ON THE NUMBER OF NEGATIVE EIGENVALUES OF A
SCHRÖDINGER OPERATOR WITH \(\delta \) INTERACTIONS

OSAMU OGURISU

Abstract. We give necessary and sufficient conditions for a one-dimensional Schrödinger operator to have the number of negative eigenvalues equal to the number of negative intensities in the case of \(\delta \) interactions.

1. Introduction and Main Theorem

In [3], S. Albeverio and L. Nizhnik gave necessary and sufficient conditions for a one-dimensional Schrödinger operator \(L_{X,\alpha} \) with point \(\delta \)-interactions to satisfy that the number of negative eigenvalues, \(N = N(L_{X,\alpha}) \), of \(L_{X,\alpha} \) equals the number of point interactions, \(n \), in the case where all the intensities are negative. Moreover, in [2], they gave an elegant ‘algorithm’ for determining \(N \). This yields the result obtained in [3] and gives necessary and sufficient conditions for \(L_{X,\alpha} \) not to have negative eigenvalues. In [5] N. I. Goloshchapova and L. L. Oridoroga proved that \(N \) is equal to the number of negative eigenvalues of a kind of finite Jacobi matrix using the method developed in [4]. This gives another characterization of Albeverio-Nizhnik’s algorithm. In the previous paper [8] the author gave a sufficient condition for \(L_{X,\alpha} \) to have at least \(m \) negative eigenvalues; we denote by \(m \) the number of negative intensities.

In this paper we prove that \(N \leq m \) and obtain necessary and sufficient conditions for \(L_{X,\alpha} \) to satisfy \(N = m \) and some extensions of Criteria in [3]. We use Albeverio-Nizhnik’s algorithm to obtain necessary condition and do [8, Lemma 1] to obtain sufficient condition. See Remark 4.

We begin by recalling the definition of \(L_{X,\alpha} \) in [2]; a Schrödinger operator \(L_{X,\alpha} \) with point \(\delta \)-interactions on a finite set \(X = (x_1, \ldots, x_n) \in \mathbb{R}^n \) of points, which are called ‘points of interaction’, and intensities \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n \) is defined by the differential expression \(-\left(\frac{d^2}{dx^2} \right)\) on a function \(\psi(x) \) that belongs to the Sobolev space \(W^2_2(\mathbb{R}^1 \setminus X) \) and satisfy, in the points of the set \(X \), the following conjugation conditions:

\[
\psi(x_i + 0) = \psi(x_i - 0), \quad \psi'(x_i + 0) - \psi'(x_i - 0) = \alpha_i \psi(x_i).
\]

The operator \(L_{X,\alpha} \) has the following representation:

\[
L_{X,\alpha} \psi(x) = \left[-\frac{d^2}{dx^2} + \sum_{i=1}^{n} \alpha_i \delta(x - x_i) \right] \psi(x),
\]

where \(\delta \) is the Dirac’s \(\delta \)-function. Without loss of generality we can assume that \(\alpha_i \neq 0 \) and \(x_1 < x_2 < \cdots < x_n \). Put \(d_i = x_{i+1} - x_i \) and \(m = \{|\alpha_i < 0; 1 \leq i \leq n\}|. \) It is well known that the operators \(L_{X,\alpha} \) are self-adjoint on \(L^2(\mathbb{R}^1) \). Their spectra contain the positive semiaxis, where they are absolutely continuous, and no more than \(n \) simple negative eigenvalues [1].

2000 Mathematics Subject Classification. 47A10, 3440.

Key words and phrases. Number of negative eigenvalues, point interactions, Schrödinger operators.

This work was supported by the Grant-in-Aid for Scientific Research (C) 20540204 from Japan Society for the Promotion of Science.
Theorem 2. Our main theorem is the following.

\[
Q_{X,\alpha}(\varphi, \psi) = \langle \varphi', \psi' \rangle + \sum_{i=1}^{n} \alpha_i \overline{\varphi(x_i)} \psi(x_i), \quad D(Q_{X,\alpha}) = H^{2,1}(\mathbb{R})
\]

is densely defined, semibounded, and closed and the unique self-adjoint operator associated with \(Q_{X,\alpha} \) is given by \(L_{X,\alpha} \) (cf. \cite[§ II.2.1]{1}). Therefore, it holds that

\[
\langle \varphi, L_{X,\alpha} \varphi \rangle = \|\varphi'\|^2 + \sum_{i=1}^{n} \alpha_i |\varphi(x_i)|^2
\]

for \(\varphi \in D(L_{X,\alpha}) \). Using this, we can obtain the upper bound of \(N \).

Theorem 1. It holds that \(N \leq m \).

Proof. Assume that \(N > m \) and let \(\varphi_1, \varphi_2, \ldots, \varphi_{m+1} \) be linearly independent eigenfunctions of \(L_{X,\alpha} \), whose associated eigenvalues are negative. Let \(\varphi \) be a linear combination of \(\varphi_i \). Then, it holds that \(\langle \varphi, L_{X,\alpha} \varphi \rangle < 0 \). In addition, we can assume that \(\varphi(x) = 0 \) on \(X_- = \{ x_i; \alpha_i < 0 \} \), since \(|X_-| = m \). This implies that \(\langle \varphi, L_{X,\alpha} \varphi \rangle \geq 0 \) by (1). However, this is impossible.

To state our main theorem, we give some notations. We denote by the symbol, \([x_n, y_n, x_{n-1}, y_{n-1}, \ldots, x_2, y_2, x_1]\), the continued fraction with respect to \(\{x_i\}_{i=1}^{n} \) and \(\{y_i\}_{i=2}^{n} \) defined by

\[
[x_1] = x_1, \\
[x_n, y_n, x_{n-1}, y_{n-1}, \ldots, x_2, y_2, x_1] = x_n - \frac{y_n}{[x_{n-1}, y_{n-1}, \ldots, x_2, y_2, x_1]}.
\]

If some denominators are zero, such continued fraction does not be defined. We write \([x_n, y_n, \ldots, x_2, y_2, x_1] \gg 0 \) if all \([x_i, y_i, \ldots, x_2, y_2, x_1] \gg 0 \) for all \(i = 1, 2, \ldots, n \). Put

\[
c_i = \frac{1}{\alpha_i} + d_i + \frac{1}{\alpha_{i+1}}, \quad w_i = [c_i, \alpha_i^{-2}, \alpha_{i-1}^{-2}, \ldots, c_2, \alpha_2^{-2}, c_1].
\]

Our main theorem is the following.

Theorem 2. \(N = m \) if and only if \(w_{n-1} \gg 0 \).

We prove this theorem in the following sections; the plan of this paper is the following. We prove the sufficiency in Section 2 (Theorem 7) and the necessity in Section 3 (Theorem 14). We give some criteria for \(L_{X,\alpha} \) to satisfy \(N = m \) in Section 4.

Remark 3. In the case where all intensities are negative (i.e., \(m = n \)), it holds that \(N = m \) if and only if \((|\alpha_1|, d_1, |\alpha_2|, d_2, \ldots, d_{n-1}, |\alpha_n|) \gg 0 \) by \cite[Theorem 2]{3}. Here, proper continued fraction, \(v_n = (a_n, a_{n-1}, \ldots, a_1) \), is defined by \(v_1 = a_1 \) and \(v_n = a_n - 1/v_{n-1} \), and we write \(v_n \gg 0 \) if \(v_i > 0 \) for all \(i = 1, 2, \ldots, n \).

Remark 4. One of the referees suggested to the author that N. Goloschapova and L. Oridoroga \cite{6} recently obtained necessary and sufficient conditions for \(L_{X,\alpha} \) to satisfy \(N = m \) in different forms using the concept of boundary triplets and the corresponding Weyl functions developed in \cite{7}. In these papers Schrödinger operators with finite and infinite number of point interactions were investigated.

Remark 5. For later use, we remark a fact on recurrence formula. Let \(A_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \) and assume that \(b_n \neq 0, c_n \neq 0 \) and \(\det A_n \neq 0 \) for all \(n \in \mathbb{N} \). Let \((x_1, y_1)\) be given and
\{(x_n, y_n); n \in \mathbb{N}\} be defined by \(x_{n+1} = A_n x_n\) and \(y_{n+1} = A_n y_n\). Then, this sequence satisfies

\[
x_{n+1} = \left(a_n + \frac{b_n}{b_{n-1}} d_{n-1} \right) x_n - \frac{b_n}{b_{n-1}} \det A_{n-1} x_{n-1},
\]

\[
y_{n+1} = \left(d_n + \frac{c_n}{c_{n-1}} a_{n-1} \right) y_n - \frac{c_n}{c_{n-1}} \det A_{n-1} y_{n-1},
\]

and the converse holds.

2. Sufficiency

Let \(M_k(\lambda)\) be the real symmetric matrix defined by

\[
M_k(\lambda) = \left(\frac{2\lambda}{\alpha_i} \delta_{i,j} + e^{-\lambda|x_i-x_j|} \right)^k_{i,j=1}
\]

and \(D_k = \det M_k(\lambda)\). Since we already know that if \(M_n(\lambda)\) is positive definite for some positive \(\lambda\) then \(N = m\) by [8, Lemma 1] and Theorem 1, we examine the positive definiteness in the case where \(w_{n-1} \gg 0\). Since \(D_k\) is a leading principal minor of \(M_n(\lambda)\) with order \(k\), \(M_n(\lambda)\) is positive definite if and only if all \(D_1, D_2, \ldots, D_n\) are positive.

To prove this, let us establish the recurrence formula for \(D_k\). We put

\[
p_i = \frac{2\lambda}{\alpha_i} + 1 + e^{-2\lambda d_{i-1}} \left(\frac{2\lambda}{\alpha_{i-1}} - 1 \right), \quad q_i = e^{-2\lambda d_{i-1}} \left(\frac{2\lambda}{\alpha_{i-1}} \right)^2.
\]

Proposition 6. We have that \(D_i = p_i D_{i-1} - q_i D_{i-2}\) for \(i = 3, 4, \ldots, n\).

Proof. Let \(i \geq 2\), \(v_1 = (e^{-\lambda d_1}) \in \mathbb{R}^1\) and \(v_i = e^{-\lambda d_i} (v_{i-1}, 1) \in \mathbb{R}^2\). Since \(|x_i - x_j| = \sum_{k=i}^{j-1} d_k\) when \(i < j\), we have

\[
M_i = \begin{pmatrix} M_{i-1} & v_i^t \\ v_i & 1 \end{pmatrix},
\]

Put

\[
E_{i-1} = \det \begin{pmatrix} M_{i-1} & v_i^t \\ v_i & 0 \end{pmatrix}.
\]

Then, we have that

\[
D_i = \begin{vmatrix} M_{i-1} & v_i^t \\ 0 & 2\lambda/\alpha_i + 1 \end{vmatrix} + \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 0 \end{vmatrix} = \left(\frac{2\lambda}{\alpha_i} + 1 \right) D_{i-1} + E_{i-1}
\]

and

\[
E_i = e^{-2\lambda d_i} \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 0 \end{vmatrix} - \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 1 \end{vmatrix} = e^{-2\lambda d_i} \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 0 \end{vmatrix} - \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 1 \end{vmatrix} = e^{-2\lambda d_i} \begin{vmatrix} M_{i-1} & v_i^t \\ v_i & 0 \end{vmatrix} - e^{-2\lambda d_i} D_{i-1}.
\]

Thus, we obtain that

\[
\begin{pmatrix} D_i \\ E_i \end{pmatrix} = A_{i-1} \begin{pmatrix} D_{i-1} \\ E_{i-1} \end{pmatrix}
\]

with

\[
A_{i-1} = \begin{pmatrix} 2\lambda/\alpha_i + 1 & 1 \\ -e^{-2\lambda d_i} & e^{-2\lambda d_i} \left(\frac{2\lambda}{\alpha_i} - 1 \right) \end{pmatrix}.
\]
Since $\det A_{i-1} = e^{-2\lambda d_i}(2\lambda/\alpha_i)^2 \neq 0$, it holds that
\[D_{i+1} = \left(\frac{2\lambda}{\alpha_{i+1}} + 1 + e^{-2\lambda d_i} \left(\frac{2\lambda}{\alpha_i} - 1 \right) \right) D_i - e^{-2\lambda d_i} \left(\frac{2\lambda}{\alpha_i} \right)^2 D_{i-1}. \]
This is the desired recurrence formula. \(\square\)

The following is the sufficient condition for $L_{X,\alpha}$ to satisfy $N = m$, which is stated in Theorem 2.

Theorem 7. If $w_n \rightarrow 0$, then $N = m$.

Proof. We assume that λ is small enough and remark that $p_i = 2c_{i-1}/\alpha_0 + O(\lambda^2)$ and $q_k = 4\alpha_{i-1}^{-2} \lambda^2 + O(\lambda^3)$. Since $D_1 = 2\lambda/\alpha_1 + 1 = 1 + O(\lambda)$ and $D_2 = (2\lambda/\alpha_2 + 1)(2\lambda/\alpha_1 + 1) - e^{-2\lambda d_i} = 2w_1 + O(\lambda^2)$ are positive and it holds that
\[D_2/D_1 = 2w_1 + O(\lambda^2). \]

Since $D_3/D_2 = [p_3, q_3, D_2/D_1]$ by Proposition 6, it holds that
\[D_3/D_2 = 2[c_2, \alpha_2^{-2}, w_1] + O(\lambda^2) = 2w_2 + O(\lambda^2). \]

Therefore, D_3 is positive. By repeating similar calculations, we obtain that all D_1, D_2, \ldots, D_n are positive. Consequently, $M_n(\lambda)$ is positive definite for some positive λ, and thus $N = m$ by [8, Lemma 1] and Theorem 1. \(\square\)

3. NECESSITY

In this section we obtain the necessary condition for $L_{X,\alpha}$ to satisfy $N = m$, which is stated in Theorem 2. We assume that $N = m$ throughout this section. We first give some notations and recall Albeverio-Nizhnik’s algorithm.

Let $j_1 < j_2 < \cdots < j_m$ be the indices of negative intensities, $\alpha_{j_k} < 0$, and put $y_k = x_{j_k}$ for $k = 1, 2, \ldots, m$. Let φ be the special solution defined in [2], that is, φ is the solution on the whole line of the following problem: $L_{X,\alpha}\varphi = 0$ and $\varphi(x) = 1$ if $x < x_1$. This φ has exactly m zeros by [2, Theorem 1]. Let $z_1 < z_2 < \cdots < z_m$ be the zeros of φ. We put
\[\varphi'_i = \varphi'(x_i - 0), \quad \varphi_i = \varphi(x_i - 0) \]
for $i = 1, 2, \ldots, n$ and $\varphi'_{n+1} = \varphi'(x_n + 0)$. Since φ is linear on $[x_{i-1}, x_i]$, it holds that
\[\varphi'_i = \varphi'(x_{i-1} + 0) = (\varphi_i - \varphi_{i-1})/d_{i-1}. \]

These φ'_i and φ_i satisfy the following recurrence formula by the conjugation condition:
\[\begin{align*}
\varphi'_1 &= 0, \quad \varphi'_{i+1} = \varphi'_i + \alpha_i \varphi_i, \\
\varphi_1 &= 1, \quad \varphi_{i+1} = \varphi_i + d_i \varphi'_{i+1} = d_i \varphi'_i + (1 + \alpha_i d_i) \varphi_i.
\end{align*} \]
This implies the recurrence formulas for each φ'_i and φ_i:
\[\begin{align*}
\varphi'_{i+1} &= \left(1 + \alpha_i d_{i-1} + \frac{\alpha_i}{\alpha_{i-1}} \right) \varphi'_i - \frac{\alpha_i}{\alpha_{i-1}} \varphi'_{i-1}, \\
\varphi_{i+1} &= \left(1 + \alpha_i d_i + \frac{d_i}{d_{i-1}} \right) \varphi_i - \frac{d_i}{d_{i-1}} \varphi_{i-1}.
\end{align*} \]
Formula (5) already appears in [2].

Recall Albeverio-Nizhnik’s algorithm.

Theorem 8 (Theorem 4 in [2]). N equals the signature (the number of sign changes) of the sequence, $(\varphi_1, \varphi_2, \ldots, \varphi_n, (1 + \alpha_n d_{n-1}) \varphi_n - \varphi_{n-1})$.

SCHRÖDINGER OPERATORS WITH δ INTERACTIONS 45
In the following, we use the sequence, \((\varphi_1, \varphi_2, \ldots, \varphi_n, \varphi'_{n+1})\), instead of the original one, since \((1 + \alpha_n d_{n-1})\varphi_n - \varphi_{n-1} = d_{n-1}\varphi'_{n+1} + 1\).

We summarize some simple and useful facts on \(\varphi\).

Proposition 9. The following hold:

(i) The function \(\varphi\) is continuous and piecewise linear on \(\mathbb{R}\). The derivative \(\varphi'\) and \(\varphi\) can not be simultaneously zero.

(ii) If \(\varphi_i = 0\) then \(\varphi_{i-1}\varphi_{i+1} < 0\). If \(\varphi'_i = 0\) then \(\varphi_i \neq 0\).

(iii) Assume that \(\alpha_i > 0\). If \(\varphi'_i \geq 0\) and \(\varphi_i > 0\), then \(\varphi'_{i+1} \geq \varphi'_i \geq 0\) and \(\varphi_{i+1} > \varphi_i \geq 0\). Similarly, if \(\varphi'_i \leq 0\) and \(\varphi_i < 0\), then \(\varphi'_{i+1} \leq \varphi'_i \leq 0\) and \(\varphi_{i+1} < \varphi_i < 0\).

(iv) \(\varphi'(z_i + \varepsilon)\) and \(\varphi(z_i + \varepsilon)\) have same sign for \(\varepsilon\) small enough. Thus, if \(x_{j-1} < z_i < x_j\), then \(\varphi'_j\) and \(\varphi_j\) have same sign.

(v) If \(\varphi'_i = 0\) with \(x_i < z_j\), there is at least one \(y_k\) in \(I = [x_i, z_j]\).

(vi) If \(\varphi'_i = 0\) with \(z_j < x_i\), there is at least one \(y_k\) in \(I = (z_j, x_i)\).

Proof. We can find (i) in [2]. Using (5), we can see (ii). (iii) and (iv) can be proved by straightforward calculations.

Consider (v) and assume that no such \(y_k\) exists. Since \(\varphi_i \neq 0\), \(|\varphi(x)|\) is monotonously increasing on \(I\), and thus \(\varphi(z_j) \neq 0\). This contradicts to the definition of \(z_j\).

Consider (vi) and assume that no such \(y_k\) exists. Since \(\varphi'(z_j + \varepsilon)\) and \(\varphi(z_j + \varepsilon)\) have same sign, \(|\varphi'(x)|\) is monotonously non-decreasing on \(I\), and thus \(\varphi'_i \neq 0\). This contradicts to the assumption. \(\square\)

We divide the proof of the necessity of Theorem 2 into a sequence of propositions and a lemma. We first prove that the points of interaction with negative intensities exactly interlace the zeros of \(\varphi\).

Proposition 10. If \(N = m\), then we have that
\[
x_1 \leq y_1 < z_1 < y_2 < z_2 < \cdots < z_{m-1} < y_m < z_m.
\]

Proof. Since \(\varphi(x) > 0 \) for \(x < z_1\), it holds that \(\varphi'(z_1 - 0) < 0\). Since \(\varphi'(x) \geq 0\) for \(x \leq y_1\), we have that \(x_1 \leq y_1 < z_1\). We next prove that at least one \(y_k\) exists in \((z_{j-1}, z_j)\); in both cases where \(x_{i-1} = z_{j-1}\) and \(x_{i-1} < z_{j-1} < x_i\), we have that \(\varphi_i \neq 0\), \(\varphi'_i\) and \(\varphi_i\) have same sign and \(x_i < z_j\). Therefore, if no \(y_{k}\) exists in \(I = (x_i, z_j)\), \(|\varphi(x)|\) is monotonously increasing on \(I\), and thus \(\varphi(z_j) \neq 0\). Hence, at least one \(y_{k}\) exists in \(I\). Consequently, each interval of \(x_i < z_1 < z_2 < \cdots < z_m\) contains at least one \(y_{k}\). Since the number of \(y_{k}\) is equal to \(m\), each interval contains exactly one \(y_{k}\). \(\square\)

This interlacing property implies that \(\varphi'_i \neq 0\).

Proposition 11. If \(N = m\), then \(\varphi'_i \neq 0\) for \(i = 2, 3, \ldots, n\).

Proof. The proof is by contradiction. Assume that \(\varphi'_i = 0\). Since no \(y_k > z_m\) exists and \(\varphi'(z_m + \varepsilon)\) and \(\varphi(z_m + \varepsilon)\) have same sign, we have that \(\varphi'(x) \neq 0\) for all \(x \geq z_m\). Thus, it holds that \(x_i < z_m\). If \(z_j < x_i < z_{j+1}\), then at least two \(y_k\) and \(y_{k'}\) are in \((z_j, z_{j+1})\) by Proposition 9. Since this contradicts to Proposition 10, it holds that \(x_1 < x_i < z_1\). However, this is impossible, too; since \(\varphi'_1 = 0\) and \(\varphi_1 = 1\), if no \(y_{k}\) exists in \((x_1, x_i)\), then \(\varphi'_i > 0\). Hence, at least one \(y_{k}\) exists in \((x_1, x_i)\). On the other hand, there is at least one \(y_{k'}\) in \([x_i, z_1]\) by Proposition 9. This contradicts to Proposition 10. Consequently, we have that \(\varphi'_i \neq 0\). \(\square\)

Using the fact that \(\varphi'_i \neq 0\), we establish the relation between \(w_i\) and \(\varphi'_i\).

Proposition 12. If \(N = m\), then \(\varphi'_{i+1}/\alpha_i \varphi'_i = w_{i-1}\) for \(i = 2, 3, \ldots, n\).
Proof. We use induction on i. Let $i = 2$. Since $\varphi_2' = \alpha_1$ and $\varphi_3' = \alpha_1 + \alpha_2(1 + \alpha_1 d_1)$, we obtain that
\[
\frac{\varphi_3'}{\alpha_2 \varphi_2'} = \frac{\alpha_1 + \alpha_2(1 + \alpha_1 d_1)}{\alpha_2 \alpha_1} = \frac{1}{\alpha_2} + \frac{1}{\alpha_1} + d_1 = c_1 = w_1.
\]
Let $i \geq 3$ and assume that $\varphi_i'/\alpha_{i-1} \varphi_{i-1}' = w_{i-2}$. Since it holds that
\[
\varphi_{i+1}' = c_{i-1}(\alpha_i \varphi_i') - \frac{\alpha_i}{\alpha_{i-1}}(\alpha_{i-1} \varphi_{i-1}')
\]
by (4), we obtain that
\[
\frac{\varphi_{i+1}'}{\alpha_i \varphi_i'} = \frac{c_{i-1} - \frac{\alpha_i}{\alpha_{i-1}}}{\varphi_i'/\alpha_{i-1} \varphi_{i-1}'} = \frac{c_{i-1} - \alpha_i}{\alpha_{i-1}} = w_{i-1}.
\]
This completes the induction. \qed

To state the following key lemma, we give some notations. Let $X' = X \setminus \{x_n\}$, $\alpha' = \alpha \setminus \{\alpha_n\}$, $N' = N(L_{X', \alpha'})$ and $m' = \{(\alpha_i < 0 : 1 \leq i \leq n - 1)\}$. Then it holds that
that $N' \leq m'$.

Lemma 13. If $N = m$, then $N' = m'$ and $w_{n-1} > 0$.

Proof. We denote by $\text{sig}(k)$ the signature of the sequence, $(\varphi_1, \ldots, \varphi_k, \varphi_k')$, in this proof. We have that $N = \text{sig}(n + 1)$ and $N' = \text{sig}(n)$ by Albeverio-Nizhnik’s algorithm.

(i) Consider the case where $\alpha_n > 0$. In this case, $m' = m$. Assume that $\varphi_{n-1} > 0$. In Table 1, we list up all combinations of signs of φ_{n-1}, φ_n, φ_n', and φ_n'. We remark that φ_{n-1} and φ_n can not be simultaneously zero. The combinations indicated by the marks (*n) are impossible:
\[
\begin{align*}
(*1) \text{ If } \text{sig}(n) - \text{sig}(n + 1) = 1, \text{ then } N' > m'. \\
(*2) \varphi_{n+1}' = \varphi_n' + \alpha_n \varphi_n > 0, \text{ but negative.} \\
(*3) \varphi_{n+1}' = \varphi_n' + \alpha_n \varphi_n < 0, \text{ but positive.} \\
(*4) \varphi_n' = (\varphi_n - \varphi_{n-1})/d_{n-1} > 0, \text{ but negative.} \\
(*5) \varphi_n' = (\varphi_n - \varphi_{n-1})/d_{n-1} < 0, \text{ but positive.}
\end{align*}
\]
Since it holds that $\text{sig}(n) = \text{sig}(n + 1)$ and $\varphi_{n+1}'/\varphi_n' > 0$ for the other combinations, we have that $N' = m'$ and $w_{n-1} > 0$.

By exchanging the signs, + and −, each other in Table 1, we can treat the case where $\varphi_{n-1} < 0$ in the same way. Under this exchange, all of the marks is still true with trivial modifications on above (*n). Consequently, we obtain that $N' = m'$ and $w_{n-1} > 0$.

(ii) Consider the case where $\alpha_n < 0$. In this case, $m' = m - 1$. In Table 2, we list up all combinations of signs of $\varphi_{n-1} \geq 0$, φ_n, φ_n', and $\varphi_{n+1}':$
\[
(*6) \text{ If } \text{sig}(n) - \text{sig}(n + 1) \geq 0, \text{ then } N' > m'.
\]
In a similar way as in the proof of (i), we can prove that $N' = m'$ and $w_{n-1} > 0$. Consequently, we have obtained this lemma. \qed

The following is the necessary condition for $L_{X, \alpha}$ to satisfy $N = m$, which is stated in Theorem 2.

Theorem 14. If $N = m$, then $w_{n-1} \gg 0$.

Proof. We have that $N' = m'$ and $w_{n-1} > 0$ by Lemma 13. Therefore, we can inductively obtain that $w_i > 0$ for all $i = 1, 2, \ldots, n - 1$. Thus, we derive that $w_{n-1} \gg 0$. \qed
4. Discussions

We say that the point interactions \(V_k(x) = \sum_{i=1}^{k} \alpha_i \delta(x - x_i) \) are \textit{internally balanced} if \(\varphi(x_k) = \varphi(x_{k+1}) \), that is, \(\varphi'(x_k + 0) = \varphi'_k + 1 = 0 \) (cf. \[2\]). In this case, we have that

\[
(6) \quad N = N \left(- \frac{d^2}{dx^2} \right) + \sum_{i=1}^{k} \alpha_i \delta(x - x_i) \right) + N \left(- \frac{d^2}{dx^2} + \sum_{i=k+1}^{n} \alpha_i \delta(x - x_i) \right)
\]

as in \[2, \text{Remark 5}\]. If \(N = m \), then \(V_k(x) \) are not internally balanced by Proposition 11, however we can easily see that (6) holds. Using Lemma 13 repeatedly, we can obtain

\[
N = \sum_{k=1}^{n} N_k \quad \text{with} \quad N_k = N \left(- \frac{d^2}{dx^2} + \alpha_k \delta(x - x_k) \right).
\]

This is trivial, since \(N_k = 1 \) as \(\alpha_k < 0 \) and \(N_k = 0 \) as \(\alpha_k > 0 \).

In the rest of this paper, we give some criteria for \(L_{X, \alpha} \) to satisfy \(N = m \).
Example 15. Let \(n = 2 \). Then, \(N = m \) if and only if \(w_1 = c_1 = \frac{1}{\alpha_1} + d_1 = 1/\alpha_1 + 1/\alpha_2 > 0 \).

Example 16. Let \(n = 3 \). Then, \(N = m \) if and only if
\[
\begin{align*}
 c_1 &= \frac{1}{\alpha_1} + d_1 + \frac{1}{\alpha_2} > 0, \\
 c_2 &= \frac{1}{\alpha_2} + d_2 + \frac{1}{\alpha_3} > 0 \quad \text{and} \quad c_1c_2 > \frac{1}{\alpha_2}.
\end{align*}
\]
In the case where \(m = n = 3 \), this is equivalent to Criterion 2 in [3].

Corollary 17. (i) If \(N = m \), then all \(c_1, c_2, \ldots, c_{n-1} \) are positive. (ii) If \(d_i > 2(1/|\alpha_i| + 1/|\alpha_{i+1}|) \) for all \(i = 1, 2, \ldots, n-1 \), then \(N = m \).

Proof. If \(N = m \), then it holds that \(w_{n-1} > 0 \). This implies that \(c_1 = w_1 > 0 \) and \(c_i = w_i + 1/\alpha_{i-1}^2w_{i-1} > 0 \). Thus, we obtain (i). We prove (ii): the assumption implies that
\[
\begin{align*}
 c_i &= d_i + 1/\alpha_i + 1/\alpha_{i+1} \geq d_i - (1/|\alpha_i| + 1/|\alpha_{i+1}|) > 1/|\alpha_i| + 1/|\alpha_{i+1}|.
\end{align*}
\]
In particular, \(w_1 = c_1 > 1/|\alpha_2| \). If \(w_{n-1} > 1/|\alpha_i| \), then it holds that \(w_i = c_i - 1/|\alpha_i|w_{i-1} > c_i - 1/|\alpha_i| > 1/|\alpha_{i+1}| \).

Thus, we obtain that \(w_{n-1} > 0 \) by induction. \(\square \)

In the case where \(m = n \), Corollary 17 is Criterion 4 in [3]. We remark that the coefficient, 2, in (ii) is best possible; consider the case where \(n = m = 3 \). Fix \(\varepsilon \) with \(0 < \varepsilon < 2 \) and let \(\alpha_1 = \alpha_3 = -1 \), \(\alpha_2 = -1/\varepsilon \) and \(d_1 = d_2 = (1 + \varepsilon/2)(t + 1) > 0 \). Then, it holds that \(d_i > \varepsilon(1/|\alpha_i| + 1/|\alpha_{i+1}|) = \varepsilon(t + 1) \) for both \(i = 1 \) and 2. However, if \(t \) is large enough, it holds that \(c_1c_2 = (\varepsilon/2)^2(t + 1)^2 < t^2 = \alpha_2^{-2} \). Therefore, we obtain that \(N < m \) by Example 16.

We need the following fact from the theory of continued fractions to derive Corollary 19.

Proposition 18. Assume that all \(y_i \) are positive. The following three conditions are equivalent.

(i) It holds that \([x_n, y_n, \ldots, x_2, y_2, x_1] \gg 0 \).

(ii) It holds that \([x_1, y_2, x_2, \ldots, y_{n-1}, x_n] \gg 0 \).

(iii) It holds that \([x_{k-1}, y_{k-1}, \ldots, x_2, y_2, x_1] \gg 0 \),
\[
[x_{k+1}, y_{k+1}, x_{k+2}, \ldots, y_n, x_n] \gg 0 \quad \text{and}
\]
\[
x_k > \frac{y_k}{[x_{k-1}, y_{k-1}, \ldots, x_2, y_2, x_1]} + \frac{y_{k+1}}{[x_{k+1}, y_{k+1}, x_{k+2}, \ldots, y_n, x_n]}.
\]

Proof. In this proof, we denote by \([x_i : x_1] = [x_i, y_i, \ldots, x_2, y_2, x_1] \) and by \([x_i, y_i, x_{i+1}, \ldots, y_{n-1}, x_n] \) for brevity.

We prove that (i) implies (ii). Since \(x_n > y_n/[x_{n-1} : x_1] > 0 \), we have that
\[
[x_{n-1} : x_n] = x_{n-1} - \frac{y_n}{x_n} > x_{n-1} - [x_{n-1} : x_1] = \frac{y_n}{x_{n-2} : x_1} > 0.
\]
Using this, we have that
\[
[x_{n-2} : x_n] = x_{n-2} - \frac{y_n}{x_{n-1} : x_n} > x_{n-2} - [x_{n-2} : x_1] = \frac{y_n}{x_{n-3} : x_1} > 0.
\]
By repeating this procedure, we obtain (ii). We can prove the converse in the same way.

We prove that (iii) implies (i) and (ii). By the assumption, we have that
\[
[x_k : x_1] = x_k - \frac{y_k}{[x_{k-1} : x_1]} > \frac{y_{k+1}}{[x_{k+1} : x_n]} > 0.
\]
Using this, we have that
\[
[x_{k+1} : x_1] = x_{k+1} - \frac{y_{k+1}}{[x_{k} : x_1]} > x_{k+1} - [x_{k+1} : x_n] = \frac{y_{k+2}}{[x_{k+2} : x_n]} > 0.
\]
If \(k \geq n/2 \), then we obtain (i) by repeating this procedure. If \(k \leq n/2 \), then we can obtain (ii) in the same way.

We prove that (i) implies (iii) by contradiction. Assume that (iii) does not hold. Then we have that

\[
0 < \left[x_k : x_1 \right] = x_k - \frac{y_k}{x_k-1 : x_1} \leq \frac{y_k+1}{x_k+1 : x_n}.
\]

Using this, we have that

\[
0 < \left[x_{k+1} : x_1 \right] = x_{k+1} - \frac{y_{k+1}}{x_k + 1 : x_1} \leq x_{k+1} - \left[x_{k+1} : x_n \right] = \frac{y_{k+2}}{x_k+2 : x_n}.
\]

However, by repeating this procedure, we have that

\[
0 < \left[x_n : x_1 \right] \leq x_n - \left[x_n \right] = 0.
\]

This is impossible, thus (iii) holds. \(\square \)

Corollary 19. Let the points of interactions, \(X = \{x_i\}_{i=1}^n \) of \(L_{X,\alpha} \) be partitioned into two groups, \(X_1 = \{x_i\}_{i=1}^k \) and \(X_2 = \{x_i\}_{i=k+1}^n \). Since \(x_i < x_{i+1} \), all points of \(X_2 \) lie on the right of all points of \(X_1 \). Assume that the Schrödinger operators \(L_{X_1,\alpha} = -\frac{d^2}{dx^2} + \sum_{i=1}^k \alpha_i \delta(x - x_i) \) and \(L_{X_2,\alpha} = -\frac{d^2}{dx^2} + \sum_{i=k+1}^n \alpha_i \delta(x - x_i) \) satisfy that

\[
N(L_{X_1,\alpha}) = \left| \{\alpha_i < 0 ; x_i \in X_1 \} \right| = m_1,
\]

\[
N(L_{X_2,\alpha}) = \left| \{\alpha_i < 0 ; x_i \in X_2 \} \right| = m_2.
\]

For \(N(L_{X,\alpha}) = m = m_1 + m_2 \), it is necessary and sufficient that it holds that

\[
\alpha_k > \frac{\alpha_k^{-2}}{\left[\alpha_{k-1}^{-2}, \alpha_{k-2}^{-2}, \ldots, \alpha_2^{-2} \right]} + \frac{\alpha_k^{-2}}{\left[\alpha_{k+1}^{-2}, \alpha_{k+2}^{-2}, \ldots, \alpha_{n-1}^{-2} \right]}.
\]

Corollary 19 immediately follows from Theorem 2 and Proposition 18 and is an extension of Criterion 5 in [3].

Acknowledgments. The author would like to thank the referees for their helpful comments.

References

Division of Mathematical and Physical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan

E-mail address: ogurisu@kanazawa-u.ac.jp

Received 19/11/2008; Revised 06/11/2009