ON THE NUMBER OF NEGATIVE EIGENVALUES OF A SCHRÖDINGER OPERATOR WITH δ INTERACTIONS

OSAMU OGURISU

Abstract

We give necessary and sufficient conditions for a one-dimensional Schrödinger operator to have the number of negative eigenvalues equal to the number of negative intensities in the case of δ interactions.

1. Introduction and Main Theorem

In [3], S. Albeverio and L. Nizhnik gave necessary and sufficient conditions for a one-dimensional Schrödinger operator $L_{X, \alpha}$ with point δ-interactions to satisfy that the number of negative eigenvalues, $N=N\left(L_{X, \alpha}\right)$, of $L_{X, \alpha}$ equals the number of point interactions, n, in the case where all the intensities are negative. Moreover, in [2], they gave an elegant 'algorithm' for determining N. This yields the result obtained in [3] and gives necessary and sufficient conditions for $L_{X, \alpha}$ not to have negative eigenvalues. In [5] N. I. Goloshchapova and L. L. Oridoroga proved that N is equal to the number of negative eigenvalues of a kind of finite Jacobi matrix using the method developed in [4]. This gives another characterization of Albeverio-Nizhnik's algorithm. In the previous paper [8] the author gave a sufficient condition for $L_{X, \alpha}$ to have at least m negative eigenvalues; we denote by m the number of negative intensities.

In this paper we prove that $N \leq m$ and obtain necessary and sufficient conditions for $L_{X, \alpha}$ to satisfy $N=m$ and some extensions of Criteria in [3]. We use AlbeverioNizhnik's algorithm to obtain necessary condition and do [8, Lemma 1] to obtain sufficient condition. See Remark 4.

We begin by recalling the definition of $L_{X, \alpha}$ in [2]; a Schrödinger operator $L_{X, \alpha}$ with point δ-interactions on a finite set $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ of points, which are called 'points of interaction', and intensities $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ is defined by the differential expression $-\left(d^{2} / d x^{2}\right)$ on a function $\psi(x)$ that belongs to the Sobolev space $W_{2}^{2}\left(\mathbb{R}^{1} \backslash X\right)$ and satisfy, in the points of the set X, the following conjugation conditions:

$$
\psi\left(x_{i}+0\right)=\psi\left(x_{i}-0\right), \quad \psi^{\prime}\left(x_{i}+0\right)-\psi^{\prime}\left(x_{i}-0\right)=\alpha_{i} \psi\left(x_{i}\right) .
$$

The operator $L_{X, \alpha}$ has the following representation:

$$
L_{X, \alpha} \psi(x)=\left[-\frac{d^{2}}{d x^{2}}+\sum_{i=1}^{n} \alpha_{i} \delta\left(x-x_{i}\right)\right] \psi(x),
$$

where δ is the Dirac's δ-function. Without loss of generality we can assume that $\alpha_{i} \neq 0$ and $x_{1}<x_{2}<\cdots<x_{n}$. Put $d_{i}=x_{i+1}-x_{i}$ and $m=\left|\left\{\alpha_{i}<0 ; 1 \leq i \leq n\right\}\right|$. It is well known that the operators $L_{X, \alpha}$ are self-adjoint on $L^{2}\left(\mathbb{R}^{1}\right)$. Their spectra contain the positive semiaxis, where they are absolutely continuous, and no more than n simple negative eigenvalues [1].

[^0]We first prove that $L_{X, \alpha}$ has at most m negative eigenvalues. $L_{X, \alpha}$ can be obtained from the theory of quadratic forms: the form

$$
Q_{X, \alpha}(\varphi, \psi)=\left\langle\varphi^{\prime}, \psi^{\prime}\right\rangle+\sum_{i=1}^{n} \alpha_{i} \overline{\varphi\left(x_{i}\right)} \psi\left(x_{i}\right), \quad \mathcal{D}\left(Q_{X, \alpha}\right)=H^{2,1}(\mathbb{R})
$$

is densely defined, semibounded, and closed and the unique self-adjoint operator associated with $Q_{X, \alpha}$ is given by $L_{X, \alpha}(c f .[1, \S I I .2 .1])$. Therefore, it holds that

$$
\begin{equation*}
\left\langle\varphi, L_{X, \alpha} \varphi\right\rangle=\left\|\varphi^{\prime}\right\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left|\varphi\left(x_{i}\right)\right|^{2} \tag{1}
\end{equation*}
$$

for $\varphi \in D\left(L_{X, \alpha}\right)$. Using this, we can obtain the upper bound of N.
Theorem 1. It holds that $N \leq m$.
Proof. Assume that $N>m$ and let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m+1}$ be linearly independent eigenfunctions of $L_{X, \alpha}$, whose associated eigenvalues are negative. Let φ be a linear combination of φ_{i}. Then, it holds that $\left\langle\varphi, L_{X, \alpha} \varphi\right\rangle<0$. In addition, we can assume that $\varphi(x)=0$ on $X_{-}=\left\{x_{i} ; \alpha_{i}<0\right\}$, since $\left|X_{-}\right|=m$. This implies that $\left\langle\varphi, L_{X, \alpha} \varphi\right\rangle \geq 0$ by (1). However, this is impossible.

To state our main theorem, we give some notations. We denote by the symbol, $\left[x_{n}, y_{n}, x_{n-1}, y_{n-1}, \ldots, x_{2}, y_{2}, x_{1}\right]$, the continued fraction with respect to $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=2}^{n}$ defined by

$$
\begin{aligned}
{\left[x_{1}\right] } & =x_{1} \\
{\left[x_{n}, y_{n}, x_{n-1}, y_{n-1}, \ldots, x_{2}, y_{2}, x_{1}\right] } & =x_{n}-\frac{y_{n}}{\left[x_{n-1}, y_{n-1}, \ldots, x_{2}, y_{2}, x_{1}\right]} .
\end{aligned}
$$

If some denominators are zero, such continued fraction does not be defined. We write $\left[x_{n}, y_{n}, \ldots, x_{2}, y_{2}, x_{1}\right] \gg 0$ if all $\left[x_{i}, y_{i}, \ldots, x_{2}, y_{2}, x_{1}\right]>0$ for all $i=1,2, \ldots, n$. Put

$$
c_{i}=\frac{1}{\alpha_{i}}+d_{i}+\frac{1}{\alpha_{i+1}}, \quad w_{i}=\left[c_{i}, \alpha_{i}^{-2}, c_{i-1}, \alpha_{i-1}^{-2}, \ldots, c_{2}, \alpha_{2}^{-2}, c_{1}\right]
$$

Our main theorem is the following.
Theorem 2. $N=m$ if and only if $w_{n-1} \gg 0$.
We prove this theorem in the following sections; the plan of this paper is the following. We prove the sufficiency in Section 2 (Theorem 7) and the necessity in Section 3 (Theorem 14). We give some criteria for $L_{X, \alpha}$ to satisfy $N=m$ in Section 4.

Remark 3. In the case where all intensities are negative (i.e., $m=n$), it holds that $N=m$ if and only if $\left(\left|\alpha_{1}\right|, d_{1},\left|\alpha_{2}\right|, d_{2}, \ldots, d_{n-1},\left|\alpha_{n}\right|\right) \gg 0$ by [3, Theorem 2]. Here, proper continued fraction, $v_{n}=\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)$, is defined by $v_{1}=a_{1}$ and $v_{n}=a_{n}-1 / v_{n-1}$, and we write $v_{n} \gg 0$ if $v_{i}>0$ for all $i=1,2, \ldots, n$.

Remark 4. One of the referees suggested to the author that N. Goloschapova and L. Oridoroga [6] recently obtained necessary and sufficient conditions for $L_{X, \alpha}$ to satisfy $N=m$ in different forms using the concept of boundary triplets and the corresponding Weyl functions developed in [7]. In these papers Schrödinger operators with finite and infinite number of point interactions were investigated.

Remark 5. For later use, we remark a fact on recurrence formula. Let $A_{n}=\left(\begin{array}{ll}a_{n} & b_{n} \\ c_{n} & d_{n}\end{array}\right)$ and assume that $b_{n} \neq 0, c_{n} \neq 0$ and $\operatorname{det} A_{n} \neq 0$ for all $n \in \mathbb{N}$. Let $\left(x_{1}, y_{1}\right)$ be given and
$\left\{\left(x_{n}, y_{n}\right) ; n \in \mathbb{N}\right\}$ be defined by $\binom{x_{n+1}}{y_{n+1}}=A_{n}\binom{x_{n}}{y_{n}}$. Then, this sequence satisfies that

$$
\begin{aligned}
& x_{n+1}=\left(a_{n}+\frac{b_{n}}{b_{n-1}} d_{n-1}\right) x_{n}-\frac{b_{n}}{b_{n-1}} \operatorname{det} A_{n-1} x_{n-1} \\
& y_{n+1}=\left(d_{n}+\frac{c_{n}}{c_{n-1}} a_{n-1}\right) y_{n}-\frac{c_{n}}{c_{n-1}} \operatorname{det} A_{n-1} y_{n-1}
\end{aligned}
$$

and the converse holds.

2. SUfFiciency

Let $M_{k}(\lambda)$ be the real symmetric matrix defined by

$$
\begin{equation*}
M_{k}(\lambda)=\left(\frac{2 \lambda}{\alpha_{i}} \delta_{i, j}+e^{-\lambda\left|x_{i}-x_{j}\right|}\right)_{i, j=1}^{k} \tag{2}
\end{equation*}
$$

and $D_{k}=\operatorname{det} M_{k}(\lambda)$. Since we already know that if $M_{n}(\lambda)$ is positive definite for some positive λ then $N=m$ by [8, Lemma 1] and Theorem 1, we examine the positive definiteness in the case where $w_{n-1} \gg 0$. Since D_{k} is a leading principal minor of $M_{n}(\lambda)$ with order $k, M_{n}(\lambda)$ is positive definite if and only if all D_{1}, D_{2}, \ldots, and D_{n} are positive. To prove this, let us establish the recurrence formula for D_{k}. We put

$$
p_{i}=\frac{2 \lambda}{\alpha_{i}}+1+e^{-2 \lambda d_{i-1}}\left(\frac{2 \lambda}{\alpha_{i-1}}-1\right), \quad q_{i}=e^{-2 \lambda d_{i-1}}\left(\frac{2 \lambda}{\alpha_{i-1}}\right)^{2} .
$$

Proposition 6. We have that $D_{i}=p_{i} D_{i-1}-q_{i} D_{i-2}$ for $i=3,4, \ldots, n$.
Proof. Let $i \geq 2, v_{1}=\left(e^{-\lambda d_{1}}\right) \in \mathbb{R}^{1}$ and $v_{i}=e^{-\lambda d_{i}}\left(v_{i-1}, 1\right) \in \mathbb{R}^{i}$. Since $\left|x_{i}-x_{j}\right|=$ $\sum_{k=i}^{j-1} d_{k}$ when $i<j$, we have

$$
M_{i}=\left(\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & \frac{2 \lambda}{\alpha_{i}}+1
\end{array}\right)
$$

Put

$$
E_{i-1}=\operatorname{det}\left(\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 0
\end{array}\right)
$$

Then, we have that

$$
D_{i}=\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
0 & \frac{2 \lambda}{\alpha_{i}}+1
\end{array}\right|+\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 0
\end{array}\right|=\left(\frac{2 \lambda}{\alpha_{i}}+1\right) D_{i-1}+E_{i-1}
$$

and

$$
\begin{aligned}
E_{i} & =e^{-2 \lambda d_{i}}\left|\begin{array}{ccc}
M_{i-1} & v_{i-1}^{t} & v_{i-1}^{t} \\
v_{i-1} & \frac{2 \lambda}{\alpha_{i}}+1 & 1 \\
v_{i-1} & 1 & 0
\end{array}\right|=e^{-2 \lambda d_{i}}\left|\begin{array}{ccc}
M_{i-1} & v_{i-1}^{t} & v_{i-1}^{t} \\
0 & \frac{2 \lambda}{\alpha_{i}} & 1 \\
v_{i-1} & 1 & 0
\end{array}\right| \\
& =e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 0
\end{array}\right|-\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 1
\end{array}\right|\right) \\
& =e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 0
\end{array}\right|-\left(\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
v_{i-1} & 0
\end{array}\right|+\left|\begin{array}{cc}
M_{i-1} & v_{i-1}^{t} \\
0 & 1
\end{array}\right|\right)\right) \\
& =e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}-1\right) E_{i-1}-e^{-2 \lambda d_{i}} D_{i-1} .
\end{aligned}
$$

Thus, we obtain that

$$
\binom{D_{i}}{E_{i}}=A_{i-1}\binom{D_{i-1}}{E_{i-1}} \quad \text { with } \quad A_{i-1}=\left(\begin{array}{cc}
\frac{2 \lambda}{\alpha_{i}}+1 & 1 \\
-e^{-2 \lambda d_{i}} & e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}-1\right)
\end{array}\right)
$$

Since $\operatorname{det} A_{i-1}=e^{-2 \lambda d_{i}}\left(2 \lambda / \alpha_{i}\right)^{2} \neq 0$, it holds that

$$
D_{i+1}=\left(\frac{2 \lambda}{\alpha_{i+1}}+1+e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}-1\right)\right) D_{i}-e^{-2 \lambda d_{i}}\left(\frac{2 \lambda}{\alpha_{i}}\right)^{2} D_{i-1}
$$

This is the desired recurrence formula.
The following is the sufficient condition for $L_{X, \alpha}$ to satisfy $N=m$, which is stated in Theorem 2.

Theorem 7. If $w_{n-1} \gg 0$, then $N=m$.
Proof. We assume that λ is small enough and remark that $p_{i}=2 c_{i-1} \lambda+O\left(\lambda^{2}\right)$ and $q_{i}=$ $4 \alpha_{i-1}^{-2} \lambda^{2}+O\left(\lambda^{3}\right)$. Since $D_{1}=2 \lambda / \alpha_{1}+1=1+O(\lambda)$ and $D_{2}=\left(2 \lambda / \alpha_{2}+1\right)\left(2 \lambda / \alpha_{1}+1\right)-$ $e^{-2 \lambda d_{1}}=2 w_{1} \lambda+O\left(\lambda^{2}\right)$ are positive and it holds that

$$
D_{2} / D_{1}=2 w_{1} \lambda+O\left(\lambda^{2}\right)
$$

Since $D_{3} / D_{2}=\left[p_{3}, q_{3}, D_{2} / D_{1}\right]$ by Proposition 6 , it holds that

$$
D_{3} / D_{2}=2\left[c_{2}, \alpha_{2}^{-2}, w_{1}\right] \lambda+O\left(\lambda^{2}\right)=2 w_{2} \lambda+O\left(\lambda^{2}\right)
$$

Therefore, D_{3} is positive. By repeating similar calculations, we obtain that all $D_{1}, D_{2}, \ldots, D_{n}$ are positive. Consequently, $M_{n}(\lambda)$ is positive definite for some positive λ, and thus $N=m$ by $[8$, Lemma 1] and Theorem 1.

3. Necessity

In this section we obtain the necessary condition for $L_{X, \alpha}$ to satisfy $N=m$, which is stated in Theorem 2. We assume that $N=m$ throughout this section. We first give some notations and recall Albeverio-Nizhnik's algorithm.

Let $j_{1}<j_{2}<\cdots<j_{m}$ be the indices of negative intensities, $\alpha_{j_{k}}<0$, and put $y_{k}=x_{j_{k}}$ for $k=1,2, \ldots, m$. Let φ be the special solution defined in [2], that is, φ is the solution on the whole line of the following problem: $L_{X, \alpha} \varphi=0$ and $\varphi(x)=1$ if $x<x_{1}$. This φ has exactly m zeros by [2, Theorem 1]. Let $z_{1}<z_{2}<\cdots<z_{m}$ be the zeros of φ. We put

$$
\varphi_{i}^{\prime}=\varphi^{\prime}\left(x_{i}-0\right), \quad \varphi_{i}=\varphi\left(x_{i}-0\right)
$$

for $i=1,2, \ldots, n$ and $\varphi_{n+1}^{\prime}=\varphi^{\prime}\left(x_{n}+0\right)$. Since φ is linear on $\left[x_{i-1}, x_{i}\right]$, it holds that

$$
\varphi_{i}^{\prime}=\varphi^{\prime}\left(x_{i-1}+0\right)=\left(\varphi_{i}-\varphi_{i-1}\right) / d_{i-1}
$$

These φ_{i}^{\prime} and φ_{i} satisfy the following recurrence formula by the conjugation condition:

$$
\begin{array}{ll}
\varphi_{1}^{\prime}=0, & \varphi_{i+1}^{\prime}=\varphi_{i}^{\prime}+\alpha_{i} \varphi_{i} \\
\varphi_{1}=1, & \varphi_{i+1}=\varphi_{i}+d_{i} \varphi_{i+1}^{\prime}=d_{i} \varphi_{i}^{\prime}+\left(1+\alpha_{i} d_{i}\right) \varphi_{i} \tag{3}
\end{array}
$$

This implies the recurrence formulas for each φ_{i}^{\prime} and φ_{i} :

$$
\begin{align*}
\varphi_{i+1}^{\prime} & =\left(1+\alpha_{i} d_{i-1}+\frac{\alpha_{i}}{\alpha_{i-1}}\right) \varphi_{i}^{\prime}-\frac{\alpha_{i}}{\alpha_{i-1}} \varphi_{i-1}^{\prime} \tag{4}\\
\varphi_{i+1} & =\left(1+\alpha_{i} d_{i}+\frac{d_{i}}{d_{i-1}}\right) \varphi_{i}-\frac{d_{i}}{d_{i-1}} \varphi_{i-1} \tag{5}
\end{align*}
$$

Formula (5) already appears in [2].
Recall Albeverio-Nizhnik's algorithm.
Theorem 8 (Theorem 4 in [2]). N equals the signature (the number of sign changes) of the sequence, $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n},\left(1+\alpha_{n} d_{n-1}\right) \varphi_{n}-\varphi_{n-1}\right)$.

In the following, we use the sequence, $\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}, \varphi_{n+1}^{\prime}\right)$, instead of the original one, since $\left(1+\alpha_{n} d_{n-1}\right) \varphi_{n}-\varphi_{n-1}=d_{n-1} \varphi_{n+1}^{\prime}$.

We summarize some simple and useful facts on φ.
Proposition 9. The following hold:
(i) The function φ is continuous and piecewise linear on \mathbb{R}. The derivative φ^{\prime} and φ can not be simultaneously zero.
(ii) If $\varphi_{i}=0$ then $\varphi_{i-1} \varphi_{i+1}<0$. If $\varphi_{i}^{\prime}=0$ then $\varphi_{i} \neq 0$.
(iii) Assume that $\alpha_{i}>0$. If $\varphi_{i}^{\prime} \geq 0$ and $\varphi_{i}>0$, then $\varphi_{i+1}^{\prime}>\varphi_{i}^{\prime} \geq 0$ and $\varphi_{i+1}>$ $\varphi_{i}>0$. Similarly, If $\varphi_{i}^{\prime} \leq 0$ and $\varphi_{i}<0$, then $\varphi_{i+1}^{\prime}<\varphi_{i}^{\prime} \leq 0$ and $\varphi_{i+1}<\varphi_{i}<0$.
(iv) $\varphi^{\prime}\left(z_{i}+\varepsilon\right)$ and $\varphi\left(z_{i}+\varepsilon\right)$ have same sign for ε small enough. Thus, if $x_{j-1}<$ $z_{i}<x_{j}$, then φ_{j}^{\prime} and φ_{j} have same sign.
(v) If $\varphi_{i}^{\prime}=0$ with $x_{i}<z_{j}$, there is at least one y_{k} in $I=\left[x_{i}, z_{j}\right)$.
(vi) If $\varphi_{i}^{\prime}=0$ with $z_{j}<x_{i}$, there is at least one y_{k} in $I=\left(z_{j}, x_{i}\right)$.

Proof. We can find (i) in [2]. Using (5), we can see (ii). (iii) and (iv) can be proved by straight forward calculations.

Consider (v) and assume that no such y_{k} exists. Since $\varphi_{i} \neq 0,|\varphi(x)|$ is monotonously increasing on I, and thus $\varphi\left(z_{j}\right) \neq 0$. This contradicts to the definition of z_{j}.

Consider (vi) and assume that no such y_{k} exists. Since $\varphi^{\prime}\left(z_{j}+\varepsilon\right)$ and $\varphi\left(z_{j}+\varepsilon\right)$ have same sign, $\left|\varphi^{\prime}(x)\right|$ is monotonously non-decreasing on I, and thus $\varphi_{i}^{\prime} \neq 0$. This contradicts to the assumption.

We divide the proof of the necessity of Theorem 2 into a sequence of propositions and a lemma. We first prove that the points of interaction with negative intensities exactly interlace the zeros of φ.
Proposition 10. If $N=m$, then we have that

$$
x_{1} \leq y_{1}<z_{1}<y_{2}<z_{2}<\cdots<z_{m-1}<y_{m}<z_{m} .
$$

Proof. Since $\varphi(x)>0$ for $x<z_{1}$, it holds that $\varphi^{\prime}\left(z_{1}-0\right)<0$. Since $\varphi^{\prime}(x) \geq 0$ for $x \leq y_{1}$, we have that $x_{1} \leq y_{1}<z_{1}$. We next prove that at least one y_{k} exists in $\left(z_{j-1}, z_{j}\right)$; in both cases where $x_{i-1}=z_{j-1}$ and $x_{i-1}<z_{j-1}<x_{i}$, we have that $\varphi_{i} \neq 0, \varphi_{i}^{\prime}$ and φ_{i} have same sign and $x_{i}<z_{j}$. Therefore, if no y_{k} exists in $I=\left[x_{i}, z_{j}\right),|\varphi(x)|$ is monotonously increasing on I, and thus $\varphi\left(z_{j}\right) \neq 0$. Hence, at least one y_{k} exists in I. Consequently, each m interval of $x_{1}<z_{1}<z_{2}<\cdots<z_{m}$ contains at least one y_{k}. Since the number of y_{k} is equal to m, each interval contains exactly one y_{k}.

This interlacing property implies that $\varphi_{i}^{\prime} \neq 0$.
Proposition 11. If $N=m$, then $\varphi_{i}^{\prime} \neq 0$ for $i=2,3, \ldots, n$.
Proof. The proof is by contradiction. Assume that $\varphi_{i}^{\prime}=0$. Since no $y_{k}>z_{m}$ exists and $\varphi^{\prime}\left(z_{m}+\varepsilon\right)$ and $\varphi\left(z_{m}+\varepsilon\right)$ have same sign, we have that $\varphi^{\prime}(x) \neq 0$ for all $x \geq z_{m}$. Thus, it holds that $x_{i}<z_{m}$. If $z_{j}<x_{i}<z_{j+1}$, then at least two y_{k} and $y_{k^{\prime}}$ are in $\left(z_{j}, z_{j+1}\right)$ by Proposition 9. Since this contradicts to Proposition 10, it holds that $x_{1}<x_{i}<z_{1}$. However, this is impossible, too; since $\varphi_{1}^{\prime}=0$ and $\varphi_{1}=1$, if no y_{k} exists in $\left(x_{1}, x_{i}\right)$, then $\varphi_{i}^{\prime}>0$. Hence, at least one y_{k} exists in $\left(x_{1}, x_{i}\right)$. On the other hand, there is at least one $y_{k^{\prime}}$ in $\left[x_{i}, z_{1}\right)$ by Proposition 9. This contradicts to Proposition 10. Consequently, we have that $\varphi_{i}^{\prime} \neq 0$.

Using the fact that $\varphi_{i}^{\prime} \neq 0$, we establish the relation between w_{i} and φ_{i}^{\prime}.
Proposition 12. If $N=m$, then $\varphi_{i+1}^{\prime} / \alpha_{i} \varphi_{i}^{\prime}=w_{i-1}$ for $i=2,3, \ldots, n$.

Proof. We use induction on i. Let $i=2$. Since $\varphi_{2}^{\prime}=\alpha_{1}$ and $\varphi_{3}^{\prime}=\alpha_{1}+\alpha_{2}\left(1+\alpha_{1} d_{1}\right)$, we obtain that

$$
\frac{\varphi_{3}^{\prime}}{\alpha_{2} \varphi_{2}^{\prime}}=\frac{\alpha_{1}+\alpha_{2}\left(1+\alpha_{1} d_{1}\right)}{\alpha_{2} \alpha_{1}}=\frac{1}{\alpha_{2}}+\frac{1}{\alpha_{1}}+d_{1}=c_{1}=w_{1}
$$

Let $i \geq 3$ and assume that $\varphi_{i}^{\prime} / \alpha_{i-1} \varphi_{i-1}^{\prime}=w_{i-2}$. Since it holds that

$$
\varphi_{i+1}^{\prime}=c_{i-1}\left(\alpha_{i} \varphi_{i}^{\prime}\right)-\frac{\alpha_{i}}{\alpha_{i-1}^{2}}\left(\alpha_{i-1} \varphi_{i-1}^{\prime}\right)
$$

by (4), we obtain that

$$
\frac{\varphi_{i+1}^{\prime}}{\alpha_{i} \varphi_{i}^{\prime}}=c_{i-1}-\frac{\alpha_{i-1}^{-2}}{\varphi_{i}^{\prime} / \alpha_{i-1} \varphi_{i-1}^{\prime}}=\left[c_{i-1}, \alpha_{i-1}^{-2}, w_{i-2}\right]=w_{i-1}
$$

This completes the induction.
To state the following key lemma, we give some notations. Let $X^{\prime}=X \backslash\left\{x_{n}\right\}$, $\alpha^{\prime}=\alpha \backslash\left\{\alpha_{n}\right\}, N^{\prime}=N\left(L_{X^{\prime}, \alpha^{\prime}}\right)$ and $m^{\prime}=\left|\left\{\alpha_{i}<0 ; 1 \leq i \leq n-1\right\}\right|$. Then it holds that that $N^{\prime} \leq m^{\prime}$.

Lemma 13. If $N=m$, then $N^{\prime}=m^{\prime}$ and $w_{n-1}>0$.
Proof. We denote by $\operatorname{sig}(k)$ the signature of the sequence, $\left(\varphi_{1}, \ldots, \varphi_{k-1}, \varphi_{k}^{\prime}\right)$, in this proof. We have that $N=\operatorname{sig}(n+1)$ and $N^{\prime}=\operatorname{sig}(n)$ by Albeverio-Nizhnik's algorithm.
(i) Consider the case where $\alpha_{n}>0$. In this case, $m^{\prime}=m$. Assume that $\varphi_{n-1} \geq 0$. In Table 1, we list up all combinations of signs of $\varphi_{n-1}, \varphi_{n}, \varphi_{n}^{\prime}$, and φ_{n+1}^{\prime}. We remark that φ_{n-1} and φ_{n} can not be simultaneously zero. The combinations indicated by the marks $\left({ }^{n} \mathrm{n}\right)$ are impossible:
(*) If $\operatorname{sig}(n)-\operatorname{sig}(n+1)=1$, then $N^{\prime}>m^{\prime}$.
(*2) $\varphi_{n+1}^{\prime}=\varphi_{n}^{\prime}+\alpha_{n} \varphi_{n}>0$, but negative.
(*3) $\varphi_{n+1}^{\prime}=\varphi_{n}^{\prime}+\alpha_{n} \varphi_{n}<0$, but positive.
(*4) $\varphi_{n}^{\prime}=\left(\varphi_{n}-\varphi_{n-1}\right) / d_{n-1}>0$, but negative.
$\left.{ }^{*} 5\right) \varphi_{n}^{\prime}=\left(\varphi_{n}-\varphi_{n-1}\right) / d_{n-1}<0$, but positive.
Since it holds that $\operatorname{sig}(n)=\operatorname{sig}(n+1)$ and $\varphi_{n+1}^{\prime} / \varphi_{n}^{\prime}>0$ for the other combinations, we have that $N^{\prime}=m^{\prime}$ and $w_{n-1}>0$.

By exchanging the signs, + and - , each other in Table 1, we can treat the case where $\varphi_{n-1}<0$ in the same way. Under this exchange, all of the marks is still true with trivial modifications on above $\left({ }^{*} \mathrm{n}\right)$. Consequently, we obtain that $N^{\prime}=m^{\prime}$ and $w_{n-1}>0$.
(ii) Consider the case where $\alpha_{n}<0$. In this case, $m^{\prime}=m-1$. In Table 2, we list up all combinations of signs of $\varphi_{n-1} \geq 0, \varphi_{n}, \varphi_{n}^{\prime}$, and φ_{n+1}^{\prime} :
$\left({ }^{*} 6\right)$ If $\operatorname{sig}(n)-\operatorname{sig}(n+1) \geq 0$, then $N^{\prime}>m^{\prime}$.
In a similar way as in the proof of (i), we can prove that $N^{\prime}=m^{\prime}$ and $w_{n-1}>0$. Consequently, we have obtained this lemma.

The following is the necessary condition for $L_{X, \alpha}$ to satisfy $N=m$, which is stated in Theorem 2.

Theorem 14. If $N=m$, then $w_{n-1} \gg 0$.
Proof. We have that $N^{\prime}=m^{\prime}$ and $w_{n-1}>0$ by Lemma 13. Therefore, we can inductively obtain that $w_{i}>0$ for all $i=1,2, \ldots, n-1$. Thus, we derive that $w_{n-1} \gg 0$.

φ_{n-1}	φ_{n}	φ_{n}^{\prime}	φ_{n+1}^{\prime}	$\operatorname{sig}(n)-\operatorname{sig}(n+1)$	comment
+	+	+	+	0	
+	+	+	-		$\left({ }^{*} 2\right)$
+	+	-	+	1	$\left({ }^{*} 1\right)$
+	+	-	-	0	
+	$0,-$	+	\pm		$\left({ }^{*} 5\right)$
+	$0,-$	-	+		$\left({ }^{*} 3\right)$
+	$0,-$	-	-	0	
0	+	+	+	0	
0	+	+	-		$\left({ }^{*} 2\right)$
0	+	-	\pm		$\left({ }^{*} 4\right)$
0	-	+	\pm		$\left({ }^{*} 5\right)$
0	-	-	+		$\left({ }^{*} 3\right)$
0	-	-	-	0	

TABLE 1. $\alpha_{n}>0$

φ_{n-1}	φ_{n}	φ_{n}^{\prime}	φ_{n+1}^{\prime}	$\operatorname{sig}(n)-\operatorname{sig}(n+1)$	comment
+	+	+	+	0	$\left({ }^{*} 6\right)$
+	+	+	-	-1	
+	+	-	+	1	$\left({ }^{*} 6\right),\left({ }^{*} 3\right)$
+	+	-	-	0	$\left({ }^{*} 6\right)$
+	0	+	\pm		$\left({ }^{*} 5\right)$
+	0	-	+		$\left({ }^{*} 3\right)$
+	0	-	-	0	$\left({ }^{*} 6\right)$
,+ 0	-	+	\pm		$\left({ }^{*} 5\right)$
,+ 0	-	-	+	-1	
,+ 0	-	-	-	0	$\left({ }^{*} 6\right)$
0	+	+	+	0	$\left({ }^{*} 6\right)$
0	+	+	-	-1	
0	+	-	\pm		$\left({ }^{*} 4\right)$

TABLE 2. $\alpha_{n}<0$

4. Discussions

We say that the point interactions $V_{k}(x)=\sum_{i=1}^{k} \alpha_{i} \delta\left(x-x_{i}\right)$ are internally balanced if $\varphi\left(x_{k}\right)=\varphi\left(x_{k+1}\right)$, that is, $\varphi^{\prime}\left(x_{k}+0\right)=\varphi_{k+1}^{\prime}=0$ (cf. [2]). In this case, we have that

$$
\begin{equation*}
N=N\left(-\frac{d^{2}}{d x^{2}}+\sum_{i=1}^{k} \alpha_{i} \delta\left(x-x_{i}\right)\right)+N\left(-\frac{d^{2}}{d x^{2}}+\sum_{i=k+1}^{n} \alpha_{i} \delta\left(x-x_{i}\right)\right) \tag{6}
\end{equation*}
$$

as in [2, Remark 5]. If $N=m$, then $V_{k}(x)$ are not internally balanced by Proposition 11, however we can easily see that (6) holds. Using Lemma 13 repeatedly, we can obtain

$$
N=\sum_{k=1}^{n} N_{k} \quad \text { with } \quad N_{k}=N\left(-\frac{d^{2}}{d x^{2}}+\alpha_{k} \delta\left(x-x_{k}\right)\right) .
$$

This is trivial, since $N_{k}=1$ as $\alpha_{k}<0$ and $N_{k}=0$ as $\alpha_{k}>0$.
In the rest of this paper, we give some criteria for $L_{X, \alpha}$ to satisfy $N=m$.

Example 15. Let $n=2$. Then, $N=m$ if and only if $w_{1}=c_{1}=1 / \alpha_{1}+d_{1}+1 / \alpha_{2}>0$. In the case where $m=n=2$, this is Criterion 1 in [3].
Example 16. Let $n=3$. Then, $N=m$ if and only if

$$
c_{1}=\frac{1}{\alpha_{1}}+d_{1}+\frac{1}{\alpha_{2}}>0, \quad c_{2}=\frac{1}{\alpha_{2}}+d_{2}+\frac{1}{\alpha_{3}}>0 \quad \text { and } \quad c_{1} c_{2}>\frac{1}{\alpha_{2}^{2}} .
$$

In the case where $m=n=3$, this is equivalent to Criterion 2 in [3].
Corollary 17. (i) If $N=m$, then all $c_{1}, c_{2}, \ldots, c_{n-1}$ are positive. (ii) If $d_{i}>2\left(1 /\left|\alpha_{i}\right|+\right.$ $\left.1 /\left|\alpha_{i+1}\right|\right)$ for all $i=1,2, \ldots, n-1$, then $N=m$.
Proof. If $N=m$, then it holds that $w_{n-1} \gg 0$. This implies that $c_{1}=w_{1}>0$ and $c_{i}=w_{i}+1 / \alpha_{i-1}^{2} w_{i-1}>0$. Thus, we obtain (i). We prove (ii); the assumption implies that

$$
c_{i}=d_{i}+1 / \alpha_{i}+1 / \alpha_{i+1} \geq d_{i}-\left(1 /\left|\alpha_{i}\right|+1 /\left|\alpha_{i+1}\right|\right)>1 /\left|\alpha_{i}\right|+1 /\left|\alpha_{i+1}\right|
$$

In particular, $w_{1}=c_{1}>1 /\left|\alpha_{2}\right|$. If $w_{i-1}>1 /\left|\alpha_{i}\right|$, then it holds that

$$
w_{i}=c_{i}-1 /\left|\alpha_{i}\right|^{2} w_{i-1}>c_{i}-1 /\left|\alpha_{i}\right|>1 /\left|\alpha_{i+1}\right|
$$

Thus, we obtain that $w_{n-1} \gg 0$ by induction.
In the case where $m=n$, Corollary 17 is Criterion 4 in [3]. We remark that the coefficient, 2, in (ii) is best possible; consider the case where $n=m=3$. Fix ε with $0<\varepsilon<2$ and let $\alpha_{1}=\alpha_{3}=-1, \alpha_{2}=-1 / t$ and $d_{1}=d_{2}=(1+\varepsilon / 2)(t+1)>0$. Then, it holds that $d_{i}>\varepsilon\left(1 /\left|\alpha_{i}\right|+1 /\left|\alpha_{i+1}\right|\right)=\varepsilon(t+1)$ for both $i=1$ and 2 . However, if t is large enough, it holds that $c_{1} c_{2}=(\varepsilon / 2)^{2}(t+1)^{2}<t^{2}=\alpha_{2}^{-2}$. Therefore, we obtain that $N<m$ by Example 16.

We need the following fact from the theory of continued fractions to derive Corollary 19.

Proposition 18. Assume that all y_{i} are positive. The following three conditions are equivalent.
(i) It holds that $\left[x_{n}, y_{n}, \ldots, x_{2}, y_{2}, x_{1}\right] \gg 0$.
(ii) It holds that $\left[x_{1}, y_{2}, x_{2}, \ldots, y_{n}, x_{n}\right] \gg 0$.
(iii) It holds that $\left[x_{k-1}, y_{k-1}, \ldots, x_{2}, y_{2}, x_{1}\right] \gg 0$,
$\left[x_{k+1}, y_{k+2}, x_{k+2}, \ldots, y_{n}, x_{n}\right] \gg 0$, and

$$
x_{k}>\frac{y_{k}}{\left[x_{k-1}, y_{k-1}, \ldots, x_{2}, y_{2}, x_{1}\right]}+\frac{y_{k+1}}{\left[x_{k+1}, y_{k+2}, x_{k+2}, \ldots, y_{n}, x_{n}\right]}
$$

Proof. In this proof, we denote by $\left[x_{i}: x_{1}\right]=\left[x_{i}, y_{i}, \ldots, x_{2}, y_{2}, x_{1}\right]$ and by $\left[x_{i}: x_{n}\right]=$ $\left[x_{i}, y_{i+1}, x_{i+1}, \ldots, y_{n}, x_{n}\right]$ for brevity.

We prove that (i) implies (ii). Since $x_{n}>y_{n} /\left[x_{n-1}: x_{1}\right]>0$, we have that

$$
\left[x_{n-1}: x_{n}\right]=x_{n-1}-\frac{y_{n}}{x_{n}}>x_{n-1}-\left[x_{n-1}: x_{1}\right]=\frac{y_{n-1}}{\left[x_{n-2}: x_{1}\right]}>0
$$

Using this, we have that

$$
\left[x_{n-2}: x_{n}\right]=x_{n-2}-\frac{y_{n-1}}{\left[x_{n-1}: x_{n}\right]}>x_{n-2}-\left[x_{n-2}: x_{1}\right]=\frac{y_{n-2}}{\left[x_{n-3}: x_{1}\right]}>0
$$

By repeating this procedure, we obtain (ii). We can prove the converse in the same way.
We prove that (iii) implies (i) and (ii). By the assumption, we have that

$$
\left[x_{k}: x_{1}\right]=x_{k}-\frac{y_{k}}{\left[x_{k-1}: x_{1}\right]}>\frac{y_{k+1}}{\left[x_{k+1}: x_{n}\right]}>0
$$

Using this, we have that

$$
\left[x_{k+1}: x_{1}\right]=x_{k+1}-\frac{y_{k+1}}{\left[x_{k}: x_{1}\right]}>x_{k+1}-\left[x_{k+1}: x_{n}\right]=\frac{y_{k+2}}{\left[x_{k+2}: x_{n}\right]}>0
$$

If $k \geq n / 2$, then we obtain (i) by repeating this procedure. If $k \leq n / 2$, then we can obtain (ii) in the same way.

We prove that (i) implies (iii) by contradiction. Assume that (iii) does not hold. Then we have that

$$
0<\left[x_{k}: x_{1}\right]=x_{k}-\frac{y_{k}}{\left[x_{k-1}: x_{1}\right]} \leq \frac{y_{k+1}}{\left[x_{k+1}: x_{n}\right]}
$$

Using this, we have that

$$
0<\left[x_{k+1}: x_{1}\right]=x_{k+1}-\frac{y_{k+1}}{\left[x_{k}: x_{1}\right]} \leq x_{k+1}-\left[x_{k+1}: x_{n}\right]=\frac{y_{k+2}}{\left[x_{k+2}: x_{n}\right]}
$$

However, by repeating this procedure, we have that

$$
0<\left[x_{n}: x_{1}\right] \leq x_{n}-\left[x_{n}\right]=0
$$

This is impossible, thus (iii) holds.
Corollary 19. Let the points of interactions, $X=\left\{x_{i}\right\}_{i=1}^{n}$ of $L_{X, \alpha}$ be partitioned into two groups, $X_{1}=\left\{x_{i}\right\}_{i=1}^{k}$ and $X_{2}=\left\{x_{i}\right\}_{i=k+1}^{n}$. Since $x_{i}<x_{i+1}$, all points of X_{2} lie on the right of all points of X_{1}. Assume that the Schrödinger operators $L_{X_{1}, \alpha}=$ $-\frac{d^{2}}{d x^{2}}+\sum_{i=1}^{k} \alpha_{i} \delta\left(x-x_{i}\right)$ and $L_{X_{2}, \alpha}=-\frac{d^{2}}{d x^{2}}+\sum_{i=k+1}^{n} \alpha_{i} \delta\left(x-x_{i}\right)$ satisfy that

$$
\begin{aligned}
& N\left(L_{X_{1}, \alpha}\right)=\left|\left\{\alpha_{i}<0 ; x_{i} \in X_{1}\right\}\right|=m_{1} \\
& N\left(L_{X_{2}, \alpha}\right)=\left|\left\{\alpha_{i}<0 ; x_{i} \in X_{2}\right\}\right|=m_{2}
\end{aligned}
$$

For $N\left(L_{X, \alpha}\right)=m=m_{1}+m_{2}$, it is necessary and sufficient that it holds that

$$
c_{k}>\frac{\alpha_{k}^{-2}}{\left[c_{k-1}, \alpha_{k-1}^{-2}, c_{k-2}, \ldots, \alpha_{2}^{-2}, c_{1}\right]}+\frac{\alpha_{k+1}^{-2}}{\left[c_{k+1}, \alpha_{k+2}^{-2}, c_{k+2}, \ldots, \alpha_{n-1}^{-2}, c_{n-1}\right]}
$$

Corollary 19 immediately follows from Theorem 2 and Proposition 18 and is an extension of Criterion 5 in [3].

Acknowledgments. The author would like to thank the referees for their helpful comments.

References

1. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin-New York, 1988.
2. S. Albeverio and L. Nizhnik, On the number of negative eigenvalues of a one-dimensional Schrödinger operator with point interactions, Lett. Math. Phys. 65 (2003), no. 1, 27-35.
3. S. Albeverio and L. Nizhnik, Schrödinger operators with a number of negative eigenvalues equal to the number of point interactions, Methods Funct. Anal. Topology 9 (2003), no. 4, 273-286.
4. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1-95.
5. N. I. Goloshchapova and L. L. Oridoroga, The one-dimensional Schroödinger operator with point δ - and δ^{\prime}-interactions, Math. Notes 84 (2008), no. 1, 125-129.
6. N. I. Goloshchapova and L. L. Oridoroga, On the number of negative squares of one-dimensional Schrödinger operators with point interactions. ArXiv:0903.1180.
7. A. Kostenko and M. M. Malamud, 1D Schrödinger operators with local interactions on a discrete set. ArXiv:0908.3542v1.
8. O. Ogurisu, On the number of negative eigenvalues of a Schrödinger operator with point interactions, Letters Math. Phys. 85 (2008), no. 2-3, 129-133.

Division of Mathematical and Physical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan

E-mail address: ogurisu@kanazawa-u.ac.jp
Received 19/11/2008; Revised 06/11/2009

[^0]: 2000 Mathematics Subject Classification. 47A10, 3440.
 Key words and phrases. Number of negative eigenvalues, point interactions, Schrödinger operators.
 This work was supported by the Grant-in-Aid for Scientific Research (C) 20540204 from Japan Society for the Promotion of Science.

