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ALGEBRAICALLY ADMISSIBLE CONES IN FREE PRODUCTS OF
∗-ALGEBRAS

STANISLAV POPOVYCH

Abstract. It was proved in [7] that a ∗-algebra is C∗-representable, i.e., ∗-isomorphic
to a self-adjoint subalgebra of bounded operators acting on a Hilbert space if and only
if there is an algebraically admissible cone in the real space of Hermitian elements of
the algebra such that the algebra unit is an Archimedean order unit. In the present
paper we construct such cones in free products of C∗-representable ∗-algebras gen-
erated by unitaries. We also express the reducing ideal of any algebraically bounded
∗-algebra with corepresentation F/J where F is a free algebra as a closure of the
ideal J in some universal enveloping C∗-algebra.

1. Introduction

Let B(H) denote the algebra of bounded linear operators acting on a Hilbert space H.
Subalgebras of B(H) are called operator algebras. A well-know result of Varopoulos [9]
gives a necessary and sufficient conditions for a Banach algebra to be bi-continuously
isomorphic to an operator algebra. In modern operator space language this characteriza-
tion can be restated in the following way (see [2]). A Banach algebra A is bi-continuously
isomorphic to an operator algebra if and only if there exists a constant K such that for
each r ≥ 1 the r-fold multiplication regarded as a map from the r-fold Haagerup tensor
product of MAX(A) into MIN(A) has norm less than Kr. The reader should consult [2]
for the definitions used in the above characterization.

Another characterization of subalgebras of B(H) was given by P. G. Dixon [3]. He
proved that a Banach algebra A is an operator algebra if and only if, for every n and
every polynomial in non-commuting indeterminates p(X1, . . . , Xn) without constant term
‖p‖A ≤ ‖p‖B(H) , where ‖p‖B denotes the supremum of ‖p(x1, . . . , xn)‖ over all x1, . . . , xn

in the unit ball of the Banach algebra B. The most often used characterization of operator
algebras given by Blecher, Ruan and Sinclair. It is given in terms of hierarchy of matrix
norms (see [8]).

In [5] the author obtained an abstract characterization of subalgebras of B(H) in
algebraic terms without using a norm structure. In particular, an associative algebra A
is isomorphic to an operator algebra if and only if the ∗-double A ∗A is ∗-isomorphic to
a self-adjoint operator algebra. Thus the characterization of operator algebras (among
the associative algebras) is reduced to a characterization of self-adjoint operator algebras
(among the ∗-algebras) which was previously done in [6, 7]. ∗-Algebra that has a faithful
representation on a Hilbert space will be called C∗-representable in the sequel.

There is an example (see [7]) of an associative algebra which is not isomorphic to a
subalgebra in any Banach algebra. In particular, such an algebra is not an operator
algebra. Below we present a more delicate example of an associative algebra which
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possesses a norm and which is a Banach algebra with respect to this norm but such that
it is not isomorphic (as an associative algebra) to an operator algebra.

Let B(l1(Z)) denote the Banach algebra of all bounded linear operators acting on a
Banach space l1(Z). Let BF (l1(Z)) denote the ideal of finite-rank operators in B(l1(Z)).
The closure of this ideal is called the ideal of approximable operators and denoted by
BA(l1(Z)) (for more details see [4]). Let A be B(l1(Z)) considered as an abstract asso-
ciative algebra.

Proposition 1. There is no an algebraic isomorphism of A with a (not necessarily
closed) subalgebra of bounded operators acting on a Hilbert space.

Proof. Assume that π : A → B(H) is an injective homomorphism then by setting ‖a‖π =
‖π(a)‖ for all a ∈ A one defines an algebra norm on A. Since l1(Z) is isometrically
isomorphic to the direct sum l1(Z) ⊕ l1(Z), ‖·‖π is equivalent to the operator norm
on B(l1(Z)) by [4, Cor. 6.2.8]. Thus the restriction of π to BF (l1(Z)) is a continuous
injective homomorphism of BF (l1(Z)) into B(H). Since l1(Z) is non-reflexive π must be
a zero homomorphism by [4, Corollary on p. 81]. This contradiction proves that such π
does not exist. �

Remark 2. Note that the non-existence of a faithful representation of A = B(l1(Z))
can also be proved along the same lines using the fact that BA(X ) is Arens regular if
and only if the Banach space X is reflexive together with the well know fact that all
subalgebras of B(H) are Arens regular.

A characterization of self-adjoint operator algebras was obtained in [7]. It is given in
terms of algebraically admissible cones (see definition 3 below). The aim of the paper
is to construct such cones for a particular class of ∗-algebras that the free products of
∗-algebras generated by unitaries. In Section 3 we also present a description of ∗-radicals
in terms of the closure in some universal C∗-algebras.

2. C∗-representability of free products

Firstly we give necessary definitions and fix notations. Let Asa denote the set of self-
adjoint elements in A. A subset C ⊂ Asa containing the unit e of A is an algebraically
admissible cone provided that

Definition 3.

(i) C is a cone in Asa, i.e., λx + βy ∈ C for all x, y ∈ C and λ ≥ 0, β ≥ 0, λ, β ∈ R;
(ii) C ∩ (−C) = {0};
(iii) xCx∗ ⊆ C for every x ∈ A;

We call e ∈ Asa an order unit if for every x ∈ Asa there exists r > 0 such that
re+x ∈ C. An order unit e is Archimedean if re+x ∈ C for all r > 0 implies that x ∈ C

The following theorem was proved in [6].

Theorem 4. Let A be a ∗-algebra with unit e and C ⊆ Asa be a cone containing e. If
xCx∗ ⊆ C for every x ∈ A and e is an Archimedean order unit then there is a unital
∗-representation π : A → B(H) such that π(C) = π(Asa) ∩B(H)+ where B(H)+ is the
set of positive operators. Moreover,

(1) ‖π(x)‖ = inf{r > 0 : r2 ± x∗x ∈ C}.
(2) ker π = {x : x∗x ∈ C ∩ (−C)}.
(3) If C ∩ (−C) = {0} then ker π = {0}, ‖π(a)‖ = inf{r > 0 : r ± a ∈ C} for all

a = a∗ ∈ A and π(C) = π(A) ∩B(H)+.
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In particular a unital ∗-algebra A which possesses an algebraically admissible cone
such that the algebra unit is an Archimedean order unit has a faithful ∗-representation
by bounded operators on a Hilbert space.

We will apply Theorem 4 to prove that a free product of two C∗-representable ∗-
algebras is C∗-representable. This result is folklore and can be deduced from [1] but the
author was unable to trace an explicit proof in the literature. Moreover, it is important
to have examples of algebraically admissible cones satisfying conditions of Theorem 4.

Let A1 and A2 be two unital ∗-algebras and φ1, φ2 be linear unital functionals on A1

and A2 respectively. Let
◦
Aj = kerφj (j = 1, 2). The algebraic free product A1 ?A2 as

a linear space is a quotient of

C⊕A1 ⊕A2 ⊕ (A1 ⊗A2)⊕ (A2 ⊗A1)⊕ (A1 ⊗A2 ⊗A1)⊕ . . .

by a subspace in order to identify the units in C, A1 and A2. As vector spaces, Aj =

C⊕
◦
Aj (j = 1, 2) and thus, as a vector space,

A1 ?A2 = C⊕
◦
A1 ⊕

◦
A2 ⊕ (

◦
A1 ⊗

◦
A2)⊕ (

◦
A2 ⊗

◦
A1)⊕ (

◦
A1 ⊗

◦
A2 ⊗

◦
A1)⊕ . . .

The projection onto C associated with the above direct sum is a free product φ1 ? φ2

(see [1]).
For a ∗-algebra B we denote by Σ2(B) the set of finite sums of elements of the form

x∗x with x ∈ B. This is, clearly, a convex cone which is called the cone of Hermitian
squares. Denote by S(Aj) the set of states on Aj , i.e., the set of functionals f : Aj → C
such that f(x) ≥ 0 for all x ∈ Σ2(Aj) and f(1) = 1.

Put C(A1,A2) = {a ∈ Σ2(A1 ? A2)| for all φ1 ∈ S(A1), φ2 ∈ S(A2), and every x ∈
A1 ?A2, (φ1 ? φ2)(xax∗) ≥ 0}.
Theorem 5. Let A1 and A2 be two C∗-representable ∗-algebras generated by unitaries.
Then the set C(A1,A2) is an algebraically admissible cone in the free product A1 ? A2

and the unit e of A1 ?A2 is Archimedean order unit.
In particular, A1 ?A2 is C∗-representable.

Proof. Clearly C = C(A1,A2) is a cone and for every its element a and every x ∈ A1?A2,
xax∗ ∈ C.

Let us show that e ∈ C, C ∩ (−C) = 0 and e is an Archimedean order unit. Any

product of the form c1c2 . . . cl with ct ∈
◦
Adt (dt = 1, 2) and such that dt 6= dt+1 for

all t = 1, . . . , l − 1 will be called a word. Consider two words a = a1a2 . . . an and

b = b1b2 . . . bm where ak ∈
◦
Aik

, and br ∈
◦
Ajr . Assume that (φ1 ? φ2)(ab∗) 6= 0 for some

unital functional φ1 and φ2. We claim that m = n, i1 = j1, . . ., in = jn, and

(φ1 ? φ2)(ab∗) = φi1(a1b
∗
1) · . . . · φin(anb∗n).(1)

We will assume that n ≤ m. If in 6= jm, then ab∗ is a word since in the expression

a1 . . . anb∗m . . . b∗1, the adjacent terms belong to different spaces
◦
Ar. Thus (φ1?φ2)(ab∗) =

0. This contradiction shows that in = jm. Then anb∗m = φin(anb∗m) + cn with some

cn ∈
◦
Ain . Compute

an−1anb∗mbm−1 = φin(anb∗m)an−1b
∗
m−1 + an−1cnb∗m−1.

Since an−1cnb∗m−1 is a word, the element

a1 . . . an−1cnb∗m−1 . . . b∗1

is also a word. Hence in−1 = jm−1 and an−1b
∗
m−1 = φin−1(an−1b

∗
m−1) + cn−1 for some

cn−1 ∈
◦

Ain−1 . Hence,

an−1anb∗mbm−1 = αn−1αne + αncn−1 + an−1cnb∗m−1
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where αk = φik
(akb∗m−n+k).

By induction we get

a1a2 . . . anb∗mb∗m−1 . . . b∗1 =
[
α1 . . . αn + α2 . . . αnc1

+ α3 . . . αna1c2b
∗
m−n+1 + α4 . . . αna1a2c3b

∗
m−n+2b

∗
m−n+1 + . . .

+ a1 . . . an−1cnb∗m−1b
∗
m−2 . . . b∗m−n+1

]
b∗m−n . . . b∗1,

with some cr ∈
◦
Air .

Thus (φ1 ? φ2)(ab∗) 6= 0 implies that m = n and that equality (1) holds.
Every x ∈ A1 ?A2 is of the form

(2) x = αe +
∑
n≥1

∑
(i1i2...in)

∑
j

a
(j)
i1

. . . a
(j)
in

for some a
(j)
ir

∈
◦
Air . Applying formula (1) we get

(3) (φ1 ? φ2)(xx∗) =
∑

n

∑
(i1i2...in)

∑
j,s

φi1(a
(j)
i1

a
(s)∗
i1

) · . . . · φin(a(j)
in

a
(s)∗
in

).

By the GNS construction we can consider φj as a vector states corresponding to some
representations πj : Aj → B(Hj), i.e., φj(x) = 〈πj(x)ξj , ξj〉 for some unit vector ξj ∈ Hj .

For each multi-index (i1 . . . in), the sum

(4)
∑
j,s

φi1(a
(j)
i1

a
(s)∗
i1

) · . . . · φin
(a(j)

in
a
(s)∗
in

)

is just 〈π(yy∗)ξ, ξ〉 = (φi1⊗. . .⊗φin)(y∗y), where π = πi1⊗. . .⊗πin is a ∗-representation
of Ai1⊗ . . .⊗Ain

, ξ = ξi1⊗ . . .⊗ξn and y =
∑

j a
(j)
i1
⊗ . . .⊗a

(j)
in

. Hence (2) is non-negative
and consequently (φ1 ? φ2)(xx∗) ≥ 0. This proves that e ∈ C.

Assume that there exists a non-zero a ∈ C ∩ (−C). Then for every y ∈ A1 ? A2,
(φ1 ? φ2)(y∗ay) = 0 for all φj ∈ S(Aj). Since a ∈ Σ2(A1 ? A2)+, a =

∑
x∗jxj for some

xj ∈ A1 ?A2. Since (φ1 ? φ2)(y∗x∗jxjy) ≥ 0 for all j we can assume that a is of the form
x∗x. Since Aj is generated by unitary elements and the product of unitaries is unitary,
we have that Aj is linearly generated by unitaries. Hence we can also assume that x

is written in the form (2) with a
(j)
s being non-scalar unitary elements. If α 6= 0 then

(φ1 ? φ2)(x∗x) ≥ |α|2 > 0. Otherwise, by (3) we can assume that x =
∑

j a
(j)
i1

. . . a
(j)
in

for
some multi-index (i1 . . . in) and such that all the summands of x are linearly independent.
Taking y = a

(1)∗
in

. . . a
(1)n∗
i1

we get that xy has a representation (2) with the summand
corresponding to n = 0 being the unit e. Hence (φ1?φ2)(y∗x∗xy) ≥ (φ1?φ2)(e) = 1. The
obtained contradiction proves that C ∩ (−C) = {0}. The C∗-representability of A1 ?A2

now follows from Theorem 4. �

3. C∗-representability of ∗-algebras

For a ∗-algebra A the reducing ideal denoted by Rad(A) is the intersection of the
kernels of all ∗-representations of A on Hilbert spaces. There is a connection between
the problem of finding reducing ideals and finding closures of ideals in the C∗-algebras
which was presented in [5] in case of ∗-algebras generated by unitaries. Here we consider
a more general class of algebraically bounded ∗-algebras. Recall that a ∗-algebra A is
called algebraically bounded if any x ∈ A is bounded, i.e., there is C > 0 such that
C − x∗x ∈ Σ2(A). It is know that A is algebraically bounded if it is generated by
bounded elements (see for example [7]).

Given an algebraically bounded ∗-algebra A one can find a corepresentation, i.e., a
∗-isomorphism φ : A → F/J where F is a free ∗-algebra with a generating set {Xλ}λ∈Λ
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and J is a ∗-ideal of F . Let xλ denote φ(−1)(Xλ). Consider the algebraically bounded
∗-algebra

F1 = C〈{Xλ} ∪ {Yλ} | X∗
λXλ + Y ∗

λ Yλ = c(λ)〉,

where c(λ) is chosen such that c(λ) − x∗λxλ ∈ Σ2(A). Such c(λ) exists for every λ since
A is algebraically bounded. Let G = {Xλ} ∪ {Yλ}) be equipped with well-ordering ≺.
One can easily check that the defining relation above constitute a Gröbner basis for the
associative algebra F1 with respect to degree-lexicographic order induced on the free
semigroup generated by G by the order ≺. It follows that the map F 3 Xλ → Xλ ∈ F1

extends to an embedding i : F → F1. Denote by J1 the ideal of F1 generated by i(J ) and
by ĩ : F/J → F1/J1 the induced embedding. Let τ : A → F1/J1 denote the injective
∗-homomorphism ĩ ◦ φ.

The pair (F1/J1, τ) has the property that every ∗-representation π of A on a Hilbert
space H can be extended to a ∗-representation π̃ of F1/J1 on the same H. Indeed, put
π̃(Xλ) = π(Xλ) and π̃(Yλ) = (c(λ) − π(Xλ)∗π(Xλ))1/2. It is clear from the definition
of c(λ) that c(λ) − π(Xλ)∗π(Xλ) is a positive operator, hence, the square root exists.
Hence π̃ can be extended to a ∗-homomorphism of F1 which coincides with π on the
∗-subalgebra generated by Xλ. Thus π̃(i(J )) = {0} and π̃ induces a ∗-representation of
F1/J1 which will also be denoted by π̃.

Let C∗(F1) be the universal enveloping C∗-algebra of F1. Then there is the canon-
ical ∗-homomorphism γ : F1 → C∗(F1) with a dense image and such that every ∗-
homomorphism π of F1 can be extended to a ∗-homomorphism π̂ of C∗(F1), i.e.,

π̂(γ(f)) = π(f)

for all f ∈ F1. In particular, γ induce a topology on F1. Let Scl denote the closure in
this topology of a subset S ⊆ F1.

Proposition 6. Rad(A) = (F ∩ J cl)/J .

Proof. Let q : F1 → F1/J1 be the canonical epimorphism and let π : F1/J1 → C∗(F1/J1)
denote the canonical ∗-homomorphism into the enveloping C∗-algebra C∗(F1/J1). By
the universal property of an enveloping C∗-algebra it follows that Rad(A) = kerπ
and, by the same property, there is an extension of q to a surjective ∗-homomorphism
q̂ : C∗(F1) → C∗(F1/J1). Since J1 ⊆ ker q̂ and the letter is closed we have that
J cl

1 ⊆ ker q̂.
To show the converse inclusion note that the quotient C∗(F1)/J1

cl is a C∗-algebra. It
can be regarded as a C∗-subalgebra in B(H) for a Hilbert space H. Hence the quotient
map C∗(F1) → C∗(F1)/J1

cl can be viewed as a ∗-representation η : C∗(F1) → B(H̃).
The restriction of η to F1 annulates J1 and thus can be regarded as a ∗-representation
η̃ of F1/J1. We will denote by the same symbol its unique extension to C∗(F1/J1).
A moment reflection reveals that for every f ∈ F1 we have η̃(q̂)(f) = f + J1

cl and
η(f) = f + J1

cl. Hence the following diagram is commutative:

C∗(F1)
q̂ //

η
&&MMMMMMMMMM

C∗(F1/J1)

eη
��

B(H)

Thus ker q̂ ⊆ ker η = J1
cl which gives ker q̂ = J1

cl. Thus Rad(F1/J1) = (J1
cl ∩F1)/J1.

Then kerπ = (i(F) ∩ ker q̂)/J = (F ∩ J1
cl)/J . �
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