OPERATORS DEFINED ON L_1 WHICH "NOWHERE" ATTAIN THEIR NORM

I. V. KRASIKOVA, V. V. MYKHAYLYUK, AND M. M. POPOV

ABSTRACT. Let E be either ℓ_1 of L_1 . We consider E-unattainable continuous linear operators T from L_1 to a Banach space Y, i.e., those operators which do not attain their norms on any subspace of L_1 isometric to E. It is not hard to see that if $T : L_1 \to Y$ is ℓ_1 -unattainable then it is also L_1 -unattainable. We find some equivalent conditions for an operator to be ℓ_1 -unattainable and construct two operators, first ℓ_1 -unattainable and second L_1 -unattainable but not ℓ_1 -unattainable. Some open problems remain unsolved.

1. Preliminaries

Concerning standard definitions and notation we follow mainly [9] and [10]. By $\mathcal{L}(X, Y)$ we denote the space of all continuous linear operators acting from a Banach space X to a Banach space Y. The symbol $\mathcal{L}(X)$ is used for $\mathcal{L}(X, X)$. The closed linear span of a sequence (x_n) in a Banach space X is denoted by $[x_n]$. If (Ω, Σ, μ) is a measure space and $x \in L_1(\mu)$ then by supp x we denote the support $\{\omega \in \Omega : x(\omega) \neq 0\}$ of x which is defined as a set, up to a measure null subset. Besides, for $A \in \Sigma^+$ (i.e., for $A \in \Sigma, \mu(A) > 0$), the symbol $L_1(A)$ is reserved for the subspace $\{x \in L_1(\mu) : \text{supp } x \subseteq A\}$ of $L_1(\mu)$ and $L_1^+(A)$ is the positive cone of this subspace $\{x \in L_1(A) : x \geq 0\}$ (note that $x \leq y$ means that $x(\omega) \leq y(\omega)$ for almost all $\omega \in \Omega$). For $A, B, C \in \Sigma$ by $C = A \sqcup B$ we mean that both $C = A \cup B$ and $A \cap B = \emptyset$ hold. Analogously, for $x, y, z \in L_1(\mu)$ the equality $x = y \sqcup z$ means that x = y + z and supp $y \cap$ supp $z = \emptyset$.

If Y is a Banach space, $T \in \mathcal{L}(L_1(\mu), Y)$ and $A \in \Sigma^+$ then by T_A we denote the restriction of T to the subspace $L_1(A)$. The positive and the negative parts of an element $x \in L_1(\mu)$ are defined as $x^+(\omega) = x(\omega)$ when $x(\omega) \ge 0$ and $x^+(\omega) = 0$ when $x(\omega) < 0$ and $x^- = x^+ - x$. The characteristic function of a set $A \in \Sigma$ is denoted by $\mathbf{1}_A$. A sequence (x_n) in $L_1(\mu)$ is called *disjoint* provided $\operatorname{supp} x_i \cap \operatorname{supp} x_j = \emptyset$ for $i \ne j$.

By \mathcal{B} we denote the Borel σ -field on [0,1] and by λ the Lebesgue measure on \mathcal{B} .

Let X and Y be Banach spaces over the reals with X infinite dimensional. We say that an operator $T \in \mathcal{L}(X, Y)$

- attains its norm at an element $x \in X \setminus \{0\}$ if ||Tx|| = ||T|| ||x||;

- attains its norm provided that it attains its norm at some $x \in X$;

- attains its norm on a subspace $X_1 \subseteq X$ if the restriction $T|_{X_1} \in \mathcal{L}(X_1, Y)$ of T to X_1 attains its norm;

- is *E*-unattainable if does not attain its norms on any subspace of L_1 isometric to E^1 ;

- nowhere attains its norm if T does not attain its norm on any infinite dimensional subspace $X_1 \subseteq X$.

The set of all operators from $\mathcal{L}(X, Y)$ attaining their norm is denoted by $\mathcal{NA}(X, Y)$.

¹We consider the cases $E = \ell_1$ and $E = L_1$ only.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B38; Secondary 46B04.

Key words and phrases. Norm attaining operator, the space L_1 .

V. V. Mykhaylyuk and M. M. Popov, Partially supported by Ukr. Derzh. Tema N 0103Y001103.

The famous Bishop-Phelps theorem (1961) [2] asserts that for any Banach space X the set $\mathcal{NA}(X,\mathbb{R})$ of all norm attaining functionals $f \in X^*$ is dense in X^* . As it was shown by Lindenstrauss (1963) [8], this theorem is not longer true for operators. Among positive results in this direction it is ought to mention Bourgain's theorem on the denseness of $\mathcal{NA}(X,Y)$ in $\mathcal{L}(X,Y)$ in the case when X has the Radon-Nikodým property. The corresponding sets are dense in $\mathcal{L}(L_1)$ [4] and $\mathcal{L}(C[0,1])$ [5], but is not dense in $\mathcal{L}(L_1, C[0,1])$ [13]. We refer the reader to [1] for more details.

Some related facts on the structure of the set of those elements $x \in L_1$ at which a given operator $T \in \mathcal{L}(L_1, Y)$ attains its norm are given in [11].

2. Introduction

It is an easy exercise to construct an operator $T \in \mathcal{L}(L_1)$ that does not attain its norm. Let $[0,1] = \bigsqcup_{n=1}^{\infty} A_n$ be any decomposition, $A_n \in \mathcal{B}^+$ and $\alpha_n \uparrow 1$ be a sequence of positive numbers. Then the operator $T: L_1 \to L_1$ given by

$$Tx = \sum_{n=1}^{\infty} \left(\frac{\alpha_n}{\lambda(A_n)} \int_{A_n} x d\lambda\right) \mathbf{1}_{A_n}, \quad x \in L_1,$$

does not attain its norm. Indeed, since

(2.1)
$$||Tx|| \leq \sum_{n=1}^{\infty} \frac{\alpha_n}{\lambda(A_n)} \int_{A_n} |x| d\lambda ||\mathbf{1}_{A_n}|| < \sum_{n=1}^{\infty} \int_{A_n} |x| d\lambda = ||x||$$

for each $x \in L_1$, one has that $||T|| \leq 1$. On the other hand, $||T\mathbf{1}_{A_m}|| = \alpha_m ||\mathbf{1}_{A_m}||$ for any $m \in \mathbb{N}$ and, hence, ||T|| = 1. The same strict inequality (2.1) yields that T does not attain its norm at any element. Nevertheless, the restriction T_{A_n} to any subspace $L_1(A_n)$, $n \in \mathbb{N}$, attains its norm at every element $x \in L_1^+(A_n)$.

Consider the following question.

Problem 2.1. Let X and Y be Banach spaces with X infinite dimensional. Does there exist an operator $T \in \mathcal{L}(X, Y)$ which nowhere attains its norm? What if $X = L_1$?

The following example due to M. Ostrovskii (private communication) gives a positive answer to this problem for classical sequence spaces.

Example 2.2 (M. Ostrovskii). Let $E = \ell_p$ with $1 \leq p < \infty$, or $E = c_0$ and $(\alpha_n)_1^{\infty}$ be a sequence of scalars such that $0 < \alpha_n \uparrow 1$. Then the operator $T \in \mathcal{L}(E)$, given by

$$T(\xi_1,\ldots,\xi_n,\ldots)=(\alpha_1\xi_1,\ldots,\alpha_n\xi_n,\ldots),$$

nowhere attains its norm.

Indeed, since ||Tx|| < ||x|| for each $x \in E \setminus \{0\}$, it is enough to prove that $||T|_X|| = 1$ for each infinite dimensional subspace $X \subseteq E$. Given such an X, for every $n \in \mathbb{N}$ by E_n we denote the set of all vectors from E with zero coordinates from the first up to n-th. Since E_n has finite codimension in E and X is an infinite dimensional subspace of E, we obtain that $X \cap E_n \neq \{0\}$ for each n. Now fix any $\varepsilon > 0$ and pick an n such that $\alpha_n > 1 - \varepsilon$, and choose $x = (0, \dots, 0, \xi_n, \xi_{n+1}, \dots) \in X \cap E_n \neq \{0\}$ with ||x|| = 1. Then

$$||Tx|| = ||(0, \dots, 0, \alpha_n \xi_n, \alpha_{n+1} \xi_{n+1}, \dots)|| \ge \alpha_n ||x|| > 1 - \varepsilon.$$

By arbitrariness of ε , one gets $||T|_X|| = 1$.

As the proof shows, this example remains correct for the case of any sequence space E for which the inequality

$$\left\| \left(\xi_1, \ldots, \xi_n, \ldots\right) \right\| > \left\| \left(\alpha_1 \xi_1, \ldots, \alpha_n \xi_n, \ldots\right) \right\|$$

holds for every nonzero vector $(\xi_1, \ldots, \xi_n, \ldots) \in E$. Note also that the space ℓ_{∞} does not have this property and the example is not longer valid, because the corresponding operator attains its norm at $(1, 1, \ldots)$.

Remark also that the idea of Example 2.2 cannot be applied to operators from $\mathcal{L}(X, Y)$ if X has the Daugavet property, e.g., $X = L_1$. Recall that a Banach space X is said to have the Daugavet property (DP, in short) if ||Id + K|| = 1 + ||K|| for every rank one (equivalently, every weakly compact) operator $K \in \mathcal{L}(X)$ where Id is the identity of X [7].

Indeed, the main point of Example 2.2 is that $T \in \mathcal{L}(X, Y)$ possesses the properties: ||T|| = 1 and

for every $\varepsilon > 0$ there exists a finite codimensional subspace $X_0 \subseteq X$ with

(2.2)
$$\inf \{ \|Tx\| : x \in S_{X_0} \} > 1 - \varepsilon.$$

The following statement shows that if X has the DP then such an operator must be an isometric embedding and hence attains its norm.

Proposition 2.3. Let X, Y be Banach spaces with X having the DP, $T \in \mathcal{L}(X, Y)$, ||T|| = 1, 0 < a < 1, and $\inf\{||Tx|| : x \in S_X\} < 1 - a$. Then for every finite codimensional subspace $X_0 \subseteq X$ one has that

(2.3)
$$\inf\{\|Tx\|: x \in S_{X_0}\} < 1 - \frac{a}{2}$$

Proof. Fix an $x_0 \in S_X$ with $||Tx_0|| < 1-a$ and an $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = 1$. Given any finite codimensional subspace $X_0 \subseteq X$, we set $X_1 = X_0 \cap \ker x_0^*$ and $X_2 = \lim \{x_0, X_1\}$. Since X_2 is a finite codimensional subspace of a Banach space with the DP, it itself has the DP [7]. This implies that the natural projection $P : X_2 \to X_1$ defined by $Px = x - x_0^*(x)x_0$ has norm 1 + 1 = 2. So, for every $\varepsilon > 0$ there exists an $u \in S_{X_2}$ with $||Pu|| > 2 - \varepsilon$. Now, since $Pu/||Pu|| \in S_{X_0}$, we have that

$$\inf\{\|Tx\|: x \in S_{X_0}\} \le \left\|\frac{TPu}{\|Pu\|}\right\| < \frac{\|TPu\|}{2-\varepsilon} = \frac{\|T(u-x_0^*(u)x_0)\|}{2-\varepsilon} \\ = \frac{\|Tu-x_0^*(u)Tx_0\|}{2-\varepsilon} < \frac{1+1-a}{2-\varepsilon} = \frac{2-a}{2-\varepsilon}.$$

By the arbitrariness of ε , the proposition is proved.

Thus, it remains to observe that both conditions (2.2) and (2.3) imply that T is an isometric embedding.

This paper is devoted to some questions close to the second part of Problem 2.1 concerning L_1 . More precisely, we investigate the following particular question.

Problem 2.4. Do there exist a Banach space X and an E-unattainable operator $T \in \mathcal{L}(L_1, X)$ for $E = \ell_1$ or $E = L_1$?

3. ℓ_1 -unattainable operators

Observe that if Y is a Banach space and an operator $T \in \mathcal{L}(L_1, Y)$ is ℓ_1 -unattainable then T does not attain its norm. Indeed, let T attain its norm at some element $x_1 \in L_1 \setminus \{0\}$. Without loss of generality we may assume that $\lambda([0, 1] \setminus \operatorname{supp} x_1) > 0$, otherwise we decompose $x_1 = y \sqcup z$ with $y, z \neq 0$ and T must attain its norm at least on one of the elements y, z, which obviously satisfies the desired condition. Next we choose any disjoint sequence of nonzero elements $x_2, x_3, \ldots \in L_1([0, 1] \setminus \operatorname{supp} x_1)$. Then T attains its norm on the subspace $[x_n]_{n=1}^{\infty}$ which is isometric to ℓ_1 . The same argument shows that the following statement is true.

Proposition 3.1. Let Y be a Banach space. If an operator $T \in \mathcal{L}(L_1, Y)$ is ℓ_1 -unattainable then T is L_1 -unattainable.

Now we are going to choose more deep properties of ℓ_1 -unattainable operators. According to Pełczyński [12], a subspace $X \subseteq L_1$ is isometric to ℓ_1 if and only if it is spanned by a disjoint sequence (x_n) , $X = [x_n]$. Besides, we shall use the following simple observation: if Y is a Banach space and $T \in \mathcal{L}(\ell_1, Y)$, then $||T|| = \sup_n ||Te_n||$, where (e_n) is the standard basis for ℓ_1 . Thus, if (x_n) is a normalized disjoint sequence in L_1 , $X = [x_n] + T \in \mathcal{L}(L_1, Y)$, then $||T|_X || = \sup ||Tx_n||$.

Theorem 3.2. Let Y be a Banach space and $T \in \mathcal{L}(L_1, Y)$ with ||T|| = 1. Then the following assertions are equivalent:

(i) T is ℓ_1 -unattainable;

(ii) for any normalized disjoint sequence (x_n) in L_1 one has

$$\sup \|Tx_m\| > \|Tx_n\| \quad for \ every \quad n \in \mathbb{N};$$

(iii) for any normalized disjoint sequence (x_n) in L_1 one has

 $||Tx_n|| < 1$ for every $n \in \mathbb{N}$ and $\lim_{i \to \infty} ||Tx_i|| = 1;$

(iv) for any normalized sequence (x_n) in L_1 with $\lim_{n \to \infty} \lambda(\operatorname{supp} x_n) = 0$ one has

$$||Tx_n|| < 1$$
 for every $n \in \mathbb{N}$ and $\lim_{i \to \infty} ||Tx_i|| = 1.$

Proof. Equivalence $(i) \Leftrightarrow (ii)$ follows from Pełczyński's theorem and the above remark. Besides, implications $(iv) \Rightarrow (iii) \Rightarrow (ii)$ are obvious.

 $(ii) \Rightarrow (iii)$. Let (ii) holds for a given operator $T \in \mathcal{L}(L_1, Y)$. First we prove that T does not attain its norm, i.e., ||Tx|| < 1 for each $x \in S(L_1)$. Suppose to the contrary that ||Tx|| = 1 for some $x \in S(L_1)$. Choose any disjoint sequence $A_n \in \mathcal{B}^+$ with $\sup px = \bigsqcup_{n=1}^{\infty} A_n$ and set $y_n = x \cdot \mathbf{1}_{A_n}$ for each $n \in \mathbb{N}$. Then from

$$1 = \left\|\sum_{n=1}^{\infty} Ty_n\right\| \le \sum_{n=1}^{\infty} \|Ty_n\| \le 1\sum_{n=1}^{\infty} \|y_n\| = 1$$

we deduce that $\sum_{n=1}^{\infty} ||Ty_n|| = 1 \sum_{n=1}^{\infty} ||y_n||$. But this easily implies that $||Ty_n|| = 1 ||y_n||$ for each n. Thus, for the normalized disjoint sequence $x_n = y_n/||y_n||$ one has $||Tx_n|| = 1$ for each n, which contradicts (*ii*).

Now we prove the second part of (iii). Suppose to the contrary that there exists a normalized disjoint sequence (u_i) in L_1 such that the equality $\lim_{i\to\infty} ||Tu_i|| = 1$ does not hold. Then there are a number $\delta > 0$ and a normalized disjoint sequence (x_n) in L_1 such that $||Tx_n|| < 1 - \delta$ for each $n \in \mathbb{N}$. Note that, without loss of generality, we may assume that $\prod_{n=1}^{\infty} \operatorname{supp} x_n = [0, 1]$. Indeed, if $\lambda(A) > 0$ where $A = [0, 1] \setminus \prod_{n=1}^{\infty} \operatorname{supp} x_n$ then we choose a $\gamma > 0$ so that $||Tx'_1|| < 1 - \delta$ where

$$x_1' = \frac{x_1 + \gamma \mathbf{1}_A}{\|x_1 + \gamma \mathbf{1}_A\|}$$

and consider the sequence x'_1, x_2, x_3, \ldots

We pick $x \in S(L_1)$ so that $||Tx|| \ge 1 - \delta$ and set $y_n = x \cdot \mathbf{1}_{\operatorname{supp} x_n}$ for each $n \in \mathbb{N}$. Since

$$\sum_{n=1}^{\infty} \|y_n\| (1-\delta) = 1 - \delta \le \|Tx\| = \left\| T \sum_{n=1}^{\infty} y_n \right\| \le \sum_{n=1}^{\infty} \|Ty_n\|,$$

there is a number n_0 such that $||Ty_0|| \ge (1-\delta)||y_{n_0}||$. Then putting $z_n = x_n$ for $n \ne n_0$ and $z_{n_0} = y_{n_0}/||y_{n_0}||$, for the normalized disjoint sequence (z_n) one obtains $\sup ||Tz_n|| = ||Tz_{n_0}||$ what contradicts (*ii*).

 $(iii) \Rightarrow (iv)$. Suppose that (iii) fulfills, however there exist a $\delta > 0$ and a normalized sequence $x_n \in L_1$ such that $||Tx_n|| \le 1(1-\delta)$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} \lambda (\operatorname{supp} x_n) = 0$. Without loss of generality, we may assume that the series $\sum_{n=1}^{\infty} \lambda (\operatorname{supp} x_n)$ converges (otherwise we pass to a subsequence). Then we choose a subsequence (x_{n_k}) such that $||u_k|| < \delta/3$ for each $k \in \mathbb{N}$ where $u_k = x_{n_k} \cdot \mathbf{1} \bigcup_{\substack{i=k+1 \\ i=k+1}}^{\infty} \sup_{x_{n_i}} N$ one for each $k \in \mathbb{N}$ we set

 $y_k = x_{n_k} - u_k$ and $z_k = y_k / ||y_k||$. Then for the normalized disjoint sequence (z_k) we have

$$||Tz_k|| = \frac{||Tx_{n_k} - Tu_k||}{||x_{n_k} - u_k||} \le \frac{||Tx_{n_k}|| + ||Tu_k||}{||x_{n_k}|| - ||u_k||} \le \frac{1(1-\delta) + 1\frac{\delta}{3}}{1-\frac{\delta}{3}} = 1\frac{1-\frac{2\delta}{3}}{1-\frac{\delta}{3}}$$

for each k that contradicts (*iii*).

For convenience of the notation, if for a given $T \in \mathcal{L}(L_1, Y)$ and an $A \in \mathcal{B}^+$ the restriction T_A is not an isomorphic embedding, we then set $||T_A^{-1}|| = \infty$.

Theorem 3.3. Let Y be a Banach space. Then an operator $T \in \mathcal{L}(L_1, Y)$ with ||T|| = 1 is ℓ_1 -unattainable if and only if the following conditions hold:

(a) there exists a $\delta > 0$ such that T_A is an isomorphic embedding which does not attain its norm whenever $A \in \mathcal{B}^+$ and $\lambda(A) < \delta$;

- (b) $||T_A|| = 1$ and $||T_A|| ||T_A^{-1}|| > 1$ for every $A \in \mathcal{B}^+$;
- (c) $\lim_{\lambda(A)\to 0} ||T_A|| ||T_A^{-1}|| = 1.$

Proof. The "only if" part. (a). Suppose to the contrary that there exists a sequence of sets $A_n \in \mathcal{B}^+$ such that $\lambda(A_n) \leq 2^{-n}$ and the operators T_{A_n} are unbounded from below for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ we pick $x_n \in S(L_1(A_n))$ so that $||Tx_n|| < 2^{-n}$. Then we choose a sequence of numbers $1 \leq k_1 < k_2 < \ldots$ so that for $y_n = x_{k_n} \cdot \mathbf{1}_{A_{k_n} \setminus A_{k_{n+1}}}$ we have $||x_{k_n} - y_n|| < 2^{-n}$. Then the sequence $z_n = y_n/||y_n||$ is normalized and disjoint. Besides,

$$1 = ||x_{k_n}|| \ge ||y_n|| \ge 1 - ||x_{k_n} - y_n|| \ge 1 - \frac{1}{2^n}$$

whence $\left| \|y_n\| - 1 \right| < 2^{-n}$. Therefore

$$||x_{k_n} - z_n|| \le ||x_{k_n} - y_n|| + ||y_n - z_n|| < \frac{1}{2^n} + ||y_n|| \left|1 - \frac{1}{||y_n||}\right| < \frac{1}{2^{n-1}}.$$

Thus,

$$||Tz_n|| \le ||Tx_{k_n}|| + 1 ||x_{k_n} - z_n|| < \frac{1}{2^{k_n}} + 1 \frac{1}{2^{n-1}},$$

and hence $\lim_{n \to \infty} ||Tz_n|| = 0$, which contradicts Theorem 3.2.

(b). Given $A \in \mathcal{B}^+$, we choose any sequence $A_n \in \mathcal{B}^+$ with $A_n \subseteq A$ and $\lim_{n \to \infty} \lambda(A_n) = 0$. Then putting $x_n = \mathbf{1}_{A_n}/\lambda(A_n)$ for each $n \in \mathbb{N}$, we obtain that $||T_A|| \ge ||Tx_n||$ for each n. By Theorem 3.2 (iv), $||T_A|| \ge 1$, i.e., $||T_A|| = 1$.

If we had $||T_A|| ||T_A^{-1}|| = 1$ for a given $A \in \mathcal{B}^+$ then T_A would attain its norm at each element $x \in L_1(A), x \neq 0$. Indeed,

$$\|T_A x\| \le \|T_A\| \|x\| = \|T_A\| \|T_A^{-1}(T_A x)\| \le \|T_A\| \|T_A^{-1}\| \|T_A x\| = \|T_A x\|,$$
whence $\|T_A x\| = \|T_A\| \|x\|.$

(c). By (a), T_A^{-1} exists and is bounded for each $A \in \mathcal{B}^+$. Without loss of generality, we assume that 1 = 1. Suppose that (c) does not hold. Since $||T_A^{-1}|| > 1$ for each $A \in \mathcal{B}^+$ by (b), there are a $\delta > 0$ and a sequence $A_n \in \mathcal{B}^+$ such that $||T_A^{-1}|| > 1 + \delta$ for every $n \in \mathbb{N}$. Now pick a normalized sequence $x_n \in L_1(A_n)$ so that $||Tx_n|| \leq \frac{1}{1+\delta}$ for each $n \in \mathbb{N}$. This contradicts Theorem 3.2 (iv).

The "if" part. It is enough to consider the case 1 = 1. Let (x_n) be any normalized sequence with $\lim_{n\to\infty} \lambda(A_n) = 0$ where $A_n = \operatorname{supp} x_n$. By the theorem assumptions, $\lim_{n\to\infty} ||T_{A_n}^{-1}|| = 1$. Since $||T_{A_n}^{-1}|| \ge \frac{||x_n||}{||Tx_n||}$, we have that $||T_{A_n}^{-1}||^{-1} \le ||Tx_n|| \le 1$ for each $n \in \mathbb{N}$. Thus, $\lim_{n\to\infty} ||Tx_n|| = 1$. By Theorem 3.2, T is ℓ_1 -unattainable.

Consider the following example. We define an operator $T \in \mathcal{L}(L_1)$ by putting for each $x \in L_1$

$$Tx = x - \frac{1}{2} \int x d\lambda \cdot \mathbf{1},$$

where $\mathbf{1} = \mathbf{1}_{[0,1]}$. Observe that if y = Tx then $\int yd\lambda - 1/2 \int xd\lambda$ and hence $x = y + \int yd\lambda \cdot \mathbf{1}$. Thus, T is an isomorphic embedding with $||T^{-1}|| \leq 2$. Obviously, $||T_A|| = 3/2$ for each $A \in \mathcal{B}^+$. We show that the operators T_A do not attain their norm. Let $x \in S(L_1)$ and ||Tx|| = 3/2. Since $|\int xd\lambda| = 1$, we have that either $x \geq 0$ or $x \leq 0$. Suppose that $x \geq 0$. We set $B = \{t \in [0,1] : x(t) \geq 1/2\}$. Then $\lambda(B) > 0$ and

$$\|Tx\| = \left\|x - \frac{1}{2}\mathbf{1}\right\| = \int_{B} \left(x(t) - \frac{1}{2}\right) d\lambda(t) + \int_{[0,1]\setminus B} \left(\frac{1}{2} - x(t)\right) d\lambda(t)$$
$$\leq \|x\| - \frac{\lambda(B)}{2} + \frac{1 - \lambda(B)}{2} = \frac{3}{2} - \lambda(B),$$

a contradiction.

On the other hand, $||T_A^{-1}|| \ge 1$ for every $A \in \mathcal{B}^+$, because Tx = x for each $x \in L_1(A)$ with $\int x d\lambda = 0$. Thus, condition (c) from Theorem 3.3 does not hold.

This example shows that conditions (a) and (b) for an operator do not imply that this operator is ℓ_1 -unattainable. Besides, it is not very hard to verify concerning our example that T fulfills conditions (ii) - (iv) from Theorem 3.2 for the case when $x_n \ge 0$ for all n in these conditions. This shows that conditions (ii) - (iv) in Theorem 3.2 cannot be stated for positive sequences only.

Theorem 3.4. There exists an ℓ_1 -unattainable operator $T \in \mathcal{L}(L_1)$.

First we need the following auxiliary construction.

Lemma 3.5. Given any sets $A, B \in \mathcal{B}$ with $[0,1] = A \sqcup B$ and $\lambda(A) = \lambda(B) = 1/2$, there exists an operator $T = T_{A,B} \in \mathcal{L}(L_1, L_1(A \times B))$ with the following properties:

- (1) for each $C \in \mathcal{B}$ one has that $||T\mathbf{1}_C|| = \lambda(C)$ if and only if either $C \subseteq A$ or $C \subseteq B$;
- (2) ||T|| = 1;
- (3) $||Tx|| \ge 1 2\lambda(\operatorname{supp} x)$ for every $x \in L_1$.

Proof. For each $x \in L_1$ we define a function $Tx \in L_1(A \times B)$ of two variables as follows

$$Tx(s,t) = 2x|_A(s) - 2x|_B(t)$$

(here by $x|_C$ we denote the restriction of x to a set $C \in \mathcal{B}$, i.e. $x|_C = x \cdot \mathbf{1}_C$).

(1) Fix any $C \in \mathcal{B}$. We set $C_A = C \cap A$ and $C_B = C \cap B$. Then one has

(3.1)
$$\|T\mathbf{1}_C\| = 2 \iint_{A \times B} \int |\mathbf{1}_C(s) - \mathbf{1}_C(t)| ds dt = 2 \iint_{A \times B} \int |\mathbf{1}_{C_A}(s) - \mathbf{1}_{C_B}(t)| ds dt.$$

On the other hand,

(3.2)
$$2 \int_{A \times B} \int_{B} \left(\mathbf{1}_{C_A}(s) + \mathbf{1}_{C_B}(t) \right) ds dt = 2\lambda(B) \int_{A} \mathbf{1}_{C_A}(s) ds + 2\lambda(A) \int_{B} \mathbf{1}_{C_B}(t) dt = \lambda(C_A) + \lambda(C_B) = \lambda(C).$$

From (3.1) and (3.2) we conclude that $||T\mathbf{1}_C|| = \lambda(C)$ if and only if

$$\iint_{A\times B} \left| \mathbf{1}_{C_A}(s) - \mathbf{1}_{C_B}(t) \right| ds dt = \iint_{A\times B} \left(\mathbf{1}_{C_A}(s) + \mathbf{1}_{C_B}(t) \right) ds dt,$$

what is possible if and only if

(3.3)
$$\left| \mathbf{1}_{C_A}(s) - \mathbf{1}_{C_B}(t) \right| = \mathbf{1}_{C_A}(s) + \mathbf{1}_{C_B}(t)$$

for almost all $(s,t) \in A \times B$. Since (3.3) does not hold if $(s,t) \in C_A \times C_B$, we obtain that $\lambda(C_A \times C_B) = \lambda(C_A) \times \lambda(C_B) = 0$. Thus, either $\lambda(C_A) = 0$ or $\lambda(C_B) = 0$. Equivalently, either $C \subseteq A$ or $B \subseteq A$.

(2) In view of (1), it is enough to show that $||T|| \leq 1$. For each $x \in L_1$ one has

$$\|Tx\| \le 2 \iint_{A \times B} |x|_A(s)| \, ds \, dt + 2 \iint_{A \times B} |x|_B(t)| \, ds \, dt$$
$$= 2\lambda(B) \iint_A |x(s)| \, ds + 2\lambda(A) \iint_B |x(t)| \, dt = \|x\|.$$

(3) Given any $x \in S(L_1)$, we set $D = \operatorname{supp} x$, $A_1 = A \cap D$ and $B_1 = B \cap D$. Then

$$\begin{split} \|Tx\| &= \iint_{A \times B} |2x|_A(s) - 2x|_B(t)| ds dt \\ &\geq \iint_{A_1 \times (B \setminus B_1)} |2x|_A(s) - 2x|_B(t)| ds dt + \iint_{(A \setminus A_1) \times B_1} |2x|_A(s) - 2x|_B(t)| ds dt \\ &= 2 \iint_{A_1 \times (B \setminus B_1)} |x(s)| ds dt + 2 \iint_{(A \setminus A_1) \times B_1} |x(t)| ds dt \\ &= 2 (\lambda(B) - \lambda(B_1)) \iint_{A_1} |x(s)| ds + 2 (\lambda(A) - \lambda(A_1)) \iint_{B_1} |x(t)| dt \\ &\geq (1 - 2\lambda(D)) (\iint_{A_1} |x(s)| ds + \iint_{B_1} |x(t)| dt) = 1 - 2\lambda(D). \end{split}$$

Proof of Theorem 3.4. For each $n \in \mathbb{N}$ decompose $[0, 1] = A_n \sqcup B_n$ with $A_n, B_n \in \mathcal{B}^+$ so that $\lambda(A_n) = \lambda(B_n) = 1/2$ and

(*)
$$\lambda\left(\bigcap_{k=1}^{n} C_{k}\right) = 2^{-n}$$
 for each n and $C_{k} \in \{A_{k}, B_{k}\}$

(for example, one can set $A_n = \{t \in [0,1] : r_n(t) = 1\}$ where (r_n) is the Rademacher system on [0,1]). Then decompose $[0,1] = \bigsqcup_{n=1}^{\infty} D_n$ with $D_n \in \mathcal{B}^+$. For every $n \in \mathbb{N}$ let $T_{A_n,B_n}: L_1 \to L_1(A_n \times B_n)$ be an operator having properties (1) - (3) from Lemma 3.5. Let $J_n: L_1(A_n \times B_n) \to L_1(D_n)$ be any linear isometric embedding for each n. Then set

23

 $T_n = J_n \circ T_{A_n,B_n}$ and observe that $T_n \in \mathcal{L}(L_1,L_1(D_n))$ has properties (1) - (3) for each n as well. Finally we put $T = \sum_{n=1}^{\infty} 2^{-n}T_n$. Obviously, $T \in \mathcal{L}(L_1)$ with $||T|| \leq 1$. Our goal is to show that T satisfies condition (*iii*) from Theorem 3.2. Let (x_i) be any normalized disjoint sequence in L_1 . Then by definition of T and property (3) for T_n 's we obtain

$$||Tx_i|| = \sum_{n=1}^{\infty} 2^{-n} ||T_n x_i|| \ge 1 - 2\lambda(\operatorname{supp} x_i) \longrightarrow 1 \quad \text{as} \quad i \to \infty.$$

Hence ||T|| = 1 and $\lim_{i \to \infty} ||Tx_i|| = ||T||$. It remains to show that T does not attain its norm. Suppose to the contrary that T attains its norm. Then by Lemma 3.2 of [11], there exists a set $A \in \mathcal{B}^+$ such that T attains its norm on the positive cone $L_1^+(A)$. In particular, $||T\mathbf{1}_A|| = \lambda(A)$. On the other hand, $||T\mathbf{1}_A|| = \sum_{n=1}^{\infty} 2^{-n} ||T_n\mathbf{1}_A||$. We claim that $||T_n\mathbf{1}_A|| = \lambda(A)$ for each n. Indeed, if we suppose that $||T_{n_0}\mathbf{1}_A|| < \lambda(A)$ for some n_0 then, taking into account that $||T_n\mathbf{1}_A|| \le \lambda(A)$ for each n, we would obtain that $||T\mathbf{1}_A|| < \lambda(A)$. Thus, $||T_n\mathbf{1}_A|| = \lambda(A)$ for each n is established. By condition (1) of Lemma 3.5, for each n we have that $A \subseteq C_n$ where $C_n \in \{A_n, B_n\}$. Thus, for each none has that $A \subseteq \bigcap_{k=1}^n C_k$ whence $\lambda(A) \le 2^{-n}$ by choice of the sets A_n, B_n . But this contradicts the condition $\lambda(A) > 0$.

4. An L_1 -unattainable operator, which is not ℓ_1 -unattainable

Lemma 4.1. Let X and Y be Banach spaces, $T \in \mathcal{L}(X,Y)$ and $x, y, z \in X$ satisfy x = y + z and ||x|| = ||y|| + ||z||. If

(4.1)
$$\frac{\|Tx\|}{\|x\|} \ge \max\left\{\frac{\|Ty\|}{\|y\|}, \frac{\|Tz\|}{\|z\|}\right\},$$

then the following equalities hold:

(i)
$$||Tx|| = ||Ty|| + ||Tz||;$$

(*ii*)
$$\frac{\|Tx\|}{\|x\|} = \frac{\|Ty\|}{\|y\|} = \frac{\|Tz\|}{\|z\|}.$$

Proof. (i). We set $\alpha = \frac{\|T_X\|}{\|x\|}$. Then by (4.1),

$$\alpha \|y\| + \alpha \|z\| = \alpha \|x\| = \|Tx\| \le \|Ty\| + \|Tz\| \le \alpha \|y\| + \alpha \|z\|$$

which implies (i).

(*ii*). If we suppose that
$$\frac{||Ty||}{||y||} < \alpha$$
, then $||Ty|| + ||Tz|| < \alpha ||y|| + \alpha ||z||$, a contradiction.

Note that (4.1) is valid if T attains its norm at x.

Theorem 4.2. Let (Ω, Σ, μ) be a measure space, Y be a Banach space and an operator $T \in \mathcal{L}(L_1(\mu), Y)$ attains its norm at $x \in L_1^+(\mu)$. Then T atains its norm at any element $0 \neq y \in L_1^+(\text{supp } x)$.

Proof. It is enough to prove that T attains its norm at any element of some dense subset $M \subseteq L_1^+(\operatorname{supp} x)$, since if $y \in L_1^+(\operatorname{supp} x)$, $y_n \in M$ and $\lim_{n \to \infty} y_n = y$ then

$$\frac{\|Ty\|}{\|y\|} = \lim_{n \to \infty} \frac{\|Ty_n\|}{\|y_n\|} = \|T\|.$$

For every $n \in \mathbb{N}$ we put $A_n = \{\omega \in \Omega : x(\omega) \ge 1/n\}$ and $M = \bigcup_{n=1}^{\infty} L_{\infty}^+(A_n)$. Fix any $u \in M$, say, $u \in L_{\infty}(A_m)$. Then for

$$y = \frac{u}{m \, \|u\|_{\infty}}$$

one obtains that $0 \le y \le x$. Thus, for x, y + z = x - y the assumptions of Lemma 4.1 are satisfied. By item (*ii*) of this lemma, T attains its norm at y, and hence, at u. It is enough to note that M is dense in $L_1^+(\operatorname{supp} x)$, because $\operatorname{supp} x = \bigcup_{n=1}^{\infty} A_n$, up to a measure null set.

The following statement clarifies Lemma 3.2 of [11].

Corollary 4.3. Let (Ω, Σ, μ) be a measure space, Y be a Banach space and an operator $T \in \mathcal{L}(L_1(\mu), Y)$ attains its norm at $x \in L_1(\mu)$. Then T attains its norm at any element $0 \neq y \in L_1^+(\operatorname{supp} x^+) \cup L_1^+(\operatorname{supp} x^-)$.

Proof. Using Lemma 4.1 (*ii*) for $y = x^+$ and $z = -x^-$, we obtain that T attains its norm at each element x^+, x^- . Then use Theorem 4.2 for x^+ and x^- .

The functional
$$f(x) = \int_{0}^{\frac{1}{2}} x d\lambda - \int_{\frac{1}{2}}^{1} x d\lambda$$
, which attains its norm at $x = \mathbf{1}_{[0,1/2)} - \mathbf{1}_{[1/2,1]}$,

however does not attain its norm at any element of the form $y = \mathbf{1}_A$, where $\lambda(A \cap [0, 1/2)) = \lambda(A)/2$ (one has that f(y) = 0 in this case), shows that the positivity condition on x in Theorem 4.2 is essential, and that of any x we cannot say more than Corollary 4.3 gives.

Recall that a Banach space Y is said to be *strictly convex* if for any elements $x \neq y$ of S(Y) one has ||x + y|| < 2, or equivalently, if S(Y) contains no segment.

Theorem 4.4. Let Y be a strictly convex Banach space, $x \in L_1$, $A_1 = \operatorname{supp} x^+$ and $A_2 = \operatorname{supp} x^-$. Suppose that an operator $T \in \mathcal{L}(L_1, Y)$ attains its norm at x. Then T_{A_i} are rank one operators for i = 1, 2.

Proof. We prove the theorem for i = 1 (the proof for i = 2 is analogous). By Corollary 4.3, T attains its norm at x^+ . Let $v \in L^+_{\infty}(A_1)$ be any nonzero element. We set $\beta = \frac{\|Tv\|}{\|T(x^+)\|}$. Since T attains its norm at v (cf. Theorem 4.2), one has, in particular, that $\beta > 0$. Theorem 4.2 implies also that T attains its norm at $w = \beta x^+ + v$. Since $\|w\| = \|\beta x^+\| + \|v\|$, using Lemma 4.1, we obtain that $\|Tw\| = \|T(\beta x^+)\| + \|Tv\|$. On the other hand, $\|T(\beta x^+)\| = \|Tv\|$ by definition of β . If we suppose $T(\beta x^+) \neq Tv$, then the strict convexity of Y gives

$$2\|Tv\| = \|T(\beta x^{+})\| + \|Tv\| = \|Tw\| = \|T(\beta x^{+}) + Tv\| < 2\|Tv\|,$$

a contradiction. Thus, $Tv = \beta T(x^+) = \frac{\|Tv\|}{\|T(x^+)\|} T(x^+)$. Suppose now that $v \in L_{\infty}(A_1)$ be any element. Then

$$Tv = T(v^{+}) - T(v^{-}) = \frac{\|T(v^{+})\| - \|T(v^{-})\|}{\|T(x^{+})\|} T(x^{+}).$$

A Banach space Y is called *locally uniformly convex*, provided for each $x, x_n \in Y, n \in \mathbb{N}$ the conditions $||x_n|| \longrightarrow ||x||$ and $||x_n + x|| \longrightarrow 2||x||$ yield $||x_n - x|| \longrightarrow 0$. It is easy to see that a locally uniformly convex Banach space is strictly convex. In 1959 M. I. Kadec proved [6] that in every separable Banach space there exists an equivalent locally uniformly convex (in particular, strictly convex) norm.

So, there exists a strictly convex Banach space Y, isomorphic to L_1 . Let $T: L_1 \to Y$ be an isomorphism. Since T is one-to-one, T cannot be a rank one operator when being restricted to any infinite dimensional subspace.

Thus, Theorem 4.4 has the following consequence.

Corollary 4.5. Let Y be a strictly convex Banach space and $T: L_1 \to Y$ be an injective operator. Then T is L_1 -unattainable.

Theorem 4.6. There exists a Banach space Y and an isomorphism $T: L_1 \to Y$ which is L_1 -unattainable but is not ℓ_1 -unattainable.

Proof. Let Y be a strictly convex Banach space isomorphic to L_1 and $T: L_1 \to Y$ be an isomorphism. By Corollary 4.5, T does not attain its norm on each subspace of L_1 isometric to L_1 .

Fix any normalized disjoint sequence (x_n) in L_1 and set $X = [x_n]$. Choose $\delta \in (0, \frac{1}{\|T\| \|T^{-1}\|})$ and $n_0 \in \mathbb{N}$ so that $(1 + \delta) \|Tx_{n_0}\| \ge \sup_m \|Tx_m\|$. Now define an operator $S \in \mathcal{L}(L_1, Y)$ by putting for each $x \in L_1$

$$Sx = Tx + \delta \left(\int_{\operatorname{supp} x_{n_0}} x \, d\lambda\right) Tx_{n_0}$$

Remark that S is an isomorphic embedding, because for each $x \in L_1$ one has

$$||Sx|| \ge ||Tx|| - \delta ||x|| ||Tx_{n_0}|| \ge \frac{||x||}{||T^{-1}||} - \delta ||T|| ||x|| = \eta ||x||,$$

where $\eta = ||T^{-1}||^{-1} - \delta ||T|| > 0$ by the choice of δ . By Corollary 4.5, S is L_1 -unattainable. Now observe that $||Sx_n|| = ||Tx_n||$ if $n \neq n_0$ and

$$\|Sx_{n_0}\| = (1+\delta)\|Tx_{n_0}\| \ge \sup_m \|Tx_m\| = \|T|_X\|$$

by the choice of n_0 . Thus, S attains its norm on X which is isometric to ℓ_1 .

5. Some open problems

Problem 5.1. Do there exist a Banach space Y and an operator $T \in \mathcal{L}(L_1, Y)$ which nowhere attains its norm?

We also do not know, what if one replace "isometric" with "isomorphic" in problem 2.4.

Problem 5.2. Does for every Banach space Y and every operator $T \in \mathcal{L}(L_1, Y)$ there exists a subspace of L_1 isomorphic to ℓ_1 on which T attains its norm?

Problem 5.3. Does for every Banach space Y and every operator $T \in \mathcal{L}(L_1, Y)$ there exists a subspace of L_1 isomorphic to L_1 on which T attains its norm?

Acknowledgments. The authors thank M. I. Ostrovskii for helpful discussions and the referee for valuable remarks, especially for communicating us Proposition 2.3.

References

- 1. M. D. Acosta, Norm attaining operators into $L_1(\mu)$, Contemp. Math. 232 (1999), 1–11.
- E. Bishop, R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98.
- 3. J. Bourgain, On dentability and the Bishop-Phelps property, Israel J. Math. 28 (1977), 265–271.
- 4. A. Iwanik, Norm attaining operators on Lebesgue spaces, Pacific J. Math. 83 (1979), 381–386.

5. J. Johnson, J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.

- M. I. Kadec, On spaces isomorphic to locally uniformly convex spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 6 (1959), 51–57.
- V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin and D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855–873.

- 8. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148.
- J. Lindenstrauss, L. Tzafriri, *Classical Banach Spaces.* I, Springer-Verlag, Berlin—Heidelberg— New York, 1977.
- J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- V. V. Mykhaylyuk, M. M. Popov, Some geometrical aspects of operators acting from L₁, Positivity 10 (2006), 431–466.
- 12. A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), no. 2, 209–228.
- W. Schachermayer, Norm attaining operators on some classes of Banach spaces, Pacific J. Math. 105 (1983), 427–438.

Department of Mathematics, Zaporizh
zhya National University, 2 Zhukovs'koho, Zaporizh
zhya, Ukraine $% \left(\mathcal{A}^{\prime}_{i}\right) =\left(\mathcal{A}^{\prime}_{i}$

E-mail address: yudp@mail.ru

Department of Mathematics, Chernivtsi National University, 2 Kotsyubyns'koho, Chernivtsi, 58012, Ukraine

 $E\text{-}mail\ address: \texttt{mathanQukr.net}$

Departamento de Analisis Matematico, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain

E-mail address: misham.popov@gmail.com

Received 03/04/2009; Revised 24/04/2009