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ON THE NUMBER OF NEGATIVE EIGENVALUES OF A
SCHRÖDINGER OPERATOR WITH δ INTERACTIONS

OSAMU OGURISU

Abstract. We give necessary and sufficient conditions for a one-dimensional Schrödinger
operator to have the number of negative eigenvalues equal to the number of negative
intensities in the case of δ interactions.

1. Introduction and Main Theorem

In [3], S. Albeverio and L. Nizhnik gave necessary and sufficient conditions for a
one-dimensional Schrödinger operator LX,α with point δ-interactions to satisfy that the
number of negative eigenvalues, N = N(LX,α), of LX,α equals the number of point
interactions, n, in the case where all the intensities are negative. Moreover, in [2], they
gave an elegant ‘algorithm’ for determining N . This yields the result obtained in [3]
and gives necessary and sufficient conditions for LX,α not to have negative eigenvalues.
In [5] N. I. Goloshchapova and L. L. Oridoroga proved that N is equal to the number of
negative eigenvalues of a kind of finite Jacobi matrix using the method developed in [4].
This gives another characterization of Albeverio-Nizhnik’s algorithm. In the previous
paper [8] the author gave a sufficient condition for LX,α to have at least m negative
eigenvalues; we denote by m the number of negative intensities.

In this paper we prove that N ≤ m and obtain necessary and sufficient conditions
for LX,α to satisfy N = m and some extensions of Criteria in [3]. We use Albeverio-
Nizhnik’s algorithm to obtain necessary condition and do [8, Lemma 1] to obtain sufficient
condition. See Remark 4.

We begin by recalling the definition of LX,α in [2]; a Schrödinger operator LX,α with
point δ-interactions on a finite set X = (x1, . . . , xn) ∈ Rn of points, which are called
‘points of interaction’, and intensities α = (α1, . . . , αn) ∈ Rn is defined by the differential
expression −(d2/dx2) on a function ψ(x) that belongs to the Sobolev space W 2

2 (R1 \X)
and satisfy, in the points of the set X, the following conjugation conditions:

ψ(xi + 0) = ψ(xi − 0), ψ′(xi + 0)− ψ′(xi − 0) = αiψ(xi).

The operator LX,α has the following representation:

LX,αψ(x) =
[
− d2

dx2
+

n∑
i=1

αiδ(x− xi)
]
ψ(x),

where δ is the Dirac’s δ-function. Without loss of generality we can assume that αi 6= 0
and x1 < x2 < · · · < xn. Put di = xi+1 − xi and m = |{αi < 0 ; 1 ≤ i ≤ n}|. It is
well known that the operators LX,α are self-adjoint on L2(R1). Their spectra contain
the positive semiaxis, where they are absolutely continuous, and no more than n simple
negative eigenvalues [1].
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We first prove that LX,α has at most m negative eigenvalues. LX,α can be obtained
from the theory of quadratic forms: the form

QX,α(ϕ,ψ) = 〈ϕ′, ψ′〉+
n∑

i=1

αiϕ(xi)ψ(xi), D(QX,α) = H2,1(R)

is densely defined, semibounded, and closed and the unique self-adjoint operator associ-
ated with QX,α is given by LX,α (cf. [1, § II.2.1]). Therefore, it holds that

(1) 〈ϕ,LX,αϕ〉 = ‖ϕ′‖2 +
n∑

i=1

αi|ϕ(xi)|2

for ϕ ∈ D(LX,α). Using this, we can obtain the upper bound of N .

Theorem 1. It holds that N ≤ m.

Proof. Assume that N > m and let ϕ1, ϕ2, . . . , ϕm+1 be linearly independent eigenfunc-
tions of LX,α, whose associated eigenvalues are negative. Let ϕ be a linear combination
of ϕi. Then, it holds that 〈ϕ,LX,αϕ〉 < 0. In addition, we can assume that ϕ(x) = 0 on
X− = {xi; αi < 0}, since |X−| = m. This implies that 〈ϕ,LX,αϕ〉 ≥ 0 by (1). However,
this is impossible. �

To state our main theorem, we give some notations. We denote by the symbol,
[xn, yn, xn−1, yn−1, . . . , x2, y2, x1], the continued fraction with respect to {xi}n

i=1 and
{yi}n

i=2 defined by

[x1] = x1,

[xn, yn, xn−1, yn−1, . . . , x2, y2, x1] = xn −
yn

[xn−1, yn−1, . . . , x2, y2, x1]
.

If some denominators are zero, such continued fraction does not be defined. We write
[xn, yn, . . . , x2, y2, x1] � 0 if all [xi, yi, . . . , x2, y2, x1] > 0 for all i = 1, 2, . . . , n. Put

ci =
1
αi

+ di +
1

αi+1
, wi = [ci, α−2

i , ci−1, α
−2
i−1, . . . , c2, α

−2
2 , c1].

Our main theorem is the following.

Theorem 2. N = m if and only if wn−1 � 0.

We prove this theorem in the following sections; the plan of this paper is the follow-
ing. We prove the sufficiency in Section 2 (Theorem 7) and the necessity in Section 3
(Theorem 14). We give some criteria for LX,α to satisfy N = m in Section 4.

Remark 3. In the case where all intensities are negative (i.e., m = n), it holds thatN = m
if and only if (|α1|, d1, |α2|, d2, . . . , dn−1, |αn|) � 0 by [3, Theorem 2]. Here, proper
continued fraction, vn = (an, an−1, . . . , a1), is defined by v1 = a1 and vn = an − 1/vn−1,
and we write vn � 0 if vi > 0 for all i = 1, 2, . . . , n.

Remark 4. One of the referees suggested to the author that N. Goloschapova and L. Ori-
doroga [6] recently obtained necessary and sufficient conditions for LX,α to satisfy N = m
in different forms using the concept of boundary triplets and the corresponding Weyl
functions developed in [7]. In these papers Schrödinger operators with finite and infinite
number of point interactions were investigated.

Remark 5. For later use, we remark a fact on recurrence formula. Let An =
(
an bn
cn dn

)
and assume that bn 6= 0, cn 6= 0 and detAn 6= 0 for all n ∈ N. Let (x1, y1) be given and
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{(xn, yn);n ∈ N} be defined by
(
xn+1

yn+1

)
= An

(
xn

yn

)
. Then, this sequence satisfies that

xn+1 =
(
an +

bn
bn−1

dn−1

)
xn −

bn
bn−1

detAn−1 xn−1,

yn+1 =
(
dn +

cn
cn−1

an−1

)
yn −

cn
cn−1

detAn−1 yn−1,

and the converse holds.

2. Sufficiency

Let Mk(λ) be the real symmetric matrix defined by

(2) Mk(λ) =
(

2λ
αi
δi,j + e−λ|xi−xj |

)k

i,j=1

and Dk = detMk(λ). Since we already know that if Mn(λ) is positive definite for
some positive λ then N = m by [8, Lemma 1] and Theorem 1, we examine the positive
definiteness in the case where wn−1 � 0. Since Dk is a leading principal minor of Mn(λ)
with order k, Mn(λ) is positive definite if and only if all D1, D2, . . ., and Dn are positive.
To prove this, let us establish the recurrence formula for Dk. We put

pi =
2λ
αi

+ 1 + e−2λdi−1

(
2λ
αi−1

− 1
)
, qi = e−2λdi−1

(
2λ
αi−1

)2

.

Proposition 6. We have that Di = piDi−1 − qiDi−2 for i = 3, 4, . . . , n.

Proof. Let i ≥ 2, v1 = (e−λd1) ∈ R1 and vi = e−λdi(vi−1, 1) ∈ Ri. Since |xi − xj | =∑j−1
k=i dk when i < j, we have

Mi =
(
Mi−1 vt

i−1

vi−1
2λ
αi

+ 1

)
.

Put

Ei−1 = det
(
Mi−1 vt

i−1

vi−1 0

)
.

Then, we have that

Di =
∣∣∣∣Mi−1 vt

i−1

0 2λ
αi

+ 1

∣∣∣∣+ ∣∣∣∣Mi−1 vt
i−1

vi−1 0

∣∣∣∣ = (2λ
αi

+ 1
)
Di−1 + Ei−1

and

Ei = e−2λdi

∣∣∣∣∣∣
Mi−1 vt

i−1 vt
i−1

vi−1
2λ
αi

+ 1 1
vi−1 1 0

∣∣∣∣∣∣ = e−2λdi

∣∣∣∣∣∣
Mi−1 vt

i−1 vt
i−1

0 2λ
αi

1
vi−1 1 0

∣∣∣∣∣∣
= e−2λdi

(
2λ
αi

∣∣∣∣Mi−1 vt
i−1

vi−1 0

∣∣∣∣− ∣∣∣∣Mi−1 vt
i−1

vi−1 1

∣∣∣∣)
= e−2λdi

(
2λ
αi

∣∣∣∣Mi−1 vt
i−1

vi−1 0

∣∣∣∣− (∣∣∣∣Mi−1 vt
i−1

vi−1 0

∣∣∣∣+ ∣∣∣∣Mi−1 vt
i−1

0 1

∣∣∣∣))
= e−2λdi

(
2λ
αi

− 1
)
Ei−1 − e−2λdiDi−1.

Thus, we obtain that(
Di

Ei

)
= Ai−1

(
Di−1

Ei−1

)
with Ai−1 =

(
2λ
αi

+ 1 1

−e−2λdi e−2λdi

(
2λ
αi

− 1
)) .
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Since detAi−1 = e−2λdi(2λ/αi)2 6= 0, it holds that

Di+1 =
(

2λ
αi+1

+ 1 + e−2λdi

(
2λ
αi

− 1
))

Di − e−2λdi

(
2λ
αi

)2

Di−1.

This is the desired recurrence formula. �

The following is the sufficient condition for LX,α to satisfy N = m, which is stated in
Theorem 2.

Theorem 7. If wn−1 � 0, then N = m.

Proof. We assume that λ is small enough and remark that pi = 2ci−1λ+O(λ2) and qi =
4α−2

i−1λ
2 +O(λ3). Since D1 = 2λ/α1 +1 = 1+O(λ) and D2 = (2λ/α2 + 1) (2λ/α1 + 1)−

e−2λd1 = 2w1λ+O(λ2) are positive and it holds that

D2/D1 = 2w1λ+O(λ2).

Since D3/D2 = [p3, q3, D2/D1] by Proposition 6, it holds that

D3/D2 = 2[c2, α−2
2 , w1]λ+O(λ2) = 2w2λ+O(λ2).

Therefore,D3 is positive. By repeating similar calculations, we obtain that allD1, D2, . . . , Dn

are positive. Consequently, Mn(λ) is positive definite for some positive λ, and thus
N = m by [8, Lemma 1] and Theorem 1. �

3. Necessity

In this section we obtain the necessary condition for LX,α to satisfy N = m, which
is stated in Theorem 2. We assume that N = m throughout this section. We first give
some notations and recall Albeverio-Nizhnik’s algorithm.

Let j1 < j2 < · · · < jm be the indices of negative intensities, αjk
< 0, and put yk = xjk

for k = 1, 2, . . . ,m. Let ϕ be the special solution defined in [2], that is, ϕ is the solution
on the whole line of the following problem: LX,αϕ = 0 and ϕ(x) = 1 if x < x1. This ϕ
has exactly m zeros by [2, Theorem 1]. Let z1 < z2 < · · · < zm be the zeros of ϕ. We
put

ϕ′
i = ϕ′(xi − 0), ϕi = ϕ(xi − 0)

for i = 1, 2, . . . , n and ϕ′
n+1 = ϕ′(xn + 0). Since ϕ is linear on [xi−1, xi], it holds that

ϕ′
i = ϕ′(xi−1 + 0) = (ϕi − ϕi−1)/di−1.

These ϕ′
i and ϕi satisfy the following recurrence formula by the conjugation condition:

ϕ′
1 = 0, ϕ′

i+1 = ϕ′
i + αiϕi,

ϕ1 = 1, ϕi+1 = ϕi + diϕ
′
i+1 = diϕ

′
i + (1 + αidi)ϕi.

(3)

This implies the recurrence formulas for each ϕ′
i and ϕi:

ϕ′
i+1 =

(
1 + αidi−1 +

αi

αi−1

)
ϕ′

i −
αi

αi−1
ϕ′

i−1,(4)

ϕi+1 =
(

1 + αidi +
di

di−1

)
ϕi −

di

di−1
ϕi−1.(5)

Formula (5) already appears in [2].
Recall Albeverio-Nizhnik’s algorithm.

Theorem 8 (Theorem 4 in [2]). N equals the signature (the number of sign changes) of
the sequence, (ϕ1, ϕ2, . . . , ϕn, (1 + αndn−1)ϕn − ϕn−1).
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In the following, we use the sequence, (ϕ1, ϕ2, . . . , ϕn, ϕ
′
n+1), instead of the original

one, since (1 + αndn−1)ϕn − ϕn−1 = dn−1ϕ
′
n+1.

We summarize some simple and useful facts on ϕ.

Proposition 9. The following hold:
(i) The function ϕ is continuous and piecewise linear on R. The derivative ϕ′ and

ϕ can not be simultaneously zero.
(ii) If ϕi = 0 then ϕi−1ϕi+1 < 0. If ϕ′

i = 0 then ϕi 6= 0.
(iii) Assume that αi > 0. If ϕ′

i ≥ 0 and ϕi > 0, then ϕ′
i+1 > ϕ′

i ≥ 0 and ϕi+1 >
ϕi > 0. Similarly, If ϕ′

i ≤ 0 and ϕi < 0, then ϕ′
i+1 < ϕ′

i ≤ 0 and ϕi+1 < ϕi < 0.
(iv) ϕ′(zi + ε) and ϕ(zi + ε) have same sign for ε small enough. Thus, if xj−1 <

zi < xj, then ϕ′
j and ϕj have same sign.

(v) If ϕ′
i = 0 with xi < zj, there is at least one yk in I = [xi, zj).

(vi) If ϕ′
i = 0 with zj < xi, there is at least one yk in I = (zj , xi).

Proof. We can find (i) in [2]. Using (5), we can see (ii). (iii) and (iv) can be proved by
straight forward calculations.

Consider (v) and assume that no such yk exists. Since ϕi 6= 0, |ϕ(x)| is monotonously
increasing on I, and thus ϕ(zj) 6= 0. This contradicts to the definition of zj .

Consider (vi) and assume that no such yk exists. Since ϕ′(zj + ε) and ϕ(zj + ε)
have same sign, |ϕ′(x)| is monotonously non-decreasing on I, and thus ϕ′

i 6= 0. This
contradicts to the assumption. �

We divide the proof of the necessity of Theorem 2 into a sequence of propositions and
a lemma. We first prove that the points of interaction with negative intensities exactly
interlace the zeros of ϕ.

Proposition 10. If N = m, then we have that

x1 ≤ y1 < z1 < y2 < z2 < · · · < zm−1 < ym < zm.

Proof. Since ϕ(x) > 0 for x < z1, it holds that ϕ′(z1−0) < 0. Since ϕ′(x) ≥ 0 for x ≤ y1,
we have that x1 ≤ y1 < z1. We next prove that at least one yk exists in (zj−1, zj); in
both cases where xi−1 = zj−1 and xi−1 < zj−1 < xi, we have that ϕi 6= 0, ϕ′

i and ϕi have
same sign and xi < zj . Therefore, if no yk exists in I = [xi, zj), |ϕ(x)| is monotonously
increasing on I, and thus ϕ(zj) 6= 0. Hence, at least one yk exists in I. Consequently,
each m interval of x1 < z1 < z2 < · · · < zm contains at least one yk. Since the number
of yk is equal to m, each interval contains exactly one yk. �

This interlacing property implies that ϕ′
i 6= 0.

Proposition 11. If N = m, then ϕ′
i 6= 0 for i = 2, 3, . . . , n.

Proof. The proof is by contradiction. Assume that ϕ′
i = 0. Since no yk > zm exists and

ϕ′(zm + ε) and ϕ(zm + ε) have same sign, we have that ϕ′(x) 6= 0 for all x ≥ zm. Thus,
it holds that xi < zm. If zj < xi < zj+1, then at least two yk and yk′ are in (zj , zj+1)
by Proposition 9. Since this contradicts to Proposition 10, it holds that x1 < xi < z1.
However, this is impossible, too; since ϕ′

1 = 0 and ϕ1 = 1, if no yk exists in (x1, xi), then
ϕ′

i > 0. Hence, at least one yk exists in (x1, xi). On the other hand, there is at least
one yk′ in [xi, z1) by Proposition 9. This contradicts to Proposition 10. Consequently,
we have that ϕ′

i 6= 0. �

Using the fact that ϕ′
i 6= 0, we establish the relation between wi and ϕ′

i.

Proposition 12. If N = m, then ϕ′
i+1/αiϕ

′
i = wi−1 for i = 2, 3, . . . , n.
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Proof. We use induction on i. Let i = 2. Since ϕ′
2 = α1 and ϕ′

3 = α1 +α2(1 +α1d1), we
obtain that

ϕ′
3

α2ϕ′
2

=
α1 + α2(1 + α1d1)

α2α1
=

1
α2

+
1
α1

+ d1 = c1 = w1.

Let i ≥ 3 and assume that ϕ′
i/αi−1ϕ

′
i−1 = wi−2. Since it holds that

ϕ′
i+1 = ci−1(αiϕ

′
i)−

αi

α2
i−1

(αi−1ϕ
′
i−1)

by (4), we obtain that

ϕ′
i+1

αiϕ′
i

= ci−1 −
α−2

i−1

ϕ′
i/αi−1ϕ′

i−1

= [ci−1, α
−2
i−1, wi−2] = wi−1.

This completes the induction. �

To state the following key lemma, we give some notations. Let X ′ = X \ {xn},
α′ = α \ {αn}, N ′ = N(LX′,α′) and m′ = |{αi < 0 ; 1 ≤ i ≤ n− 1}|. Then it holds that
that N ′ ≤ m′.

Lemma 13. If N = m, then N ′ = m′ and wn−1 > 0.

Proof. We denote by sig(k) the signature of the sequence, (ϕ1, . . . , ϕk−1, ϕ
′
k), in this

proof. We have that N = sig(n+ 1) and N ′ = sig(n) by Albeverio-Nizhnik’s algorithm.
(i) Consider the case where αn > 0. In this case, m′ = m. Assume that ϕn−1 ≥ 0. In

Table 1, we list up all combinations of signs of ϕn−1, ϕn, ϕ′
n, and ϕ′

n+1. We remark that
ϕn−1 and ϕn can not be simultaneously zero. The combinations indicated by the marks
(*n) are impossible:

(*1) If sig(n)− sig(n+ 1) = 1, then N ′ > m′.
(*2) ϕ′

n+1 = ϕ′
n + αnϕn > 0, but negative.

(*3) ϕ′
n+1 = ϕ′

n + αnϕn < 0, but positive.
(*4) ϕ′

n = (ϕn − ϕn−1)/dn−1 > 0, but negative.
(*5) ϕ′

n = (ϕn − ϕn−1)/dn−1 < 0, but positive.

Since it holds that sig(n) = sig(n+ 1) and ϕ′
n+1/ϕ

′
n > 0 for the other combinations, we

have that N ′ = m′ and wn−1 > 0.
By exchanging the signs, + and −, each other in Table 1, we can treat the case where

ϕn−1 < 0 in the same way. Under this exchange, all of the marks is still true with trivial
modifications on above (*n). Consequently, we obtain that N ′ = m′ and wn−1 > 0.

(ii) Consider the case where αn < 0. In this case, m′ = m− 1. In Table 2, we list up
all combinations of signs of ϕn−1 ≥ 0, ϕn, ϕ′

n, and ϕ′
n+1:

(*6) If sig(n)− sig(n+ 1) ≥ 0, then N ′ > m′.

In a similar way as in the proof of (i), we can prove that N ′ = m′ and wn−1 > 0.
Consequently, we have obtained this lemma. �

The following is the necessary condition for LX,α to satisfy N = m, which is stated in
Theorem 2.

Theorem 14. If N = m, then wn−1 � 0.

Proof. We have that N ′ = m′ and wn−1 > 0 by Lemma 13. Therefore, we can inductively
obtain that wi > 0 for all i = 1, 2, . . . , n− 1. Thus, we derive that wn−1 � 0. �
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ϕn−1 ϕn ϕ′
n ϕ′

n+1 sig(n)− sig(n+ 1) comment
+ + + + 0
+ + + − (*2)
+ + − + 1 (*1)
+ + − − 0
+ 0,− + ± (*5)
+ 0,− − + (*3)
+ 0,− − − 0
0 + + + 0
0 + + − (*2)
0 + − ± (*4)
0 − + ± (*5)
0 − − + (*3)
0 − − − 0

Table 1. αn > 0

ϕn−1 ϕn ϕ′
n ϕ′

n+1 sig(n)− sig(n+ 1) comment
+ + + + 0 (*6)
+ + + − −1
+ + − + 1 (*6), (*3)
+ + − − 0 (*6)
+ 0 + ± (*5)
+ 0 − + (*3)
+ 0 − − 0 (*6)

+, 0 − + ± (*5)
+, 0 − − + −1
+, 0 − − − 0 (*6)
0 + + + 0 (*6)
0 + + − −1
0 + − ± (*4)

Table 2. αn < 0

4. Discussions

We say that the point interactions Vk(x) =
∑k

i=1 αiδ(x − xi) are internally balanced
if ϕ(xk) = ϕ(xk+1), that is, ϕ′(xk + 0) = ϕ′

k+1 = 0 (cf. [2]). In this case, we have that

(6) N = N
(
− d2

dx2
+

k∑
i=1

αiδ(x− xi)
)

+N
(
− d2

dx2
+

n∑
i=k+1

αiδ(x− xi)
)

as in [2, Remark 5]. If N = m, then Vk(x) are not internally balanced by Proposition 11,
however we can easily see that (6) holds. Using Lemma 13 repeatedly, we can obtain

N =
n∑

k=1

Nk with Nk = N
(
− d2

dx2
+ αkδ(x− xk)

)
.

This is trivial, since Nk = 1 as αk < 0 and Nk = 0 as αk > 0.

In the rest of this paper, we give some criteria for LX,α to satisfy N = m.
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Example 15. Let n = 2. Then, N = m if and only if w1 = c1 = 1/α1 + d1 + 1/α2 > 0.
In the case where m = n = 2, this is Criterion 1 in [3].

Example 16. Let n = 3. Then, N = m if and only if

c1 =
1
α1

+ d1 +
1
α2

> 0, c2 =
1
α2

+ d2 +
1
α3

> 0 and c1c2 >
1
α2

2

.

In the case where m = n = 3, this is equivalent to Criterion 2 in [3].

Corollary 17. (i) If N = m, then all c1, c2, . . . , cn−1 are positive. (ii) If di > 2(1/|αi|+
1/|αi+1|) for all i = 1, 2, . . . , n− 1, then N = m.

Proof. If N = m, then it holds that wn−1 � 0. This implies that c1 = w1 > 0 and
ci = wi + 1/α2

i−1wi−1 > 0. Thus, we obtain (i). We prove (ii); the assumption implies
that

ci = di + 1/αi + 1/αi+1 ≥ di − (1/|αi|+ 1/|αi+1|) > 1/|αi|+ 1/|αi+1|.
In particular, w1 = c1 > 1/|α2|. If wi−1 > 1/|αi|, then it holds that

wi = ci − 1/|αi|2wi−1 > ci − 1/|αi| > 1/|αi+1|.
Thus, we obtain that wn−1 � 0 by induction. �

In the case where m = n, Corollary 17 is Criterion 4 in [3]. We remark that the
coefficient, 2, in (ii) is best possible; consider the case where n = m = 3. Fix ε with
0 < ε < 2 and let α1 = α3 = −1, α2 = −1/t and d1 = d2 = (1 + ε/2)(t+ 1) > 0. Then,
it holds that di > ε(1/|αi| + 1/|αi+1|) = ε(t + 1) for both i = 1 and 2. However, if t is
large enough, it holds that c1c2 = (ε/2)2(t+ 1)2 < t2 = α−2

2 . Therefore, we obtain that
N < m by Example 16.

We need the following fact from the theory of continued fractions to derive Corol-
lary 19.

Proposition 18. Assume that all yi are positive. The following three conditions are
equivalent.

(i) It holds that [xn, yn, . . . , x2, y2, x1] � 0.
(ii) It holds that [x1, y2, x2, . . . , yn, xn] � 0.
(iii) It holds that [xk−1, yk−1, . . . , x2, y2, x1] � 0,
[xk+1, yk+2, xk+2, . . . , yn, xn] � 0, and

xk >
yk

[xk−1, yk−1, . . . , x2, y2, x1]
+

yk+1

[xk+1, yk+2, xk+2, . . . , yn, xn]
.

Proof. In this proof, we denote by [xi : x1] = [xi, yi, . . . , x2, y2, x1] and by [xi : xn] =
[xi, yi+1, xi+1, . . . , yn, xn] for brevity.

We prove that (i) implies (ii). Since xn > yn/[xn−1 : x1] > 0, we have that

[xn−1 : xn] = xn−1 −
yn

xn
> xn−1 − [xn−1 : x1] =

yn−1

[xn−2 : x1]
> 0.

Using this, we have that

[xn−2 : xn] = xn−2 −
yn−1

[xn−1 : xn]
> xn−2 − [xn−2 : x1] =

yn−2

[xn−3 : x1]
> 0.

By repeating this procedure, we obtain (ii). We can prove the converse in the same way.
We prove that (iii) implies (i) and (ii). By the assumption, we have that

[xk : x1] = xk −
yk

[xk−1 : x1]
>

yk+1

[xk+1 : xn]
> 0.

Using this, we have that

[xk+1 : x1] = xk+1 −
yk+1

[xk : x1]
> xk+1 − [xk+1 : xn] =

yk+2

[xk+2 : xn]
> 0.
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If k ≥ n/2, then we obtain (i) by repeating this procedure. If k ≤ n/2, then we can
obtain (ii) in the same way.

We prove that (i) implies (iii) by contradiction. Assume that (iii) does not hold. Then
we have that

0 < [xk : x1] = xk −
yk

[xk−1 : x1]
≤ yk+1

[xk+1 : xn]
.

Using this, we have that

0 < [xk+1 : x1] = xk+1 −
yk+1

[xk : x1]
≤ xk+1 − [xk+1 : xn] =

yk+2

[xk+2 : xn]
However, by repeating this procedure, we have that

0 < [xn : x1] ≤ xn − [xn] = 0.

This is impossible, thus (iii) holds. �

Corollary 19. Let the points of interactions, X = {xi}n
i=1 of LX,α be partitioned into

two groups, X1 = {xi}k
i=1 and X2 = {xi}n

i=k+1. Since xi < xi+1, all points of X2

lie on the right of all points of X1. Assume that the Schrödinger operators LX1,α =
− d2

dx2 +
∑k

i=1 αiδ(x− xi) and LX2,α = − d2

dx2 +
∑n

i=k+1 αiδ(x− xi) satisfy that

N(LX1,α) = |{αi < 0 ; xi ∈ X1}| = m1,

N(LX2,α) = |{αi < 0 ; xi ∈ X2}| = m2.

For N(LX,α) = m = m1 +m2, it is necessary and sufficient that it holds that

ck >
α−2

k

[ck−1, α
−2
k−1, ck−2, . . . , α

−2
2 , c1]

+
α−2

k+1

[ck+1, α
−2
k+2, ck+2, . . . , α

−2
n−1, cn−1]

.

Corollary 19 immediately follows from Theorem 2 and Proposition 18 and is an ex-
tension of Criterion 5 in [3].
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