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ON DECOMPOSITIONS OF THE IDENTITY OPERATOR INTO A
LINEAR COMBINATION OF ORTHOGONAL PROJECTIONS

S. RABANOVICH AND A. A. YUSENKO

Abstract. In this paper we consider decompositions of the identity operator into a
linear combination of k ≥ 5 orthogonal projections with real coefficients. It is shown
that if the sum A of the coefficients is closed to an integer number between 2 and k−2
then such a decomposition exists. If the coefficients are almost equal to each other,
then the identity can be represented as a linear combination of orthogonal projections

for
k−
√

k2−4k
2

< A <
k+
√

k2−4k
2

. In the case where some coefficients are sufficiently
close to 1 we find necessary conditions for the existence of the decomposition.

A classical decomposition of the identity into an orthogonal sum of orthogonal pro-
jections is widely used in various mathematical applications. We consider here non-
orthogonal decompositions of the identity into a linear combination of orthogonal pro-
jections with positive coefficients,

(1) I = α1P1 + α2P2 + · · ·+ αkPk,

where I is the identity operator and Pi = P ∗i , i = 1, . . . , k, are orthogonal projections on
a separable Hilbert space H. We shall suppose that αi ≤ 1 for every i since otherwise
Pi = 0 and we shall not find new decompositions in that case.

Let us denote by Ωk the set of all vectors ~α = (α1, . . . , αk) ∈ [0, 1]k ⊂ Rk for which
there exists the resolution of (1) in a separable Hilbert space. Then (see [4, 7]) Ω1 = {1},

Ω2 ={(1, α), (α, 1) | α ∈ [0, 1]} ∩ {(α, 1− α) | α ∈ [0, 1]},
Ω3 =[0, 1]× Ω2 ∪ Ω2 × [0, 1] ∪ {(α1, α2, α3) | (α1, α3) ∈ Ω2, α2 ∈ [0, 1]}

∪ 1× [0, 1]2 ∪ [0, 1]2 × 1 ∪ {(α1, 1, α3) | (α1, α3) ∈ [0, 1]2}
∪ {(α1, α2, α3) | αi ∈ [0, 1], α1 + α2 + α3 = 2 or α1 + α2 + α3 = 1}.

A description of the set Ω4 was obtained by different approaches in [5, 9] where, in
particular, the authors showed that Ω4 does not contain a closed ball in R4 of nonzero
radius.

The first statement about the existence of an open set in Ωk for k ≥ 5 was proved in
[8], where the decompositions of the identity were constructed directly.

In this paper we find new subsets of Ωk (sections 2–4) and show that only for integer
sums A = α1 + α2 + · · · + αk a solution of (1) exits for any ~α. Following [4], let Pk,~α

denote the ∗-algebra with the identity e,

Pk,~α = C < p1, p2, . . . , pk | p2
i = p∗i = pi,

k∑
i=1

αipi = e > .

2000 Mathematics Subject Classification. Primary 15A24; Secondary 16G20, 47A62.
Key words and phrases. Decomposition, orthogonal projection, identity, Coxeter functor.
Supported by Grant no. 20 ”Evolution and spectral problems of modern mathematical physics” of

the program ”Mathematical modeling of physical and mechanical processes in a highly inhomogeneous
environment”.

57



58 S. RABANOVICH AND A. A. YUSENKO

By definition, a vector ~α ∈ Ωk if and only if Pk,~α has a ∗-representation in a separable
Hilbert space. We shall show that for A ∈ N, 1 < A < k−1 and αi 6= 0, αi 6= 1, the point
~α is contained in in Ωk with a sufficiently small neighborhood Ω~α. Beside this, if A = 2
and ~β ∈ Ω~α, the algebra Pk,~β has an irreducible representation in the matrix algebra
over the Cunts algebra M3(Q2) when k ≥ 6 and with some additional assumptions on
the coordinates of the vector ~α when k = 5.

Also we shall show that for |αi−αj | < ε(A) with small ε(A) > 0, the vector ~α ∈ Ωk if

k −
√

k2 − 4k

2
< A <

k +
√

k2 − 4k

2
,

i.e., when every scalar operator γI with |γ − A| < ε(A) can be decomposed into a sum
of k orthogonal projections (see [3]).

In the section 1 we investigate actions of Coxeter functors [1, 4], the transformations
that give new decompositions of the identity by using constructions of an initial decom-
position. Such decompositions have another coefficients in general and so the functors
generate mappings on coefficients. We shall prove a theorem about a monotone property
of the mappings related to the second iteration of Coxeter functors.

We find a relation between lower and upper bound of the spectrum of a sum of
nonnegative operators in section 2. Using it we deduce that the existence of a solution
of (1) for

∑m
1 αi > m− 1 and

(2)
m∑
1

αi + αj > m, j = m + 1, . . . , k

implies the inequality
∑k

m+1 αj ≥ 1. In a finite dimensional space the inequality (2)
follows from a trace equality and Horn inequalities for a sum of Hermitian matrices [2].
Since an orthrogonal projection has at most two eigenvalues, they are having the following
simple form:

k∑
1

liαi ≥ n(l1, . . . , nk),

where li and n(l1, . . . , nk) are integer numbers that are dependant on the Horn inequality
and on the ranks of the orthogonal projections P1, . . . , Pk.

1. Monotone mappings related to the Coxeter functors

Let the decomposition (1) hold. By substituting every Pi with its complement P̃i =
I−Pi, we write down the equation (

∑
αi−1)I = α1(I−P1)+α2(I−P2)+· · ·+αk(I−Pk)

and, after reducing to the standard form, we obtain a new decomposition,

(3) Ĩ =
α1∑
αi − 1

P̃1 +
α2∑
αi − 1

P̃2 + · · ·+ α1∑
αi − 1

P̃k.

Following [4], we call the described transformation the linear reflection functor T . Be-
side the linear functor there were found in [4] a hyperbolic reflection functor S, which
transforms (1) into the following decomposition:

(4) Î = (1− α1)P̂1 + (1− α2)P̂2 + · · ·+ (1− αk)P̂k.

Leaving apart the exact formula for P̂i, we remark that the application of T to (3) as
well as the application of S to (4) give the equation (1).

Let us denote by Φ+ the subsequent actions of the transformations T and S and by
Φ− the action TS. The coefficient vector ~α and the value of the sum of coefficients



ON DECOMPOSITIONS OF THE IDENTITY OPERATOR 59

A =
k∑

i=1

αi are transformed by the formulas

(5) Φ+(~α,A) =
(

(1, 1, . . . , 1)− ~α/(A− 1), k − A

A− 1

)
and it is correctly defined for 0 < αi < max(1, A− 1), i = 1, . . . , k,

(6) Φ−(αi, A) =
(

(1, 1, . . . , 1)− ~α

k −A− 1
,

k −A

k −A− 1

)
,

and it is correctly defined for 1 < A < n− 1, 0 < αi < 1, i = 1, . . . , k.
It will be convenient to use functions which correspond to mappings for sums of

coefficients and every coefficient under Φ− and Φ+. Note that every coordinate of ~α,
under the action of Φ−, can be calculated by the same functional formula: f−A (αi) =
1−αi

k−1−A . So in what follows f−n
A (αi) means the value of the i-th coefficient coordinate

under the n-th subsequent action of the transformation Φ− and F−n(A) means the value
of the sum of the coefficients under the same action. Similarly the functions f+

A (αi) =
1− αi

A−1 , f+n
A (αi) and F+n(A) mean the analogous values but under the transformation

Φ+.
In the next Lemmas we often use the number βk = k−

√
k2−4k
2 which is the main

constant in the section.

Lemma 1. For 1 < A < k − 2 and 0 < αi < 1, the sequence αi, f
−
A (αi), f−2

A (αi), . . . ,
f−n

A (αi), . . . tends to the number βk/k.

Proof. Let 0 < αi < 1 and 0 < αj < 1 be two different numbers. The distance |αi − αj |
under the transformation Φ− becomes smaller for k > 4 and A < k − 2,

|f−A (αi)− f−A (αj)| = | 1− αi

k − 1−A
− 1− αj

k − 1−A
| = 1

k − 1−A
|αi − αj |.

Since F−n(A) → βk for n →∞ and lim
n→∞

f−n
A (A

k ) = βk/k, we conclude that f−n
A (αi) →

βk/k. �

Remark 1. We have f−2
A (x) 6= f−A (f−A (x)) in general.

Let us introduce the following function: Z(A) = k−2−A
k2−3k−A(k−2) . It is monotone for

k > 4, 1 < A < k − 2 and lim
A→βk

Z(A) = βk

k . Besides, f−2
A (Z(A)) = Z(A).

Lemma 2. Let k > 4, βk ≤ A < k − 2 and 0 < α < 1.
(1) If αi /∈

(
Z(A), A

k

)
, then {αi, f

−2
A (αi), . . . , f−2n

A (αi), . . .} is monotone.
(2) If αi ∈

(
Z(A), A

k

)
, then there exists a number m ∈ N such that

{αi, f
−2
A (αi), . . . , f−2m

A (αi)} is a monotone decreasing sequence and
{f−2m

A (αi), f
−2(m+1)
A (αi), . . .} is a monotone increasing sequence.

Proof. The value f−2
A (αi) can be calculated by the formula f−2

A (αi) = k−2−A+α
k2−3k+1−A(k−2) .

Case 1. Let αi /∈
(
Z(A), A

k

)
. It is easy to check that 1 > f−2

A (αi) > αi for αi < Z(A)
and αi > f−2

A (αi) > 0 for αi > Z(A).
Note that for 0 < x < y < 1, the inequality f−2

A (x) < f−2
A (y) holds. Hence if

αi < Z(A), then f−2
A (αi) < f−2

A (Z(A)) = Z(A). The sequence A,F−(A), F−2(A), . . .
is decreasing. Whence Z(A), Z(F−(A)), Z(F−2(A)), . . . is increasing. By an induction
argument, we obtain αi < f−2

A (αi) < f−4
A (αi) < ... for αi < Z(A). Also Z(F−2(A)) ≤

F−2(A)/k. Therefore for αi > A/k, we have αi > f−2
A (αi), f−2

A (αi) > f−4
A (αi) and so

on.
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Case 2. Let αi ∈
(
Z(A), A

k

)
. To simplify the proof we consider at first αi ∈

(Z(A), βk

k ]. Since Z(A), Z(f−2
A (A)), . . . , Z(f−2n

A (A)), . . . tends to βk

k , there exists a num-
ber n ∈ N such that Z(f−2n

A (A)) > f−2
A (βk

k ). Also f−2
A (αi) < f−2

A (βk

k ). So there exists
the smallest number m ≤ n, such that Z(F−2m(A)) ≥ f−2m

A (αi). Then it follows di-
rectly from the previous case that {αi, f

−2
A (αi), . . . , f−2m

A (αi)} is a monotone decreasing
sequence and {f−2m

A (αi), f
−2(m+1)
A (αi), . . .} is a monotone increasing sequence.

Let now αi ∈ (βk/k, A/k). We are going to show that there exist a number m ∈ N
such that f−2m

A (αi) < βk/k. The following parameter characterizes the rate with which
the mean A/k of the coefficients approach βk/k,

$1 =
f−2

A (A/k)− βk/k

A

k
− βk

k

=

k(k − 2)−A(k − 1)− βk(k2 − 3k + 1) + Aβk(k − 2)
k2 − 3k + 1−A(k − 2)

A− βk

=
(k − 2)(k − kβk + β2

k − β2
k) + βk(n− 1)−A(k − 1) + Aβk(k − 2)

(A− βk)(k2 − 3k + 1−A(k − 2))

=
(A− βk)(βk(k − 2)− n + 1)

(A− βk)(k2 − 3k + 1−A(k − 2))

=
1

(k2 − 3k + 1−A(k − 2))(k2 − 3k + 1− βk(k − 2))
.

Also we can find the rate with which the coefficient αi approach the mean A/k,

$2 =
f−2

A (A/k)− f−2
A (αi)

A

k
− αi

=

k − 2−Ak−1
k

k2 − 3k + 1−A(k − 2)
− k − 2−A + αi

k2 − 3k + 1−A(k − 2)
A

k
− αi

=

A

k
− αi(A

k
− αi

)
(k2 − 3k + 1−A(k − 2))

=
1

k2 − 3k + 1−A(k − 2)
.

This gives

(7)
f−2m

A (A/k)− βk/k

f−2m
A (A/k)− f−2

A (αi)
=
(

$1

$2

)m

· A− βk

A− kαi
.

Since $1
$2

< 1, there exists m ∈ N such that the right-hand side of (7) is less than the
number 1. Whence f−2m

A (αi) < βk

k . This completes the proof. �

Since f
−(2m+1)
A (αi) = f−F−2m(A)(fA

−2m(αi)), we find that f−A (αi), f−3
A (αi), . . . has a

similar monotone property as αi, f−2
A (αi), . . . .

Let us introduce the function

W (A) =
k − 2−A(k − 3)

k −A(k − 2)
.

It is monotone for k > 4, 2 < A < k − 1 and lim
A→βk

W (A) = 1− βk

k .

Lemma 3. Let k > 4, 2 ≤ A ≤ k − βk and 0 < α < 1.
(1) If αi /∈

(
A
k ,W (A)

)
, then {αi, f

+2
A (αi), . . . , f+2n

A (αi), . . .} is monotone.
(2) If αi ∈

(
A
k ,W (A)

)
, then there exists a number m ∈ N such that

{αi, f
+2
A (αi), . . . , f+2m

A (αi)} is a monotone increasing sequence and
{f+2m

A (αi), f
+2(m+1)
A (αi), . . .} is a monotone decreasing sequence.
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Proof. Note that
Φ+m(~α,A) = SΦ−mS(~α,A)

and βk ≤ k −A ≤ k − 2, the statement of the Lemma 3 follows from Lemma 2. �

If under the action of T (or Φ−n in general) we obtain a decomposition of the identity
(3) with the i-th coefficient greater than 1, then P̃i has to be equal to zero. So in order
to find (1) one can try at first to find a decomposition of the identity into a linear com-
bination of k − 1 orthogonal projections with the coefficients α̃1 . . . , α̃i−1, α̃i+1, . . . , α̃k.
Then adding α̃i · 0 to the new decomposition and acting by T (or Φ+n), we can get (1).
To use the described argument numerically we have to define functions f±m

A (x) for the
argument x ∈ R. They depend on the parameter A only. So let

f−n
A (x) := f−

F−(n−1)(A)
(f−(n−1)

A (x))

and write a similar formula with ”pluses” for f+n
A (x)

f+n
A (x) := f+

F+(n−1)(A)
(f+(n−1)

A (x)).

Invertability of the functions f−A (x) and f+
A (x) and statements of Lemmas 2 and 3 lead

to the following theorems.

Theorem 1. Let
k∑

i=1

αiPi = I, A ∈ (k−
√

k2−4k
2 , 2) and for some m ∈ N the inequality

2 ≤ F+m
A (A) < k − 2 holds. If f+m

A (αi) /∈ [0, 1] then for some n ≤ m, the functor TΦ+n

transforms (1) into a decomposition of the identity with the i-th coefficient greater than
or equal to 1.

Theorem 2. Let
k∑

i=1

αiPi = I, A ∈ (k − 2, k − βk) and for some m ∈ N the inequality

2 ≤ F−m
A (A) < k − 2 holds. If f−m

A (αi) /∈ [0, 1] then for some n ≤ m, the functor Φ−n

transforms (1) into the decomposition of the identity with the i-th coefficient greater than
or equal to 1.

Corollary 1. Let (1) hold for k ≥ 5. If A = βk and α1 6= α2, then by applying S and T ,
the decomposition (1) can be obtained from a decomposition of the identity into a linear
combination of k orthogonal projections, where one of the orthogonal projections is zero
or the identity operator.

Proof. Since F+(βk) = βk, we have that f+n
A (x) = f+

A (f+
A (. . . (f+

A (x)) . . . )). Whence

f+n
A (α1)− f+n

A (α2) =
(

1
1−βk

)n

(α1 − α2). For great enough n, we have f+n
A (α1) /∈ [0, 1]

or f+n
A (α2) /∈ [0, 1]. So for ~α ∈ (0, 1)k, there exist m ≤ n and 1 ≤ i ≤ k such that for

every j = 1, . . . , k and s < m, we have f+s
A (αj) ∈ (0, 1) and f+m

A (αi)/(βk − 1) ≥ 1.

Therefore all the transformations Φ+,Φ+2, . . . ,Φ+(m−1) can be applied correctly and the
orthogonal projection Pi, under the transformation Φ+m, becomes the identity or the
zero operator. Applying the transformation Φ−m to this new decomposition we obtain
(1). �

2. Necessary conditions

As was mentioned in the previous section, the transformations S and T map points
of Ωk into Ωk. Therefore, if all the coefficients αi coincide, then either there exists
decomposition (1) or, after a number iterations of Φ+ or Φ−, the values of the coefficients
will not be in the segment [0, 1], and so ~α /∈ Ωk [3].
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The theory is more complicated for different coefficients. In [4] and [8] there were
found necessary conditions for having “proper” inclusion ~α ∈ Ωk,

αj ≤
k∑
1

αi − 1

and, correspondingly,
αj ≤

∑
i 6=j

αi.

For αj ≤ 1, the action of T leads to αj → αj/(
∑k

1 αi − 1) > 1, provided the mentioned
conditions do not hold. Whence P̃j = 0. It appears that there exist numbers α1 . . . , αk

for which ~α /∈ Ωk and f
±(n)
A (αi) ∈ (0, 1) for every n. We start with a technical lemma

about the spectrum of a sum of nonnegative operators on a Hilbert space.

Lemma 4. Let, for some positive 0 < αi < 1, i = 1, . . . , k and orthogonal projections
P1, . . . , Pk, the decomposition (1) hold. We denote by Hm the sum of the subspaces
Im P1 + Im P2 + · · ·+ Im Pm. If

∑m
1 αi > m− 1, then

α1P1 + α2P2 + · · ·+ αmPm ≥
( m∑

1

αi −m + 1
)
PHm

,

where PHm
is the orthogonal projection onto Hm.

Proof. We carry out the proof by induction on the number m. For m = 1 the Lemma is
true. Suppose it is true for m = s ≥ 1. If now (1) holds and α1 + · · · + αs+1 > s, then
α1 + · · ·+ αs > s− 1 and

α1P1 + α2P2 + · · ·+ αsPs ≥
( s∑

1

αi − s + 1
)
PHs .

Whence (
∑s

1 αi − s + 1)PHs
+ αs+1Ps+1 ≤ I. The spectrum of a linear combination of

two orthogonal projections in a general position is symmetric around the mean value of
the coefficients [6]. By this property, we have( s∑

1

αi − s + 1
)
PHs + αs+1Ps+1 ≥

( s∑
1

αi − s + 1 + αs+1 − 1
)
PHs+1 .

Therefore,
s+1∑
1

αiPi ≥
( s+1∑

1

αi − s
)
PHs+1 .

The proof is complete. �

Theorem 3. Let ~α ∈ Ωk. If for some m < k the inequality
∑m

1 αi > m − 1 holds and

for every j > m, the sum
m∑
1

αi + αj > m, then
k∑

i=m+1

αi ≥ 1.

Proof. Note that the spectrum of the operator
k∑

l=m+1

αlPl = I −
m∑
1

αiPi

is a subset of the set {[0,m−
∑m

1 αi], 1}. Since
k∑

l=m+1

αlPl ≥ αjPj and αj > m−
m∑
1

αi,

we see that 1 is in the spectrum of
∑k

l=m+1 αlPl and, hence,
∑k

i=m+1 αi ≥ 1. �
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Corollary 2. For any number 0 < ε < 1/9, ~α /∈ Ω5 where ~α = (1 − ε, 1 − ε, 3ε, 3ε, 3ε).
Besides, Φ±(n)(αi) ∈ (0, 1) for every integer n.

3. Particular points in Ωk

In this section we consider cases where ~α ∈ Ωk and the sum of the coefficients is an
integer.

Theorem 4. If ~α = (α1, . . . , αk) ∈ [0, 1]k and
k∑

i=1

αi = 2, then ~α ∈ Ωk.

Proof. It is sufficient to consider the case with 1 > α1 ≥ α2 ≥ . . . ≥ αk. Let us show that
the numbers αi, i = 1, . . . , k, can be grouped into three groups with the sum in each of
them less than or equal to 1. At first we assume that α3 +α4 + . . .+αk ≤ 1. Whence we
immediately obtain the three needed groups. If α3 +α4 + . . .+αk > 1, then the equation
k∑

i=1

αi = 2 implies the inequality α1 +α2 < 1. Denote ά1 = α1 +α2, ά2 = α3, . . . , ´αk−1 =

αk. For the numbers άi, i = 1, . . . , k − 1, we apply the same arguments and then obtain
the three needed groups or a new collection but with a fewer number of coefficients in it.
At the end of this procedure we shall have three numbers less than 1 and with the sum
equal to 2.

For every such collection Lj we define the sum βj =
∑

i∈Li

αi, j = 1, 2, 3, L1∪L2∪L3 =

{1, . . . , k}, L1 ∩ L2 = L2 ∩ L3 = L1 ∩ L3 = ∅.
Let x := β1 + β2 − 1 and the orthogonal projections Q1, Q2, Q3 be defined by the

formulas

Q1 =
1

β1(1− x)

(
x(1− β1)

√
x(1− β1)(1− β2)√

x(1− β1)(1− β2) 1− β2

)
,

Q2 =
1

β2(1− x)

(
x(1− β2) −

√
x(1− β1)(1− β2)

−
√

x(1− β1)(1− β2) 1− β1

)
,

Q3 =
(

1 0
0 0

)
.

Putting Pi = Qj for i ∈ Lj , we obtain

I = β1Q1 + β2Q2 + β3Q3 =
k∑
1

αiPi.

�

Theorem 5. Let ~α = (α1, . . . , αk) ∈ [0, 1)k and
k∑

i=1

αi = m, m ∈ N, then ~α ∈ Ωk.

Proof. If m = 1, then the statement of the theorem is obvious. The case m = 2 is
proved in Theorem 7. Let now m > 2. We use the induction on k. Suppose Theorem 7
is true for every m = 1, 2, . . . , k − 1 with k = s ≥ 3. Let α1, . . . , αs+1 ∈ [0, 1) and∑s+1

1 αi = A ∈ N. Using the transformation S, it is sufficient to prove the inclusion
~α ∈ Ωs+1 only for A ≤ (s + 1)/2. Under the last conditions there are two coefficients,
say αs and αs+1, such that αs +αs+1 ≤ 1. If αs +αs+1 = 1, then putting Ps = Ps+1 = I
and the other projections are zero, we obtain the needed decomposition. We consider
now the case αs + αs+1 < 1. Defining Ps+1 = Ps, we obtain a new problem

s−1∑
1

αiPi + (αs + αs+1)Ps = I,
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but the number of orthogonal projections in the decomposition is equal to s. Since
A ≤ (s + 1)/2 ≤ s − 1 for s ≥ 3, by the induction assumption, such a problem has a
solution. This completes the proof. �

4. Open sets in Ωk

In this section we present decompositions of the identity in the case where the sum of
the coefficients is close to an integer or when they are almost the same.

In the following formulas, γ = a + b− x. Let us define two orthogonal projections

P (a, b, x) =
1

a(γ − x)

(
x(b− x)

√
xγ(a− x)(b− x)√

xγ(a− x)(b− x) γ(a− x)

)
,(8)

Q(a, b, x) =
1

b(γ − x)

(
x(a− x) −

√
xγ(a− x)(b− x)

−
√

xγ(a− x)(b− x) γ(b− x)

)
.(9)

Direct calculations show that

(10) aP (a, b, x) + bQ(a, b, x) = diag(x, a + b− x)

and, for x ∈ [0,min(a, b)] ∪ [max(a, b), a + b], the orthogonal projections P (a, b, x) and
Q(a, b, x) are correctly defined.

Lemma 5. Let a real number ε and a vector ~α ∈ R5 be such that 0 < ε < α5 ≤ α4 ≤
α3 ≤ α2 ≤ α1 < 1 − ε, α1 + α2 > 1 − ε, and α1 + · · · + α5 = 2 + ε. Then the algebra
P5,~α has an irreducible ∗-representation in the matrix algebra M3(Q2) over the Cunts
algebra Q2.

Proof. Let us denote by pij the entries of the matrix P (α1, α2, 1 − ε) obtained by the
formula (8). If S1 and S2 are standard generators in Cunts algebra Q2 satisfied the
relations S∗1S2 = 0 and S∗1S1 = I = S∗2S2 = S1S

∗
1 + S2S

∗
2 , then the block matrix

operators P1 and P2

P1 =

 p11I 0 p12S
∗
1

0 p11I p12S
∗
2

p21S1 p21S2 p22I

 , P2 =

 p11I 0 −p12S
∗
1

0 p11I −p12S
∗
2

−p21S1 p21S2 p22I


are orthogonal projections and

(11) α1P1 + α2P2 = diag ((1− ε)I, (1− ε)I, (α1 + α2 − 1 + ε)I) .

Beside, by (10),

(12) α3P (α3, α5, ε) + α5Q(α3, α5, ε) = diag (ε, α3 + α5 − ε)

and, for α̃4 = α3 + α5 − ε,

(13) α4P (α4, α̃4, ε) + α̃4Q(α4, α̃4, ε) = diag

(
ε,

5∑
3

αi − 2ε

)
.

Since Q(α4, α̃4, ε) is an orthogonal projection, there exists a unitary 2× 2 matrix U such
that U∗Q(α4, α̃4, ε)U = diag (1, 0). Let us define now the orthogonal projections P3, P4

and P5 as follows:

(14)
P3 := ( diag (1, U) diag (P (α3, α5, ε), 1) diag (1, U∗))⊗ I,
P4 := diag (1, P (α4, α̃4, ε))⊗ I,
P5 := ( diag (1, U) diag (1, Q(α3, α5, ε)) diag (1, U∗))⊗ I,

Thus we have the equality

α3P3 + α4P4 + α5P5 = diag

(
εI, εI,

( 5∑
3

αi − 2ε
)
I

)
.
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In view of (11), we obtain (1) for k = 5 and the orthogonal projections Pi ∈ M3(Q2).
The irreducibility of the such constructed representation of the algebra P5,~α is followed
from the irreducibility of the triple P3, P4 and P5. �

Lemma 6. Let a real number ε and a vector ~α ∈ R5 be such that 0 < ε < α5 ≤ α4 ≤
α3 ≤ α2 ≤ α1 < 1− ε, α1 + α2 ≤ 1− ε and α1 + · · ·+ α5 = 2 + ε. Then ~α ∈ Ω5.

Proof. Let us define four sequences of nonnegative numbers xi, yi, si and pi by the rule

(15)

x1 = 1,

xi = 1 + yi−1 − α3 − α4, yi = xi + 1− α1 − α2 − (si + pi)α5,

si =
{

1, if max(1− α5 + ε, α2 + α5) < xi,
0, otherwise,

pi =
{

1, if 1− α5 + ε < xi ≤ α2 + α5,
0, otherwise.

We consider now operators Pi, i = 1, . . . , 5, of the following form:
P1 = diag (P (α1, α2 + s1α5, x1), P (α1, α2 + s2α5, x2), . . . ) ,
P2 = diag (Q(α1, α2 + s1α5, x1), Q(α1, α2 + s2α5, x2), . . . ) ,
P3 = diag (0, P (α3, α4, y1), P (α3, α4, y2), . . . ) ,
P4 = diag (0, Q(α3, α4, y1), Q(α3, α4, y2), . . . ) ,
P5 = P2 diag (s1, s1, s2, s2, s3, s3, . . . ) + diag (0, p1, 0, p2, . . . ) .

By (11), we obtain the linear combination
α1P1 + α2P2 + α5P5 = diag (1, α1 + α2 + (s1 + p1)α5 − x1)

⊕ diag (x2, α1 + α2 + (s2 + p2)α5 − x2, . . . )

and the linear combination

α3P3 + α4P4 = diag (0, y1, α3 + α4 − y1, y2, α3 + α4 − y2, . . . ) .

Let us prove that orthogonal projections P1, . . . , P5 are correctly defined. In order to
show this, it is sufficient to prove the inequality

(16) 1− α5 ≤ xi ≤ 1

and then we will have

α3 + α4 ≥ yi = xi + 1− α1 − α2 ≥ xi + ε ≥ α3

for xi ≤ 1− α5 + ε or

α3 + α4 ≥ yi = xi + 1− α1 − α2 − α5 ≥ 2 + ε− (α1 + · · ·+ α5) + α3 ≥ α3

for xi > 1− α5 + ε.
By definition, yi−1 is a function of xi−1 and we can substitute it, instead of yi−1, into

the expression (15) for xi. Whence we obtain a recurrence relation for the numbers x1,
x2, x3, . . . ,

xi = 1+ xi−1 +1−α1−α2− (si−1 + pi−1)α5−α3−α4 = xi−1− ε +(1− si−1− pi−1)α5.

So we have another expression for xi,

xi =
{

xi−1 − ε, if xi−1 > 1− α5 + ε,

xi−1 − ε + α5, if xi−1 ≤ 1− α5 + ε.

It is easy to see now that xi satisfies (16) for xi−1 ∈ [1− α5, 1]. �

Lemma 7. Let k > 4, 0 < αi < 1, i = 1, 2, . . . , k and
∑k

1 αi = 2. There exists ε > 0
such that for every k and real numbers β1, . . . , βk satisfying the inequality |αi − βi| < ε,
we have ~β ∈ Ωk. Besides, for k > 5 the algebra Pk,~α has an irreducible ∗-representation
in the matrix algebra M3(Q2).
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Proof. We put γ = 1
2k min(α1, 1− α1, . . . , αk, 1− αk).

Let k = 5. Suppose ~β satisfies the conditions of the lemma for ε = γ and B =
β1 + · · ·+ β5 > 2. Then

B − 2 ≤ |α1 − β1|+ · · ·+ |α5 − β5| < 5ε <
1
2

min(αi)

and, by Lemmas 5 and 6, the needed decomposition exists.
Let now ~β satisfies the conditions of the lemma for ε = γ/11 and B < 2. We note that

β̃ = (β1/(B− 1), β2/(B− 1), . . . , βk/(B− 1)) ∈ Ωk, because
∑k

1 β̃i = B/(B− 1) > 2 and

|αi − β̃i| = |(αi − βi) + (βi − β̃i)| < ε +
1

1− 5ε
< γ,

and this case has been proved in the previous paragraph. So there exists the decompo-
sition

(17) Ĩ = β̃1P̃1 + β̃2P̃2 + · · ·+ β̃5P̃5.

Applying the transformation T to (17) we conclude that ~β ∈ Ω5.
Let k > 5. Using the transformation T it is sufficient to consider the case A > 2.

Let ε = γ and ~β satisfy the conditions of the lemma. Without lost of generality one can
suppose that βi are arranged as follows: β1 ≥ β2 ≥ · · · ≥ βk. We are going to find a
decomposition of the matrix identity,

(18) diag (I, I, I) = β1Q1 + β2Q2 + · · ·+ βkQk,

directly using the construction from Lemma 5. Let β̂ = (β1 + β2 + · · · + βk−3)/2. For
the vector ~β′ = (β̂, β̂, βk−2, βk−1, βk), there exists a representation of P5, ~β′ in M3(Q2).
We set Qk−2 = P3, Qk−1 = P4 Qk = P5, where Pi are calculated according to (14) for
the vector ~β′.

There exists the greatest number m, which is less than k−2, such that
∑m

1 βi < 1−ε.
Assume at first that

∑m+1
1 βi > 1− ε. Putting P1 = P2 = · · · = Pm−1 = diag (1, 0),

(19) Pm = P (βm, βm+1, x), Pm+1 = Q(βm, βm+1, x),

where x = 1− ε−
∑m−1

1 βi and Pm+2 = Pm+3 = · · · = Pk−3 = diag (0, 1), we obtain

(20)
m−3∑

1

βiPi = diag

(
1− ε,

m−3∑
1

βi − 1 + ε

)
As in Lemma 5 the orthogonal projections Q1, Q2, . . . are constructed in the block

matrix form,

(21) Qs =

 ps
11I 0 ps

12S
∗
1

0 ps
11I ps

12S
∗
2

ps
21S1 ps

21S2 ps
22I

 ,

where ps
ij is the entry of Ps and s = 1, . . . , k−3. For the matrices Qi, the decomposition

(18) holds.
Assume secondly that

∑m+1
1 βi = 1 − ε. Let 0 < δ << ε and β̃1 =

∑m
1 βi. There

exists a unitary matrix U such that

U∗P (1− ε− 2δ, βm+2, 1− ε)U = diag (1, 0) .

We define Pi by the equalities

Pi = UP (β̃1, βm+1, 1− ε− δ)U∗, Pm+1 = UQ(β̃1, βm+1, 1− ε− δ)U∗,

Pm+2 = Q(1− ε− 2δ, βm+2, 1− ε) and Pm+3 = · · · = Pk−3 = diag (0, 1) .
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The equation (20) is verified and, hence, using formula (21) we obtain the decompo-
sition (18).

We remark that for both constructions, the matrix Pm+1 is not a diagonal matrix.
Therefore irreducibility of the such constructed representations follows from irreducibility
of the triple Qk−2, Qk−1 and Qk. �

Lemma 8. Let αi ∈ [2.49, 2.51], i = 1, . . . , 5. Then ~α ∈ Ω5.

Proof. Let A = α1 + · · · + α5 ≤ 2.5. We assume that α1 ≥ α2 ≥ . . . ≥ α5. If α1 = α5,
then ~α ∈ Ω5, since the scalar operator I/α1 is a sum of five orthogonal projections [3].

So let α1 > α2. There are two cases for the sum B = α1 + α2 + α3 + α4, B < 2 and
B ≥ 2.

1. B < 2. In this case the inequality A − 2 < α5 holds. So by Lemmas 5 and 6,
~α ∈ Ω5.

2. B ≥ 2. If B = 2, then (α1, α2, α3, α4) ∈ Ω4 by Theorem 4. Whence ~α ∈ Ω5.
Let now B > 2. We define two sequences of real numbers xi and pi by x1 = 0, xi =

xi−1 + pi−1(α5 − α1) + B − 2, pi =
{

1, if xi > 1/5,
0, otherwise.

The needed operators Pi, i = 1, . . . , 5 have the following form:
P1 = R diag (1− s1, 1− s1, 1− s2, 1− s2, 1− s3, 1− s3, . . . ) ,

P5 = R diag (s1, s1, s2, s2, s3, s3, ) ,

where
R = diag (P (α1 + p1(α5 − α1), α2, 1− x1), P (α1 + p2(α5 − α1), α2, 1− x2), . . . ) ,

P2 = diag (Q(α1 + p1(α5 − α1), α2, 1− x1), Q(α1 + p2(α5 − α1), α2, 1− x2), . . . ) ,

P3 = 0⊕ P (α3, α4, 2− α1 − α2 − p1(α5 − α1)− x1)

⊕ P (α3, α4, 2− α1 − α2 − p2(α5 − α1)− x2)⊕ · · · ,

P4 = 0⊕Q(α3, α4, 2− α1 − α2 − p1(α5 − α1)− x1)

⊕Q(α3, α4, 2− α1 − α2 − p2(α5 − α1)− x2)⊕ · · · .

A direct calculation shows that (1) holds. Note that

0 ≤ xi ≤ 1/5 + (B − 2) ≤ 0.2 + 0.04 = 0.24.

So the orthogonal projections P1, . . . , P5 are correctly defined and ~α ∈ Ω5.
To complete the proof it remains to consider linear combinations with the sum α1 +

· · ·+ α5 > 2.5. Since by the first part of the proof, (1− α1, . . . , 1− α5) ∈ Ω5, it follows
that there exists a decomposition of identity into a linear combination of orthogonal
projections, say, I = (1−α1)R1 + (1−α1)R2 + (1−α1)R5. Using the transformation S
to it, we obtain a new decomposition with the coefficients (α1, . . . , α5). �

We now can use the ideas from the proof of Theorem 5 in order to show that neigh-
borhoods of vectors with the sum of coordinates equal to an integer are lying in Ωk.

Theorem 6. Let k > 4, m ∈ N, m ∈ [2, k − 2], αi ∈ (0, 1), i = 1, 2, . . . , k, and∑k
1 αi = m. There exists ε > 0, which depends on ~α, such that every vector ~β with the

differences |αi − βi| < ε lies in Ωk.

Proof. For k = 5 the statement of the theorem follows from Lemmas 5, 6. Suppose that
the theorem is true for every k ≤ k0, k0 being fixed, and for every m ∈ [2, k−2]. For any
real numbers α1, . . . , αk0+1 from the interval (0, 1) with the sum

∑k0+1
1 αi = s ∈ N, it

suffices to prove the theorem only for the values of s satisfying s ≤ (k+1)/2. Then either
all the coefficients are equal to 1/2, and the theorem is true for them due to Lemma 8,
or the sum of two of them, say αk + αk+1 is less than 1. In the latter case, for the
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new coefficients ~α′ = (α1, α2, . . . , αk−1, αk + αk+1), the statement of the Theorem 6 is
valid by assumption, i.e., there exists ε(~α′) > 0 such that for every vector ~γ ∈ Rk with
|αi − γi| < ε(~α′), i = 1, . . . , k − 1, |αk + αk+1 − γk| < ε(~α′), we have ~γ ∈ Ωk. Putting
ε(~α) = ε(~α′)/2, we conclude that the decomposition

I = β1P1 + β2P2 + · · ·+ βk+1Pk+1

exists for every ~β satisfying the inequality |αi − βi| < ε(~α), i = 1, . . . , k + 1 even under
the additional restriction that Pk = Pk+1. �

Theorem 7. For every A ∈ (βk, k−βk), k ≥ 5, there exists ε > 0 such that every vector
~α with |αi −A/k| < ε, i = 1, . . . , k, is lying in Ωk.

Proof. If we prove the theorem for A ∈ [2, k/2], then by applying the transformations S,
Φ− and Φ+ we prove the theorm for every A ∈ (βk, k − βk).

So let A ∈ [2, k/2] and k = 5. The cases A = 2 and A = 2.5 were proved in
Lemma 7 and Lemma 8, correspondingly. For 2 < A < 2.5, we put ε = min(1/100, (2.5−
A)/10, (A − 2)/10). Let ~α ∈ R5 and |αi − A/k| < ε, i = 1, . . . , 5. Without loss of
generality we can assume α1 ≥ α2 ≥ · · · ≥ αk. Then α1 +α2 +α3 +α4 < 5A/4+4ε < 2.
So by Lemma 5 and Lemma 6, α ∈ Ω5.

Let now k > 5 and A ∈ [2, k/2]. If A = k/2, then putting ε = 1/100, we obtain the
following condition on αi: |αi−1/2| < 1/100. Using Lemma 8, we conclude that α ∈ Ωk.

Let A < k/2. There exists an integer number m such that (m− 1)A/k ≤ 2 < mA/k.
Let ε = min(A/100k, (A − k/2)/100k, (mA/k − 2)/2k). We assume that ~α ∈ Rk, |αi −
A/k| < ε and the following arrangement of the coordinates holds: α1 ≥ α2 ≥ · · · ≥ αk.
The vector ~α′ = (α1, . . . , αm) is in Ωm by Lemma 7 because 2 < mA/k−mε <

∑m
i αi <

mA/k + mε < 2 + αm. So α ∈ Ωk in this case too. �
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