{\lambda\left(A_{n}\right)} \int_{A_{n}}|x| d \lambda\left\|\mathbf{1}_{A_{n}}\right\|<\sum_{n=1}^{\infty} \int_{A_{n}}|x| d \lambda=\|x\| \tag{2.1}
\end{equation*}
$$

for each $x \in L_{1}$, one has that $\|T\| \leq 1$. On the other hand, $\left\|T \mathbf{1}_{A_{m}}\right\|=\alpha_{m}\left\|\mathbf{1}_{A_{m}}\right\|$ for any $m \in \mathbb{N}$ and, hence, $\|T\|=1$. The same strict inequality (2.1) yields that T does not attain its norm at any element. Nevertheless, the restriction $T_{A_{n}}$ to any subspace $L_{1}\left(A_{n}\right), n \in \mathbb{N}$, attains its norm at every element $x \in L_{1}^{+}\left(A_{n}\right)$.

Consider the following question.
Problem 2.1. Let X and Y be Banach spaces with X infinite dimensional. Does there exist an operator $T \in \mathcal{L}(X, Y)$ which nowhere attains its norm? What if $X=L_{1}$?

The following example due to M. Ostrovskii (private communication) gives a positive answer to this problem for classical sequence spaces.

Example 2.2 (M. Ostrovskii). Let $E=\ell_{p}$ with $1 \leq p<\infty$, or $E=c_{0}$ and $\left(\alpha_{n}\right)_{1}^{\infty}$ be a sequence of scalars such that $0<\alpha_{n} \uparrow 1$. Then the operator $T \in \mathcal{L}(E)$, given by

$$
T\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right)=\left(\alpha_{1} \xi_{1}, \ldots, \alpha_{n} \xi_{n}, \ldots\right)
$$

nowhere attains its norm.
Indeed, since $\|T x\|<\|x\|$ for each $x \in E \backslash\{0\}$, it is enough to prove that $\left\|\left.T\right|_{X}\right\|=1$ for each infinite dimensional subspace $X \subseteq E$. Given such an X, for every $n \in \mathbb{N}$ by E_{n} we denote the set of all vectors from E with zero coordinates from the first up to n-th. Since E_{n} has finite codimension in E and X is an infinite dimensional subspace of E, we obtain that $X \cap E_{n} \neq\{0\}$ for each n. Now fix any $\varepsilon>0$ and pick an n such that $\alpha_{n}>1-\varepsilon$, and choose $x=\left(0, \ldots, 0, \xi_{n}, \xi_{n+1}, \ldots\right) \in X \cap E_{n} \neq\{0\}$ with $\|x\|=1$. Then

$$
\|T x\|=\left\|\left(0, \ldots, 0, \alpha_{n} \xi_{n}, \alpha_{n+1} \xi_{n+1}, \ldots\right)\right\| \geq \alpha_{n}\|x\|>1-\varepsilon
$$

By arbitrariness of ε, one gets $\left\|\left.T\right|_{X}\right\|=1$.
As the proof shows, this example remains correct for the case of any sequence space E for which the inequality

$$
\left\|\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right)\right\|>\left\|\left(\alpha_{1} \xi_{1}, \ldots, \alpha_{n} \xi_{n}, \ldots\right)\right\|
$$

holds for every nonzero vector $\left(\xi_{1}, \ldots, \xi_{n}, \ldots\right) \in E$. Note also that the space ℓ_{∞} does not have this property and the example is not longer valid, because the corresponding operator attains its norm at $(1,1, \ldots)$.

Remark also that the idea of Example 2.2 cannot be applied to operators from $\mathcal{L}(X, Y)$ if X has the Daugavet property, e.g., $X=L_{1}$. Recall that a Banach space X is said to have the Daugavet property (DP , in short) if $\|I d+K\|=1+\|K\|$ for every rank one (equivalently, every weakly compact) operator $K \in \mathcal{L}(X)$ where $I d$ is the identity of $X[7]$.

Indeed, the main point of Example 2.2 is that $T \in \mathcal{L}(X, Y)$ possesses the properties: $\|T\|=1$ and for every $\varepsilon>0$ there exists a finite codimensional subspace $X_{0} \subseteq X$ with

$$
\begin{equation*}
\inf \left\{\|T x\|: x \in S_{X_{0}}\right\}>1-\varepsilon \tag{2.2}
\end{equation*}
$$

The following statement shows that if X has the DP then such an operator must be an isometric embedding and hence attains its norm.

Proposition 2.3. Let X, Y be Banach spaces with X having the $D P, T \in \mathcal{L}(X, Y),\|T\|=$ $1,0<a<1$, and $\inf \left\{\|T x\|: x \in S_{X}\right\}<1-a$. Then for every finite codimensional subspace $X_{0} \subseteq X$ one has that

$$
\begin{equation*}
\inf \left\{\|T x\|: x \in S_{X_{0}}\right\}<1-\frac{a}{2} \tag{2.3}
\end{equation*}
$$

Proof. Fix an $x_{0} \in S_{X}$ with $\left\|T x_{0}\right\|<1-a$ and an $x_{0}^{*} \in S_{X^{*}}$ with $x_{0}^{*}\left(x_{0}\right)=1$. Given any finite codimensional subspace $X_{0} \subseteq X$, we set $X_{1}=X_{0} \cap \operatorname{ker} x_{0}^{*}$ and $X_{2}=\operatorname{lin}\left\{x_{0}, X_{1}\right\}$. Since X_{2} is a finite codimensional subspace of a Banach space with the DP, it itself has the DP [7]. This implies that the natural projection $P: X_{2} \rightarrow X_{1}$ defined by $P x=x-x_{0}^{*}(x) x_{0}$ has norm $1+1=2$. So, for every $\varepsilon>0$ there exists an $u \in S_{X_{2}}$ with $\|P u\|>2-\varepsilon$. Now, since $P u /\|P u\| \in S_{X_{0}}$, we have that

$$
\begin{aligned}
\inf \left\{\|T x\|: x \in S_{X_{0}}\right\} & \leq\left\|\frac{T P u}{\|P u\|}\right\|<\frac{\|T P u\|}{2-\varepsilon}=\frac{\left\|T\left(u-x_{0}^{*}(u) x_{0}\right)\right\|}{2-\varepsilon} \\
& =\frac{\left\|T u-x_{0}^{*}(u) T x_{0}\right\|}{2-\varepsilon}<\frac{1+1-a}{2-\varepsilon}=\frac{2-a}{2-\varepsilon} .
\end{aligned}
$$

By the arbitrariness of ε, the proposition is proved.
Thus, it remains to observe that both conditions (2.2) and (2.3) imply that T is an isometric embedding.

This paper is devoted to some questions close to the second part of Problem 2.1 concerning L_{1}. More precisely, we investigate the following particular question.

Problem 2.4. Do there exist a Banach space X and an E-unattainable operator $T \in$ $\mathcal{L}\left(L_{1}, X\right)$ for $E=\ell_{1}$ or $E=L_{1}$?

3. ℓ_{1}-UNATTAINABLE OPERATORS

Observe that if Y is a Banach space and an operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ is ℓ_{1}-unattainable then T does not attain its norm. Indeed, let T attain its norm at some element $x_{1} \in$ $L_{1} \backslash\{0\}$. Without loss of generality we may assume that $\lambda\left([0,1] \backslash \operatorname{supp} x_{1}\right)>0$, otherwise we decompose $x_{1}=y \sqcup z$ with $y, z \neq 0$ and T must attain its norm at least on one of the elements y, z, which obviously satisfies the desired condition. Next we choose any disjoint sequence of nonzero elements $x_{2}, x_{3}, \ldots \in L_{1}\left([0,1] \backslash \operatorname{supp} x_{1}\right)$. Then T attains its norm on the subspace $\left[x_{n}\right]_{n=1}^{\infty}$ which is isometric to ℓ_{1}. The same argument shows that the following statement is true.

Proposition 3.1. Let Y be a Banach space. If an operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ is ℓ_{1} unattainable then T is L_{1}-unattainable.

Now we are going to choose more deep properties of ℓ_{1}-unattainable operators. According to Pełczyński [12], a subspace $X \subseteq L_{1}$ is isometric to ℓ_{1} if and only if it is spanned by a disjoint sequence $\left(x_{n}\right), X=\left[x_{n}\right]$. Besides, we shall use the following simple observation: if Y is a Banach space and $T \in \mathcal{L}\left(\ell_{1}, Y\right)$, then $\|T\|=\sup _{n}\left\|T e_{n}\right\|$, where $\left(e_{n}\right)$ is the standard basis for ℓ_{1}. Thus, if $\left(x_{n}\right)$ is a normalized disjoint sequence in $L_{1}, X=\left[x_{n}\right]$ $+T \in \mathcal{L}\left(L_{1}, Y\right)$, then $\left\|\left.T\right|_{X}\right\|=\sup _{n}\left\|T x_{n}\right\|$.

Theorem 3.2. Let Y be a Banach space and $T \in \mathcal{L}\left(L_{1}, Y\right)$ with $\|T\|=1$. Then the following assertions are equivalent:
(i) T is ℓ_{1}-unattainable;
(ii) for any normalized disjoint sequence $\left(x_{n}\right)$ in L_{1} one has

$$
\sup _{m}\left\|T x_{m}\right\|>\left\|T x_{n}\right\| \quad \text { for every } \quad n \in \mathbb{N}
$$

(iii) for any normalized disjoint sequence $\left(x_{n}\right)$ in L_{1} one has

$$
\left\|T x_{n}\right\|<1 \quad \text { for every } \quad n \in \mathbb{N} \quad \text { and } \quad \lim _{i \rightarrow \infty}\left\|T x_{i}\right\|=1
$$

(iv) for any normalized sequence $\left(x_{n}\right)$ in L_{1} with $\lim _{n \rightarrow \infty} \lambda\left(\operatorname{supp} x_{n}\right)=0$ one has

$$
\left\|T x_{n}\right\|<1 \quad \text { for every } \quad n \in \mathbb{N} \quad \text { and } \quad \lim _{i \rightarrow \infty}\left\|T x_{i}\right\|=1
$$

Proof. Equivalence $(i) \Leftrightarrow(i i)$ follows from Pełczyński's theorem and the above remark. Besides, implications $(i v) \Rightarrow(i i i) \Rightarrow(i i)$ are obvious.
$(i i) \Rightarrow(i i i)$. Let $(i i)$ holds for a given operator $T \in \mathcal{L}\left(L_{1}, Y\right)$. First we prove that T does not attain its norm, i.e., $\|T x\|<1$ for each $x \in S\left(L_{1}\right)$. Suppose to the contrary that $\|T x\|=1$ for some $x \in S\left(L_{1}\right)$. Choose any disjoint sequence $A_{n} \in \mathcal{B}^{+}$with $\operatorname{supp} x=\bigsqcup_{n=1}^{\infty} A_{n}$ and set $y_{n}=x \cdot \mathbf{1}_{A_{n}}$ for each $n \in \mathbb{N}$. Then from

$$
1=\left\|\sum_{n=1}^{\infty} T y_{n}\right\| \leq \sum_{n=1}^{\infty}\left\|T y_{n}\right\| \leq 1 \sum_{n=1}^{\infty}\left\|y_{n}\right\|=1
$$

we deduce that $\sum_{n=1}^{\infty}\left\|T y_{n}\right\|=1 \sum_{n=1}^{\infty}\left\|y_{n}\right\|$. But this easily implies that $\left\|T y_{n}\right\|=1\left\|y_{n}\right\|$ for each n. Thus, for the normalized disjoint sequence $x_{n}=y_{n} /\left\|y_{n}\right\|$ one has $\left\|T x_{n}\right\|=1$ for each n, which contradicts (ii).

Now we prove the second part of (iii). Suppose to the contrary that there exists a normalized disjoint sequence $\left(u_{i}\right)$ in L_{1} such that the equality $\lim _{i \rightarrow \infty}\left\|T u_{i}\right\|=1$ does not hold. Then there are a number $\delta>0$ and a normalized disjoint sequence $\left(x_{n}\right)$ in L_{1} such that $\left\|T x_{n}\right\|<1-\delta$ for each $n \in \mathbb{N}$. Note that, without loss of generality, we may assume that $\bigsqcup_{n=1}^{\infty} \operatorname{supp} x_{n}=[0,1]$. Indeed, if $\lambda(A)>0$ where $A=[0,1] \backslash \bigsqcup_{n=1}^{\infty} \operatorname{supp} x_{n}$ then we choose a $\gamma>0$ so that $\left\|T x_{1}^{\prime}\right\|<1-\delta$ where

$$
x_{1}^{\prime}=\frac{x_{1}+\gamma \mathbf{1}_{A}}{\left\|x_{1}+\gamma \mathbf{1}_{A}\right\|}
$$

and consider the sequence $x_{1}^{\prime}, x_{2}, x_{3}, \ldots$
We pick $x \in S\left(L_{1}\right)$ so that $\|T x\| \geq 1-\delta$ and set $y_{n}=x \cdot \mathbf{1}_{\operatorname{supp} x_{n}}$ for each $n \in \mathbb{N}$. Since

$$
\sum_{n=1}^{\infty}\left\|y_{n}\right\|(1-\delta)=1-\delta \leq\|T x\|=\left\|T \sum_{n=1}^{\infty} y_{n}\right\| \leq \sum_{n=1}^{\infty}\left\|T y_{n}\right\|
$$

there is a number n_{0} such that $\left\|T y_{0}\right\| \geq(1-\delta)\left\|y_{n_{0}}\right\|$. Then putting $z_{n}=x_{n}$ for $n \neq n_{0}$ and $z_{n_{0}}=y_{n_{0}} /\left\|y_{n_{0}}\right\|$, for the normalized disjoint sequence $\left(z_{n}\right)$ one obtains $\sup \left\|T z_{n}\right\|=\left\|T z_{n_{0}}\right\|$ what contradicts (ii).
$($ iii $) \Rightarrow(i v)$. Suppose that (iii) fulfills, however there exist a $\delta>0$ and a normalized sequence $x_{n} \in L_{1}$ such that $\left\|T x_{n}\right\| \leq 1(1-\delta)$ for each $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \lambda\left(\operatorname{supp} x_{n}\right)=0$. Without loss of generality, we may assume that the series $\sum_{n=1}^{\infty} \lambda\left(\operatorname{supp} x_{n}\right)$ converges (otherwise we pass to a subsequence). Then we choose a subsequence $\left(x_{n_{k}}\right)$ such that $\left\|u_{k}\right\|<\delta / 3$ for each $k \in \mathbb{N}$ where $u_{k}=x_{n_{k}} \cdot \mathbf{1} \bigcup_{i=k+1}^{\infty} \operatorname{supp} x_{n_{i}}$. Now for each $k \in \mathbb{N}$ we set $y_{k}=x_{n_{k}}-u_{k}$ and $z_{k}=y_{k} /\left\|y_{k}\right\|$. Then for the normalized disjoint sequence $\left(z_{k}\right)$ we have

$$
\left\|T z_{k}\right\|=\frac{\left\|T x_{n_{k}}-T u_{k}\right\|}{\left\|x_{n_{k}}-u_{k}\right\|} \leq \frac{\left\|T x_{n_{k}}\right\|+\left\|T u_{k}\right\|}{\left\|x_{n_{k}}\right\|-\left\|u_{k}\right\|} \leq \frac{1(1-\delta)+1 \frac{\delta}{3}}{1-\frac{\delta}{3}}=1 \frac{1-\frac{2 \delta}{3}}{1-\frac{\delta}{3}}
$$

for each k that contradicts (iii).
For convenience of the notation, if for a given $T \in \mathcal{L}\left(L_{1}, Y\right)$ and an $A \in \mathcal{B}^{+}$the restriction T_{A} is not an isomorphic embedding, we then set $\left\|T_{A}^{-1}\right\|=\infty$.
Theorem 3.3. Let Y be a Banach space. Then an operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ with $\|T\|=1$ is ℓ_{1}-unattainable if and only if the following conditions hold:
(a) there exists a $\delta>0$ such that T_{A} is an isomorphic embedding which does not attain its norm whenever $A \in \mathcal{B}^{+}$and $\lambda(A)<\delta$;
(b) $\left\|T_{A}\right\|=1$ and $\left\|T_{A}\right\|\left\|T_{A}^{-1}\right\|>1$ for every $A \in \mathcal{B}^{+}$;
(c) $\lim _{\lambda(A) \rightarrow 0}\left\|T_{A}\right\|\left\|T_{A}^{-1}\right\|=1$.

Proof. The "only if" part. (a). Suppose to the contrary that there exists a sequence of sets $A_{n} \in \mathcal{B}^{+}$such that $\lambda\left(A_{n}\right) \leq 2^{-n}$ and the operators $T_{A_{n}}$ are unbounded from below for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ we pick $x_{n} \in S\left(L_{1}\left(A_{n}\right)\right)$ so that $\left\|T x_{n}\right\|<2^{-n}$. Then we choose a sequence of numbers $1 \leq k_{1}<k_{2}<\ldots$ so that for $y_{n}=x_{k_{n}} \cdot \mathbf{1}_{A_{k_{n}} \backslash A_{k_{n+1}}}$ we have $\left\|x_{k_{n}}-y_{n}\right\|<2^{-n}$. Then the sequence $z_{n}=y_{n} /\left\|y_{n}\right\|$ is normalized and disjoint. Besides,

$$
1=\left\|x_{k_{n}}\right\| \geq\left\|y_{n}\right\| \geq 1-\left\|x_{k_{n}}-y_{n}\right\| \geq 1-\frac{1}{2^{n}}
$$

whence $\left|\left|\left|y_{n} \|-1\right|<2^{-n}\right.\right.$. Therefore

$$
\left\|x_{k_{n}}-z_{n}\right\| \leq\left\|x_{k_{n}}-y_{n}\right\|+\left\|y_{n}-z_{n}\right\|<\frac{1}{2^{n}}+\left\|y_{n}\right\|\left|1-\frac{1}{\left\|y_{n}\right\|}\right|<\frac{1}{2^{n-1}}
$$

Thus,

$$
\left\|T z_{n}\right\| \leq\left\|T x_{k_{n}}\right\|+1\left\|x_{k_{n}}-z_{n}\right\|<\frac{1}{2^{k_{n}}}+1 \frac{1}{2^{n-1}}
$$

and hence $\lim _{n \rightarrow \infty}\left\|T z_{n}\right\|=0$, which contradicts Theorem 3.2.
(b). Given $A \in \mathcal{B}^{+}$, we choose any sequence $A_{n} \in \mathcal{B}^{+}$with $A_{n} \subseteq A$ and $\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)=$ 0 . Then putting $x_{n}=\mathbf{1}_{A_{n}} / \lambda\left(A_{n}\right)$ for each $n \in \mathbb{N}$, we obtain that $\left\|T_{A}\right\| \geq\left\|T x_{n}\right\|$ for each n. By Theorem $3.2(i v),\left\|T_{A}\right\| \geq$ 1, i.e., $\left\|T_{A}\right\|=1$.

If we had $\left\|T_{A}\right\|\left\|T_{A}^{-1}\right\|=1$ for a given $A \in \mathcal{B}^{+}$then T_{A} would attain its norm at each element $x \in L_{1}(A), x \neq 0$. Indeed,

$$
\left\|T_{A} x\right\| \leq\left\|T_{A}\right\|\|x\|=\left\|T_{A}\right\|\left\|T_{A}^{-1}\left(T_{A} x\right)\right\| \leq\left\|T_{A}\right\|\left\|T_{A}^{-1}\right\|\left\|T_{A} x\right\|=\left\|T_{A} x\right\|,
$$

whence $\left\|T_{A} x\right\|=\left\|T_{A}\right\|\|x\|$.
(c). By $(a), T_{A}^{-1}$ exists and is bounded for each $A \in \mathcal{B}^{+}$. Without loss of generality, we assume that $1=1$. Suppose that (c) does not hold. Since $\left\|T_{A}^{-1}\right\|>1$ for each $A \in \mathcal{B}^{+}$ by (b), there are a $\delta>0$ and a sequence $A_{n} \in \mathcal{B}^{+}$such that $\left\|T_{A}^{-1}\right\|>1+\delta$ for every $n \in \mathbb{N}$. Now pick a normalized sequence $x_{n} \in L_{1}\left(A_{n}\right)$ so that $\left\|T x_{n}\right\| \leq \frac{1}{1+\delta}$ for each $n \in \mathbb{N}$. This contradicts Theorem 3.2 (iv).

The "if" part. It is enough to consider the case $1=1$. Let $\left(x_{n}\right)$ be any normalized sequence with $\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)=0$ where $A_{n}=\operatorname{supp} x_{n}$. By the theorem assumptions, $\lim _{n \rightarrow \infty}\left\|T_{A_{n}}^{-1}\right\|=1$. Since $\left\|T_{A_{n}}^{-1}\right\| \geq \frac{\left\|x_{n}\right\|}{\left\|T x_{n}\right\|}$, we have that $\left\|T_{A_{n}}^{-1}\right\|^{-1} \leq\left\|T x_{n}\right\| \leq 1$ for each $n \in \mathbb{N}$. Thus, $\lim _{n \rightarrow \infty}\left\|T x_{n}\right\|=1$. By Theorem 3.2, T is ℓ_{1}-unattainable.

Consider the following example. We define an operator $T \in \mathcal{L}\left(L_{1}\right)$ by putting for each $x \in L_{1}$

$$
T x=x-\frac{1}{2} \int x d \lambda \cdot \mathbf{1}
$$

where $\mathbf{1}=\mathbf{1}_{[0,1]}$. Observe that if $y=T x$ then $\int y d \lambda-1 / 2 \int x d \lambda$ and hence $x=$ $y+\int y d \lambda \cdot 1$. Thus, T is an isomorphic embedding with $\left\|T^{-1}\right\| \leq 2$. Obviously, $\left\|T_{A}\right\|=3 / 2$ for each $A \in \mathcal{B}^{+}$. We show that the operators T_{A} do not attain their norm. Let $x \in S\left(L_{1}\right)$ and $\|T x\|=3 / 2$. Since $\left|\int x d \lambda\right|=1$, we have that either $x \geq 0$ or $x \leq 0$. Suppose that $x \geq 0$. We set $B=\{t \in[0,1]: x(t) \geq 1 / 2\}$. Then $\lambda(B)>0$ and

$$
\begin{aligned}
\|T x\|=\left\|x-\frac{1}{2} \mathbf{1}\right\| & =\int_{B}\left(x(t)-\frac{1}{2}\right) d \lambda(t)+\int_{[0,1] \backslash B}\left(\frac{1}{2}-x(t)\right) d \lambda(t) \\
& \leq\|x\|-\frac{\lambda(B)}{2}+\frac{1-\lambda(B)}{2}=\frac{3}{2}-\lambda(B)
\end{aligned}
$$

a contradiction.
On the other hand, $\left\|T_{A}^{-1}\right\| \geq 1$ for every $A \in \mathcal{B}^{+}$, because $T x=x$ for each $x \in L_{1}(A)$ with $\int x d \lambda=0$. Thus, condition (c) from Theorem 3.3 does not hold.

This example shows that conditions (a) and (b) for an operator do not imply that this operator is ℓ_{1}-unattainable. Besides, it is not very hard to verify concerning our example that T fulfills conditions $(i i)-(i v)$ from Theorem 3.2 for the case when $x_{n} \geq 0$ for all n in these conditions. This shows that conditions $(i i)-(i v)$ in Theorem 3.2 cannot be stated for positive sequences only.
Theorem 3.4. There exists an ℓ_{1}-unattainable operator $T \in \mathcal{L}\left(L_{1}\right)$.
First we need the following auxiliary construction.
Lemma 3.5. Given any sets $A, B \in \mathcal{B}$ with $[0,1]=A \sqcup B$ and $\lambda(A)=\lambda(B)=1 / 2$, there exists an operator $T=T_{A, B} \in \mathcal{L}\left(L_{1}, L_{1}(A \times B)\right)$ with the following properties:
(1) for each $C \in \mathcal{B}$ one has that $\left\|T \mathbf{1}_{C}\right\|=\lambda(C)$ if and only if either $C \subseteq A$ or $C \subseteq B ;$
(2) $\|T\|=1$;
(3) $\|T x\| \geq 1-2 \lambda(\operatorname{supp} x)$ for every $x \in L_{1}$.

Proof. For each $x \in L_{1}$ we define a function $T x \in L_{1}(A \times B)$ of two variables as follows

$$
(T x)(s, t)=\left.2 x\right|_{A}(s)-\left.2 x\right|_{B}(t)
$$

(here by $\left.x\right|_{C}$ we denote the restriction of x to a set $C \in \mathcal{B}$, i.e. $\left.x\right|_{C}=x \cdot \mathbf{1}_{C}$).
(1) Fix any $C \in \mathcal{B}$. We set $C_{A}=C \cap A$ and $C_{B}=C \cap B$. Then one has

$$
\begin{equation*}
\left\|T \mathbf{1}_{C}\right\|=2 \int_{A \times B} \int_{B}\left|\mathbf{1}_{C}(s)-\mathbf{1}_{C}(t)\right| d s d t=2 \int_{A \times B} \int_{B}\left|\mathbf{1}_{C_{A}}(s)-\mathbf{1}_{C_{B}}(t)\right| d s d t . \tag{3.1}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& 2 \int_{A \times B} \int_{B}\left(\mathbf{1}_{C_{A}}(s)+\mathbf{1}_{C_{B}}(t)\right) d s d t=2 \lambda(B) \int_{A} \mathbf{1}_{C_{A}}(s) d s \tag{3.2}\\
& \quad+2 \lambda(A) \int_{B} \mathbf{1}_{C_{B}}(t) d t=\lambda\left(C_{A}\right)+\lambda\left(C_{B}\right)=\lambda(C) .
\end{align*}
$$

From (3.1) and (3.2) we conclude that $\left\|T \mathbf{1}_{C}\right\|=\lambda(C)$ if and only if

$$
\int_{A \times B} \int_{B}\left|\mathbf{1}_{C_{A}}(s)-\mathbf{1}_{C_{B}}(t)\right| d s d t=\int_{A \times B} \int_{B}\left(\mathbf{1}_{C_{A}}(s)+\mathbf{1}_{C_{B}}(t)\right) d s d t
$$

what is possible if and only if

$$
\begin{equation*}
\left|\mathbf{1}_{C_{A}}(s)-\mathbf{1}_{C_{B}}(t)\right|=\mathbf{1}_{C_{A}}(s)+\mathbf{1}_{C_{B}}(t) \tag{3.3}
\end{equation*}
$$

for almost all $(s, t) \in A \times B$. Since (3.3) does not hold if $(s, t) \in C_{A} \times C_{B}$, we obtain that $\lambda\left(C_{A} \times C_{B}\right)=\lambda\left(C_{A}\right) \times \lambda\left(C_{B}\right)=0$. Thus, either $\lambda\left(C_{A}\right)=0$ or $\lambda\left(C_{B}\right)=0$. Equivalently, either $C \subseteq A$ or $B \subseteq A$.
(2) In view of (1), it is enough to show that $\|T\| \leq 1$. For each $x \in L_{1}$ one has

$$
\begin{aligned}
\|T x\| & \leq\left. 2 \int_{A \times B} \int_{B}|x|_{A}(s)\left|d s d t+2 \int_{A \times B} \int_{B}\right| x\right|_{B}(t) \mid d s d t \\
& =2 \lambda(B) \int_{A}|x(s)| d s+2 \lambda(A) \int_{B}|x(t)| d t=\|x\| .
\end{aligned}
$$

(3) Given any $x \in S\left(L_{1}\right)$, we set $D=\operatorname{supp} x, A_{1}=A \cap D$ and $B_{1}=B \cap D$. Then

$$
\begin{aligned}
\|T x\| & =\int_{A \times B} \int_{B}|2 x|_{A}(s)-\left.2 x\right|_{B}(t) \mid d s d t \\
& \geq \int_{A_{1} \times\left(B \backslash B_{1}\right)}|2 x|_{A}(s)-\left.\left.2 x\right|_{B}(t)\left|d s d t+\int_{\left(A \backslash A_{1}\right) \times B_{1}}\right| 2 x\right|_{A}(s)-\left.2 x\right|_{B}(t) \mid d s d t \\
& =2 \int_{A_{1} \times\left(B \backslash B_{1}\right)}|x(s)| d s d t+2 \int_{\left(A \backslash A_{1}\right) \times B_{1}}|x(t)| d s d t \\
& =2\left(\lambda(B)-\lambda\left(B_{1}\right)\right) \int_{A_{1}}|x(s)| d s+2\left(\lambda(A)-\lambda\left(A_{1}\right)\right) \int_{B_{1}}|x(t)| d t \\
& \geq(1-2 \lambda(D))\left(\int_{A_{1}}|x(s)| d s+\int_{B_{1}}|x(t)| d t\right)=1-2 \lambda(D)
\end{aligned}
$$

Proof of Theorem 3.4. For each $n \in \mathbb{N}$ decompose $[0,1]=A_{n} \sqcup B_{n}$ with $A_{n}, B_{n} \in \mathcal{B}^{+}$so that $\lambda\left(A_{n}\right)=\lambda\left(B_{n}\right)=1 / 2$ and

$$
\begin{equation*}
\lambda\left(\bigcap_{k=1}^{n} C_{k}\right)=2^{-n} \quad \text { for each } \quad n \quad \text { and } \quad C_{k} \in\left\{A_{k}, B_{k}\right\} \tag{*}
\end{equation*}
$$

(for example, one can set $A_{n}=\left\{t \in[0,1]: r_{n}(t)=1\right\}$ where $\left(r_{n}\right)$ is the Rademacher system on $[0,1])$. Then decompose $[0,1]=\bigsqcup_{n=1}^{\infty} D_{n}$ with $D_{n} \in \mathcal{B}^{+}$. For every $n \in \mathbb{N}$ let $T_{A_{n}, B_{n}}: L_{1} \rightarrow L_{1}\left(A_{n} \times B_{n}\right)$ be an operator having properties (1) - (3) from Lemma 3.5. Let $J_{n}: L_{1}\left(A_{n} \times B_{n}\right) \rightarrow L_{1}\left(D_{n}\right)$ be any linear isometric embedding for each n. Then set
$T_{n}=J_{n} \circ T_{A_{n}, B_{n}}$ and observe that $T_{n} \in \mathcal{L}\left(L_{1}, L_{1}\left(D_{n}\right)\right)$ has properties (1) - (3) for each n as well. Finally we put $T=\sum_{n=1}^{\infty} 2^{-n} T_{n}$. Obviously, $T \in \mathcal{L}\left(L_{1}\right)$ with $\|T\| \leq 1$. Our goal is to show that T satisfies condition (iii) from Theorem 3.2. Let $\left(x_{i}\right)$ be any normalized disjoint sequence in L_{1}. Then by definition of T and property (3) for T_{n} 's we obtain

$$
\left\|T x_{i}\right\|=\sum_{n=1}^{\infty} 2^{-n}\left\|T_{n} x_{i}\right\| \geq 1-2 \lambda\left(\operatorname{supp} x_{i}\right) \longrightarrow 1 \quad \text { as } \quad i \rightarrow \infty
$$

Hence $\|T\|=1$ and $\lim _{i \rightarrow \infty}\left\|T x_{i}\right\|=\|T\|$. It remains to show that T does not attain its norm. Suppose to the contrary that T attains its norm. Then by Lemma 3.2 of [11], there exists a set $A \in \mathcal{B}^{+}$such that T attains its norm on the positive cone $L_{1}^{+}(A)$. In particular, $\left\|T \mathbf{1}_{A}\right\|=\lambda(A)$. On the other hand, $\left\|T \mathbf{1}_{A}\right\|=\sum_{n=1}^{\infty} 2^{-n}\left\|T_{n} \mathbf{1}_{A}\right\|$. We claim that $\left\|T_{n} \mathbf{1}_{A}\right\|=\lambda(A)$ for each n. Indeed, if we suppose that $\left\|T_{n_{0}} \mathbf{1}_{A}\right\|<\lambda(A)$ for some n_{0} then, taking into account that $\left\|T_{n} \mathbf{1}_{A}\right\| \leq \lambda(A)$ for each n, we would obtain that $\left\|T \mathbf{1}_{A}\right\|<\lambda(A)$. Thus, $\left\|T_{n} \mathbf{1}_{A}\right\|=\lambda(A)$ for each n is established. By condition (1) of Lemma 3.5, for each n we have that $A \subseteq C_{n}$ where $C_{n} \in\left\{A_{n}, B_{n}\right\}$. Thus, for each n one has that $A \subseteq \bigcap_{k=1}^{n} C_{k}$ whence $\lambda(A) \leq 2^{-n}$ by choice of the sets A_{n}, B_{n}. But this contradicts the condition $\lambda(A)>0$.

4. An L_{1}-UNATTAINABLE OPERATOR, WHICH IS NOT ℓ_{1}-UNATTAINABLE

Lemma 4.1. Let X and Y be Banach spaces, $T \in \mathcal{L}(X, Y)$ and $x, y, z \in X$ satisfy $x=y+z$ and $\|x\|=\|y\|+\|z\|$. If

$$
\begin{equation*}
\frac{\|T x\|}{\|x\|} \geq \max \left\{\frac{\|T y\|}{\|y\|}, \frac{\|T z\|}{\|z\|}\right\} \tag{4.1}
\end{equation*}
$$

then the following equalities hold:

$$
\begin{align*}
\|T x\| & =\|T y\|+\|T z\| \tag{i}\\
\frac{\|T x\|}{\|x\|} & =\frac{\|T y\|}{\|y\|}=\frac{\|T z\|}{\|z\|} . \tag{ii}
\end{align*}
$$

Proof. (i). We set $\alpha=\frac{\|T x\|}{\|x\|}$. Then by (4.1),

$$
\alpha\|y\|+\alpha\|z\|=\alpha\|x\|=\|T x\| \leq\|T y\|+\|T z\| \leq \alpha\|y\|+\alpha\|z\|
$$

which implies (i).
(ii). If we suppose that $\frac{\|T y\|}{\|y\|}<\alpha$, then $\|T y\|+\|T z\|<\alpha\|y\|+\alpha\|z\|$, a contradiction.

Note that (4.1) is valid if T attains its norm at x.
Theorem 4.2. Let (Ω, Σ, μ) be a measure space, Y be a Banach space and an operator $T \in \mathcal{L}\left(L_{1}(\mu), Y\right)$ attains its norm at $x \in L_{1}^{+}(\mu)$. Then T atains its norm at any element $0 \neq y \in L_{1}^{+}(\operatorname{supp} x)$.

Proof. It is enough to prove that T attains its norm at any element of some dense subset $M \subseteq L_{1}^{+}(\operatorname{supp} x)$, since if $y \in L_{1}^{+}(\operatorname{supp} x), y_{n} \in M$ and $\lim _{n \rightarrow \infty} y_{n}=y$ then

$$
\frac{\|T y\|}{\|y\|}=\lim _{n \rightarrow \infty} \frac{\left\|T y_{n}\right\|}{\left\|y_{n}\right\|}=\|T\| .
$$

For every $n \in \mathbb{N}$ we put $A_{n}=\{\omega \in \Omega: x(\omega) \geq 1 / n\}$ and $M=\bigcup_{n=1}^{\infty} L_{\infty}^{+}\left(A_{n}\right)$. Fix any $u \in M$, say, $u \in L_{\infty}\left(A_{m}\right)$. Then for

$$
y=\frac{u}{m\|u\|_{\infty}}
$$

one obtains that $0 \leq y \leq x$. Thus, for $x, y+z=x-y$ the assumptions of Lemma 4.1 are satisfied. By item (ii) of this lemma, T attains its norm at y, and hence, at u. It is enough to note that M is dense in $L_{1}^{+}(\operatorname{supp} x)$, because $\operatorname{supp} x=\bigcup_{n=1}^{\infty} A_{n}$, up to a measure null set.

The following statement clarifies Lemma 3.2 of [11].
Corollary 4.3. Let (Ω, Σ, μ) be a measure space, Y be a Banach space and an operator $T \in \mathcal{L}\left(L_{1}(\mu), Y\right)$ attains its norm at $x \in L_{1}(\mu)$. Then T attains its norm at any element $0 \neq y \in L_{1}^{+}\left(\operatorname{supp} x^{+}\right) \cup L_{1}^{+}\left(\operatorname{supp} x^{-}\right)$.
Proof. Using Lemma 4.1 (ii) for $y=x^{+}$and $z=-x^{-}$, we obtain that T attains its norm at each element x^{+}, x^{-}. Then use Theorem 4.2 for x^{+}and x^{-}.

The functional $f(x)=\int_{0}^{\frac{1}{2}} x d \lambda-\int_{\frac{1}{2}}^{1} x d \lambda$, which attains its norm at $x=\mathbf{1}_{[0,1 / 2)}-\mathbf{1}_{[1 / 2,1]}$, however does not attain its norm at any element of the form $y=\mathbf{1}_{A}$, where $\lambda(A \cap$ $[0,1 / 2))=\lambda(A) / 2$ (one has that $f(y)=0$ in this case), shows that the positivity condition on x in Theorem 4.2 is essential, and that of any x we cannot say more than Corollary 4.3 gives.

Recall that a Banach space Y is said to be strictly convex if for any elements $x \neq y$ of $S(Y)$ one has $\|x+y\|<2$, or equivalently, if $S(Y)$ contains no segment.

Theorem 4.4. Let Y be a strictly convex Banach space, $x \in L_{1}, A_{1}=\operatorname{supp} x^{+}$and $A_{2}=\operatorname{supp} x^{-}$. Suppose that an operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ attains its norm at x. Then $T_{A_{i}}$ are rank one operators for $i=1,2$.

Proof. We prove the theorem for $i=1$ (the proof for $i=2$ is analogous). By Corollary 4.3, T attains its norm at x^{+}. Let $v \in L_{\infty}^{+}\left(A_{1}\right)$ be any nonzero element. We set $\beta=\frac{\|T v\|}{\left\|T\left(x^{+}\right)\right\|}$. Since T attains its norm at v (cf. Theorem 4.2), one has, in particular, that $\beta>0$. Theorem 4.2 implies also that T attains its norm at $w=\beta x^{+}+v$. Since $\|w\|=\left\|\beta x^{+}\right\|+\|v\|$, using Lemma 4.1, we obtain that $\|T w\|=\left\|T\left(\beta x^{+}\right)\right\|+\|T v\|$. On the other hand, $\left\|T\left(\beta x^{+}\right)\right\|=\|T v\|$ by definition of β. If we suppose $T\left(\beta x^{+}\right) \neq T v$, then the strict convexity of Y gives

$$
2\|T v\|=\left\|T\left(\beta x^{+}\right)\right\|+\|T v\|=\|T w\|=\left\|T\left(\beta x^{+}\right)+T v\right\|<2\|T v\|
$$

a contradiction. Thus, $T v=\beta T\left(x^{+}\right)=\frac{\|T v\|}{\left\|T\left(x^{+}\right)\right\|} T\left(x^{+}\right)$. Suppose now that $v \in L_{\infty}\left(A_{1}\right)$ be any element. Then

$$
T v=T\left(v^{+}\right)-T\left(v^{-}\right)=\frac{\left\|T\left(v^{+}\right)\right\|-\left\|T\left(v^{-}\right)\right\|}{\left\|T\left(x^{+}\right)\right\|} T\left(x^{+}\right)
$$

A Banach space Y is called locally uniformly convex, provided for each $x, x_{n} \in Y, n \in$ \mathbb{N} the conditions $\left\|x_{n}\right\| \longrightarrow\|x\|$ and $\left\|x_{n}+x\right\| \longrightarrow 2\|x\|$ yield $\left\|x_{n}-x\right\| \longrightarrow 0$. It is easy to see that a locally uniformly convex Banach space is strictly convex. In 1959 M. I. Kadec proved [6] that in every separable Banach space there exists an equivalent locally uniformly convex (in particular, strictly convex) norm.

So, there exists a strictly convex Banach space Y, isomorphic to L_{1}. Let $T: L_{1} \rightarrow Y$ be an isomorphism. Since T is one-to-one, T cannot be a rank one operator when being restricted to any infinite dimensional subspace.

Thus, Theorem 4.4 has the following consequence.
Corollary 4.5. Let Y be a strictly convex Banach space and $T: L_{1} \rightarrow Y$ be an injective operator. Then T is L_{1}-unattainable.
Theorem 4.6. There exists a Banach space Y and an isomorphism $T: L_{1} \rightarrow Y$ which is L_{1}-unattainable but is not ℓ_{1}-unattainable.

Proof. Let Y be a strictly convex Banach space isomorphic to L_{1} and $T: L_{1} \rightarrow Y$ be an isomorphism. By Corollary 4.5, T does not attain its norm on each subspace of L_{1} isometric to L_{1}.

Fix any normalized disjoint sequence $\left(x_{n}\right)$ in L_{1} and set $X=\left[x_{n}\right]$. Choose $\delta \in$ $\left(0, \frac{1}{\|T\|\left\|T^{-1}\right\|}\right)$ and $n_{0} \in \mathbb{N}$ so that $(1+\delta)\left\|T x_{n_{0}}\right\| \geq \sup _{m}\left\|T x_{m}\right\|$. Now define an operator $S \in \mathcal{L}\left(L_{1}, Y\right)$ by putting for each $x \in L_{1}$

$$
S x=T x+\delta\left(\int_{\operatorname{supp} x_{n_{0}}} x d \lambda\right) T x_{n_{0}}
$$

Remark that S is an isomorphic embedding, because for each $x \in L_{1}$ one has

$$
\|S x\| \geq\|T x\|-\delta\|x\|\left\|T x_{n_{0}}\right\| \geq \frac{\|x\|}{\left\|T^{-1}\right\|}-\delta\|T\|\|x\|=\eta\|x\|
$$

where $\eta=\left\|T^{-1}\right\|^{-1}-\delta\|T\|>0$ by the choice of δ. By Corollary 4.5, S is L_{1}-unattainable.
Now observe that $\left\|S x_{n}\right\|=\left\|T x_{n}\right\|$ if $n \neq n_{0}$ and

$$
\left\|S x_{n_{0}}\right\|=(1+\delta)\left\|T x_{n_{0}}\right\| \geq \sup _{m}\left\|T x_{m}\right\|=\left\|\left.T\right|_{X}\right\|
$$

by the choice of n_{0}. Thus, S attains its norm on X which is isometric to ℓ_{1}.

5. Some open problems

Problem 5.1. Do there exist a Banach space Y and an operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ which nowhere attains its norm?

We also do not know, what if one replace "isometric" with "isomorphic" in problem 2.4.
Problem 5.2. Does for every Banach space Y and every operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ there exists a subspace of L_{1} isomorphic to ℓ_{1} on which T attains its norm?
Problem 5.3. Does for every Banach space Y and every operator $T \in \mathcal{L}\left(L_{1}, Y\right)$ there exists a subspace of L_{1} isomorphic to L_{1} on which T attains its norm?

Acknowledgments. The authors thank M. I. Ostrovskii for helpful discussions and the referee for valuable remarks, especially for communicating us Proposition 2.3.

References

1. M. D. Acosta, Norm attaining operators into $L_{1}(\mu)$, Contemp. Math. 232 (1999), 1-11.
2. E. Bishop, R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98.
3. J. Bourgain, On dentability and the Bishop-Phelps property, Israel J. Math. 28 (1977), 265-271.
4. A. Iwanik, Norm attaining operators on Lebesgue spaces, Pacific J. Math. 83 (1979), 381-386.
5. J. Johnson, J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.
6. M. I. Kadec, On spaces isomorphic to locally uniformly convex spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 6 (1959), 51-57.
7. V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin and D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855-873.

OPERATORS DEFINED ON L_{1} WHICH "NOWHERE" ATTAIN THEIR NORM
8. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.
9. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. I, Springer-Verlag, Berlin-HeidelbergNew York, 1977.
10. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
11. V. V. Mykhaylyuk, M. M. Popov, Some geometrical aspects of operators acting from L_{1}, Positivity 10 (2006), 431-466.
12. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), no. 2, 209-228.
13. W. Schachermayer, Norm attaining operators on some classes of Banach spaces, Pacific J. Math. 105 (1983), 427-438.

Department of Mathematics, Zaporizhzhya National University, 2 Zhukovs'koho, ZapoRIZhZHYa, Ukraine

E-mail address: yudp@mail.ru
Department of Mathematics, Chernivtsi National University, 2 Kotsyubyns'koho, Chernivtsi, 58012, Ukraine

E-mail address: mathan@ukr.net
Departamento de Analisis Matematico, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain

E-mail address: misham.popov@gmail.com
Received 03/04/2009; Revised 24/04/2009

[^0]: 2000 Mathematics Subject Classification. Primary 47B38; Secondary 46B04.
 Key words and phrases. Norm attaining operator, the space L_{1}.
 V. V. Mykhaylyuk and M. M. Popov, Partially supported by Ukr. Derzh. Tema N 0103Y001103.
 ${ }^{1}$ We consider the cases $E=\ell_{1}$ and $E=L_{1}$ only.

