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INVERSE THEOREMS IN THE THEORY OF APPROXIMATION OF
VECTORS IN A BANACH SPACE WITH EXPONENTIAL TYPE

ENTIRE VECTORS

S. TORBA

Abstract. An arbitrary operator A on a Banach space X which is a generator of
a C0-group with a certain growth condition at infinity is considered. A relationship
between its exponential type entire vectors and its spectral subspaces is found. In-
verse theorems on the connection between the degree of smoothness of a vector x ∈ X
with respect to the operator A, the rate of convergence to zero of the best approxi-
mation of x by exponential type entire vectors for operator A, and the k-module of
continuity with respect to A are established. Also, a generalization of the Bernstein-
type inequality is obtained. The results allow to obtain Bernstein-type inequalities
in weighted Lp spaces.

1. Introduction

Direct and inverse theorems which establish the relationship between the degree of
smoothness of a function with respect to a differentiation operator and the rate of con-
vergence to zero of its best approximation by trigonometric polynomials are well known in
the theory of approximation of periodic functions. Bernstein’s and Jackson’s inequalities
are ones among such results.

N. P. Kuptsov proposed a generalized notion of the module of continuity, expanded
onto C0-groups in a Banach space [1]. Using this notion, A. P. Terekhin [2] proved
generalized Bernstein-type inequalities for the cases of a bounded group and an s-regular
group. Recall that a group {U(t)}t∈R is called s-regular if the resolvent of its generator
A satisfies the following condition: ∃θ ∈ R : ‖Rλ(eiθAs)‖ ≤ C

Imλ .
M. L. Gorbachuk and V. I. Gorbachuk proposed to use entire vectors of some operator

as basic approximation objects and constructed [3, 4] a general operator approach to
direct and inverse theorems.

G. V. Radzievsky studied direct and inverse theorems [5, 6], using the notion of a K-
functional (it should be noted that a K-functional has two-sided estimates with regard
to the module of continuity at least for bounded C0-groups).

In [7], the authors investigated groups of unitary operators in Hilbert space and es-
tablished Bernstein-type and Jackson-type inequalities. These inequalities are used to
estimate the rate of convergence to zero of the best approximation of both finite and
infinite smoothness vectors for the operator A by exponential type entire vectors.
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We consider C0-groups in the Banach space, generated by so-called non-quasianalytic
operators [8], i.e., the groups satisfying

(1.1)
∫ ∞

−∞

ln ‖U(t)‖
1 + t2

dt < ∞.

We recall that belonging of a group to the C0-class means that for every x ∈ X the
vector-valued function U(t)x is continuous on R with respect to the norm of the space
X.

As it was shown in [3], the set of exponential type entire vectors for a non-quasianalytic
operator A is dense in X, so the problem of approximation by exponential type entire
vectors is correct. On the other hand, it was shown in [9] that condition (1.1) is close
to the necessary one, that is, in the case when (1.1) doesn’t hold, the class of entire
vectors isn’t necessarily dense in X, and the corresponding approximation problem loses
its meaning.

In [10], generalized Jackson-type inequalities for approximation by entire vectors of
exponential type of non-quasianalytic operators are established. The purpose of this
paper is to obtain Bernstein-type inequalities and an analogue of an inverse theorem for
such approximations, and to give some applications of these results to weighted Lp spaces.
In order to do this, it is proved that the set of exponential type entire vectors of type
not exceeding some σ > 0 coincides with some spectral subspace of a non-quasianalytic
operator (constructed in [8]), and the well-developed technique for spectral subspaces is
used. The last result (coincidence of the two sets of vectors) improves the embedding,
established in [3].

2. Preliminaries

Let A be a closed linear operator with dense domain of definition, D(A), on a Banach
space (X, ‖·‖) over the field of complex numbers.

Let C∞(A) denote the set of all infinitely differentiable vectors of the operator A, i.e.,

C∞(A) =
⋂

n∈N0

D(An), N0 = N ∪ {0}.

For a number α > 0 we set

Eα(A) =
{
x ∈ C∞(A) | ∃c = c(x) > 0 ∀k ∈ N0

∥∥Akx
∥∥ ≤ cαk

}
.

The set Eα(A) is a Banach space with respect to the norm

‖x‖Eα(A) = sup
n∈N0

‖Anx‖
αn

.

Then E(A) =
⋃

α>0 Eα(A) is a linear locally convex space with respect to the topology
of the inductive limit of the Banach spaces Eα(A),

E(A) = lim ind
α→∞

Eα(A).

Elements of the space E(A) are called [11] exponential type entire vectors of the operator
A. The type σ(x,A) of a vector x ∈ E(A) is defined as the number

σ(x,A) = inf {α > 0 : x ∈ Eα(A)} = lim sup
n→∞

‖Anx‖
1
n .

Denote by Ξα(A) the following set:

(2.1) Ξα(A) =
{
x ∈ E(A) |σ(x) ≤ α

}
.

It is easy to see that

(2.2) Eα(A) ⊂ Ξα(A) =
⋂
ε>0

Eα+ε(A).
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Example 1. Let X be one of Lp(2π) – spaces (1 ≤ p < ∞) of p-th degree integrable in
over [0, 2π], 2π-periodic functions or the space C(2π) of continuous 2π-periodic functions
(the norm is defined in a standard way), and let A be the differentiation operator on
the space X, D(A) = {x ∈ X ∩ AC(R) : x′ ∈ X}; (Ax)(t) = dx

dt , where AC(R) denotes
the space of absolutely continuous functions over R. It can be proved that in such
a case the space E(A) coincides with the space of all trigonometric polynomials, and
σ(y, A) = deg(y) for y ∈ E(A), where deg(y) is the degree of the trigonometric polynomial
y.

Note that all previous definitions do not change if we replace the operator A by any
operator of the form eiϑA, ϑ ∈ R. Moreover, the main results of this article, which are
theorems 2 and 3, do not depend on which operator generates the group U(t), either A
or iA. So, in what follows, we always assume that the operator iA is a generator of the
C0-group of linear continuous operators {U(t) : t ∈ R} [12] on X. Moreover, we suppose
that the operator A is non-quasianalytic.

For t ∈ R+, we set

(2.3) MU (t) := sup
τ∈R, |τ |≤t

‖U(τ)‖ .

The estimation ‖U(t)‖ ≤ Meωt for some M,ω ∈ R implies MU (t) < ∞ (for all t ∈ R+).
It is easy to see that the function MU (·) has the following properties:

1) MU (t) ≥ 1, t ∈ R+;
2) MU (·) is monotonically non-decreasing on R+;
3) MU (t1 + t2) ≤ MU (t1)MU (t2), t1, t2 ∈ R+.

According to [1], for x ∈ X, t ∈ R+ and k ∈ N, we set as a generalization of the
module of smoothness,

ωk(t, x, A) = sup
0≤τ≤t

∥∥∆k
τx

∥∥ , where(2.4)

∆k
h = (U(h)− I)k =

k∑
j=0

(−1)k−j

(
j

k

)
U(jh), k ∈ N0, h ∈ R (∆0

h ≡ 1).(2.5)

For an arbitrary x ∈ X, according to [4, 7], the best approximation by exponential
type entire vectors y of an operator A for which σ(y, A) ≤ r is defined as

Er(x,A) = inf
y∈Ξr(A)

‖x− y‖ , r > 0.

For fixed x, Er(x,A) does not increase and Er(x,A) → 0, r → ∞, for every x ∈ X if
and only if the set E(A) of exponential type entire vectors is dense in X. Particularly, as
indicated above, the set E(A) is dense in X if the operator A generates a C0-group U(t)
and this group belongs to the non-quasianalytic class (that is, it satisfies (1.1)).

3. Spectral subspaces of non-quasianalytic operators

The main instrument for proving a generalized Bernstein inequality is the theory of
spectral subspaces of non-quasianalytic operator A constructed in [8]. Recall that spectral
subspaces (denoted by L(∆)) are defined for all segments ∆ ⊂ R and are characterized
by the following properties [8, p. 446]:

1) the operator A is defined on whole L(∆) and is bounded on it;
2) L(∆) is invariant with respect to A;
3) the spectrum of L(∆)-induced part A∆ of the operator A, consists of the inter-

section of the spectrum of A with the interior of the segment ∆ and, perhaps,
the endpoints of the segment ∆. And at that, if an endpoint of the segment ∆
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does not belong to the spectrum of A, it does not belong to the spectrum of A∆

either;
4) if there is some subspace L on which the operator A is defined everywhere and is

bounded, and this subspace is invariant with respect to A, and at the same time
the spectrum of the L-induced part of A is included in ∆, then L ⊂ L(∆).

Now we describe the construction of spectral subspaces and their main properties, and
later prove a relationship with entire vectors of exponential type. Let θ(t) (−∞ < t < ∞)
be an entire function of order 1 with zeroes on the positive imaginary ray,

(3.1) θ(t) = C

∞∏
k=1

(
1− t

itk

)
, where 0 < t1 ≤ t2 ≤ . . . ,

∞∑
k=1

1
tk

< ∞,

and C be a constant. Note that |θ(t)| satisfies the conditions |θ(t1 + t2)| ≤ |θ(t1)| ·
|θ(t2)|, t1, t2 ∈ R and

∫∞
−∞

|ln(α(t))|
1+t2 dt < ∞, i.e. it belongs to Q (for a definition of the

class Q, see [10]).
Denote by E

(∞)
θ the class of entire functions φ(t) of finite type and order 1 which

satisfy, for all m = 0, 1, . . . and for all a > 0, the condition

(3.2) M
(m,a)
θ (φ) :=

∫ ∞

−∞
|tmθ(at)φ(t)| dt < ∞.

As shown in [8, Lemma 1.1.1], the Fourier transform of a functions from E
(∞)
θ is non-

quasianalytic, that is, the following property takes place:

Proposition 1. For any segment ∆ of the real axis and for any open finite interval
I ⊃ ∆ there exists φ(t) ∈ E

(∞)
θ such that its Fourier transform equals one in ∆ and

equals zero outside I.

Moreover, the class E
(∞)
θ is linear and is closed under convolutions and differentiation.

The next step is a construction of finite functions of the operator A. For the C0-group
with non-quasianalytic generator there exists [13] such an entire function θ(t) of order 1
with zeroes on the positive imaginary ray that

‖U(t)‖ ≤ |θ(t)| ∀t ∈ R.

Let us consider an arbitrary φ(t) ∈ E
(∞)
θ and construct the linear operator

(3.3) Pφ =
∫ ∞

−∞
φ(t)U(t) dt.

The operator defined by (3.3) is bounded due to (3.2). Next, consider an arbitrary
segment ∆ of the real axis and denote by E

(∞)
θ (∆) the set of such functions φ(t) ∈ E

(∞)
θ

that the Fourier transform φ̃(λ) = 1 in some interval containing ∆. Denote by L(∆) the
subspace of vectors x such that

(3.4) Pφx = x

for all φ(t) ∈ E
(∞)
θ (∆).

The operators Pφ are useful for studying the vectors Anx and for proving a Bernstein-
type inequality because of the properties (3.3), (3.4) and the property [8, p. 445]

(3.5) APφ = PφA = P−iφ′ ,

which allows to deal with derivatives of some entire functions instead of Banach-space
operators and vectors.

The following theorem shows a close relationship between spectral subspaces and entire
vectors of exponential type.
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Theorem 1. For all α > 0,

Eα(A) ⊂ Ξα(A) = L([−α, α]),

moreover, Ξα(A) is a closed subspace of X.

Proof. First we will prove the embedding Ξα(A) ⊂ L([−α, α]). To do this, the forth
property of spectral subspaces (mentioned at the beginning of this section) will be used.

Obviously, Eα(A) is an invariant subspace of A, and so is Ξα(A). Denote the Ξα-part
of A by Aα:

Aα = A � Ξα(A).
By the mentioned property of spectral subspaces, to finish the proof, it is enough to show
that σ(Aα) ⊂ [−α, α] and that A is bounded on Ξα(A).

Let us show that σ(Aα) ⊂ [−α, α]. For that we check that all points from C\[−α, α]
are regular.

Let λ ∈ R\[−α, α], λ cannot be an eigenvalue, otherwise for some x ∈ Ξα(A) and for
all n ∈ N, ‖An

αx‖ = |λ|n‖x‖, which implies x 6∈ Eα+ε(A) for some ε > 0, a contradiction
with (2.2). That is, λ is not an eigenvalue of Aα.

The equation

(3.6) Ax− λx = y

has a solution

x = −
∞∑

n=0

Any

λn+1
.

for any λ ∈ R\[−α, α] and y ∈ Ξα(A), and this solution belongs to Ξα(A), so λ ∈ ρ(Aα).
Let Im λ 6= 0. Then, as shown in [8, p. 442], λ is not an eigenvalue of A (as well as

Aα) and the resolvent Rλ(A) is defined. We set, for all y ∈ Ξα(A), x = Rλy. Then

‖Anx‖ = ‖AnRλy‖ = ‖RλAny‖ ≤ ‖Rλ‖ · ‖Any‖,
hence x ∈ Ξα(A) and (by definition of the resolvent) x, y satisfy the equation (3.6). So
again λ ∈ ρ(Aα).

Thus it is shown that {λ ∈ R | |λ| > α} ⊂ ρ(Aα) and {λ ∈ C | Im λ 6= 0} ⊂ ρ(Aα),
therefore, σ(Aα) ⊂ [−α, α].

To prove boundedness of A on Ξα(A), consider the notion of S-operators [8, p. 452]1,
it results from the following facts (see [8, pp. 462–465 and Theorem 6.1]):

• If an operator A is non-quasianalytic, then it is an S-operator.
• There exists a bounded linear operator Φ−∆(A) defined on the whole X such that

its kernel K−
∆ := KerΦ−∆(A) is a spectral subspace L(∆) of the operator A.

• The operator A is defined and is bounded on whole K−
∆ .

• If L is an invariant subspace of A and if the spectrum of L-induced part AL of
the operator A is included into segment ∆, then L ⊂ K−

∆ .
Moreover, from these facts it follows that L(∆) is a closed subspace. This means that
closedness of Ξα(A) would result from the first statement of the theorem (Ξα(A) =
L([−α, α])).

Let us prove the embedding L([−α, α]) ⊂
⋂

ε>0 Eα+ε(A) = Ξα(A).2 Denote AL =
A � L([−α, α]). The operator AL is bounded (by the first property of L([−α, α])), its
spectrum is contained in [−α, α], therefore, the spectral radius of AL does not exceed α,
i.e., limn→∞

n
√
‖An

L‖ ≤ α. From the latter relation, for all x ∈ L and for all ε > 0 there
exists a constant c = c(x, ε) such that ‖Anx‖ = ‖An

Lx‖ ≤ c(α + ε)n, i.e., x ∈ Ξα(A).

1A detailed definition of S-operators and a construction of spectral subspaces for them goes beyond
the scope of this article, thus not sited. Only required properties are mentioned.

2This embedding improves the result of [3]: ∀α > 0 ∃r(α) : L([−α, α]) ⊂ Er(α)(A).
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Below another proof of the embedding L([−α, α]) ⊂
⋂

ε>0 Eα+ε(A) = Ξα(A) is pro-
posed. This proof contains some uniform bounds on the constants c = c(x, α) in the
definition of the sets Eα(A). According to [10, Lemma 3.1], for |θ(t)| there exist an even
entire function Kθ(t) and constants cr = cr(θ) > 0, r > 0, such that, for all z ∈ C,

(3.7) |Kθ(rz)| ≤ cr
er|Im z|

|θ(|z|)|
.

Let us consider ∆ = [−α, α] and I = (−α − 4ε, α + 4ε) ⊃ ∆. According to the proof
of [8, Lemma 1.1.1], the Fourier transform of the function

φ(t) =
K2

θ (−εt)e−(α+2ε)it −K2
θ (εt)e(α+2ε)it

−2πit
=

α + 2ε

π
K2

θ (εt)
sin

(
(α + 2ε)t

)
(α + 2ε)t

equals one in ∆ and equals zero outside I. Denote by

φr,ε(z) := K2
θ (εz)

sin rz

rz
, z ∈ C, r > 0, ε > 0,

and estimate the derivatives φ
(n)
r,ε (t), t ∈ R. Using the inequality∣∣∣∣ sin z

z

∣∣∣∣ ≤ min(1, |z|)
|z|

e|Im z| ≤ e|Im z|

and (3.7), one can find

(3.8) |φr,ε(z)| ≤ c2
εe

2ε|Im z|

|θ2(|z|)|
· er|Im z| =

c2
εe

(r+2ε)|Im z|

|θ2(|z|)|
.

Similarly to the proof of [10, Lemma 3.2], the Cauchy integral formula for γn,r(t) :={
ζ ∈ C : |ζ − t| = n

r+2ε

}
and inequality (3.8) allow to obtain, for t ∈ R and n ∈ N, that

|φ(n)
r,ε (t)| ≤ n!

2π

∮
γn,r(t)

|φr,ε(ξ)|
|ξ − t|n+1

|dξ| = n!
2π

(r + 2ε)n+1

nn+1

∮
γn,r(t)

|φr,ε(ξ)||dξ|

≤ c(!)c2
εe
−n(r + 2ε)n+1

√
2πn

∮
γn,r(t)

e(r+2ε)|Im ξ−t|

|θ2(|ξ|)|
|dξ|,

where c(!) = sup
k∈N

k!√
2πk

( e

k

)k

.

Using |θ(t + s)| ≤ |θ(t)| · |θ(s)|, it follows from the last inequality that

|φ(n)
r,ε (t)| ≤ c(!)c2

εe
−n(r + 2ε)n+1

√
2πn|θ2(t)|

∮
γn,r(t)

e(r+2ε)|Im ξ−t|
∣∣θ2

(
|(t− ξ) + ξ|

)∣∣
|θ2(|ξ|)|

|dξ|

≤ c(!)c2
ε

√
2πn(r + 2ε)n

∣∣∣∣θ
(

n
r+2ε

)
θ(t)

∣∣∣∣2.
Returning to the function φ(t) one can get

(3.9) |φ(n)(t)| = α + 2ε

π

∣∣φ(n)
α+2ε,ε(t)

∣∣ ≤ c(!)c2
ε

√
2πn

π
(α + 2ε)(α + 4ε)n

∣∣∣∣θ
(

n
α+4ε

)
θ(t)

∣∣∣∣2.
Let x ∈ L([−α, α]). By the construction, φ ∈ E

(∞)
θ (∆), thus Pφx = x and, accordingly

to (3.5),

‖Anx‖ = ‖AnPφx‖ = ‖P(−i)nφ(n)x‖.
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Using (3.3) and (3.9), the following estimate for the latter expression can be found:

‖P(−i)nφ(n)x‖ ≤
∫ ∞

−∞
|φ(n)(t)θ(t)| dt · ‖x‖

≤ c(!)c2
ε

√
2πn

π
(α + 2ε)(α + 4ε)n‖x‖

∣∣∣∣θ2

(
n

α + 4ε

)∣∣∣∣ ∫ ∞

−∞

dt

|θ(t)|
.

It follows from (3.1) that ∫ ∞

−∞

dt

|θ(t)|
= cθ < ∞,

so there exists c > 0 such that

(3.10) ‖Anx‖ ≤ c
√

n(α + 2ε)(α + 4ε)n

∣∣∣∣θ2

(
n

α + 4ε

)∣∣∣∣ ‖x‖, α > 0, ε > 0, n ∈ N.

The following relation holds:

(3.11) lim
n→∞

(
c
√

n(α + 2ε)(α + 4ε)n
)1/n = α + 4ε, α, ε ∈ R+.

As noted in the proof of [10, Theorem 3.1], for the function |θ(t)| we have

(3.12) lim
n→∞

(∣∣∣θ2
(n

α

)∣∣∣)1/n

= 1, α ∈ R+,

therefore from (3.10), (3.11) and (3.12) one can get

σ(x,A) = lim sup
n→∞

‖Anx‖
1
n ≤ α + 4ε,

that is ∀ε′ > 0 x ∈ Eα+4ε+ε′(A). Due to arbitrariness of ε,

x ∈
⋂
ε>0

Eα+ε(A),

thish is what was to be proved. �

4. Generalized Bernstein-type inequality

One of the well-known inequalities in approximation theory is the Bernstein inequality.
If f(x) is an entire function of exponential type σ > 0, and

|f(x)| ≤ M, −∞ < x < ∞,

then
|f ′(x)| ≤ σM, −∞ < x < ∞.

In this section some generalization of the Bernstein inequality for exponential type
entire vectors is proved.

Note that a more detailed examination of (3.10) allows to obtain a Bernstein-type
inequality. Consider the relation (3.12). Note that it holds uniformly for all α ≥ α0 > 0.
Therefore for all ε > 0 there exists cε > 0 such that

(4.1) c
√

n

∣∣∣∣θ2

(
n

α + 4ε

)∣∣∣∣ ≤ cε(1 + ε)n, ∀n ∈ N, ∀α ∈ R+.

Inequalities (3.10) and (4.1) allow to prove the following.

Proposition 2. For every ε > 0 there exists cε > 0, independent of α and of n, such
that for all α > 0

(4.2) ‖Anx‖ ≤ cε(1 + ε)n(α + 2ε)(α + 4ε)n‖x‖, x ∈ Ξα(A) or x ∈ Eα(A).

But in contrast with the classic Bernstein inequality, the type α of the vector appears
in (4.2) in the degree n + 1. Let us show that an analogous inequality with the degree n
holds.
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Theorem 2 (Generalized Bernstein-type inequality). For all vectors x ∈ E(A), of
type, not exceeding some α ≥ 1, the following inequality holds

(4.3) ‖Anx‖ ≤ cnαn‖x‖,
where the constants cn > 0 do not depend on x and on α.

Proof. Let us consider the majorant θ(t) for the function ‖U(t)‖, constructed in [13]3.
Remark that θ(t) is of the form (3.1). Similarly to the proof of theorem 1 and as
in [10, Lemma 3.1] from the function θ(t) one can construct the entire function K(t) of
exponential type.

Let us consider such a function φα(t) that its Fourier transform equals 1 in [−α, α]
and equals 0 outside (−3α, 3α). According to [8, Lemma 1.1.1], one can take φα(t) to be
the function

φα(t) =
K2

(
α
2 t

)
sin 2αt

πt
.

Denote by

φ(t) :=
K2

(
t
2

)
sin 2t

πt
.

Then φα(t) = αφ(αt). As it follows from (3.3) and (3.5), it is enough to estimate the
quantity ∫ ∞

−∞
|φ(n)

α (t)θ(t)| dt

to prove the theorem. For α ≥ 1 we have |θ(t)| ≤ |θ(αt)| and∫ ∞

−∞
|φ(n)

α (t)θ(t)| dt ≤
∫ ∞

−∞
|φ(n)(αt)θ(αt)|αdt.

The change of variables τ = α · t gives
dnφ(αt)

dtn
=

dnφ(τ)
dτn

· αn,

thus ∫ ∞

−∞
|φ(n)(αt)θ(αt)|αdt = αn ·

∫ ∞

−∞
|φ(n)(τ)θ(τ)| dτ.

It is easy to see that the last integral exists and does not depend on α. Let it equal
cn > 0. Then

‖Anx‖ = ‖P(−i)nφ(n)x‖ ≤ cnαn‖x‖,
which was to be proved. �

As a consequence of theorem 2 we get the following estimate for the operator ∆k
h.

Corollary 1. Let x ∈ E(A) and σ(x) ≤ α, α ≥ 1. Then for all k ∈ N

‖∆k
hx‖ ≤ ck(hα)kMU (kh)‖x‖,

where the constant ck is the same as in the Theorem 2, and the function MU (t) is defined
by (2.3).

Proof. The following holds for ∆k
h:

∆k
hx = (U(t)− I)kx =

∫ t

0

· · ·
∫ t

0

U(ξ1 + . . . + ξk)Akx dξ1 . . . dξk.

By Theorem 2,
‖Akx‖ ≤ ckαk‖x‖,

3The majorant is denoted in [13] by ω(t), but in this article it is denoted by θ(t) in order not to
confuse it with the module of continuity
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and ‖U(ξ1 + . . . + ξk)‖ ≤ MU (kt) by the definition. Therefore,

‖∆k
hx‖ ≤

∫ t

0

· · ·
∫ t

0

‖U(ξ1 + . . . + ξk)‖ · ‖Akx‖ dξ1 . . . dξk ≤ ckhkMU (kh)αk‖x‖.

�

5. Inverse theorem of approximation

The following results generalize the classical Bernstein theorem (also known as the
inverse theorem).

Theorem 3. Let ω(t) be a function of type of module of continuity for which the following
conditions are satisfied:

(1) ω(t) is continuous and nondecreasing for t ∈ R+.
(2) ω(0) = 0.
(3) ∃c > 0 ∀t ∈ [0, 1] ω(2t) ≤ cω(t).
(4)

∫ 1

0
ω(t)

t dt < ∞.
If, for x ∈ X, there exist n ∈ N and m > 0 such that

(5.1) Er(x,A) ≤ m

rn
ω

(
1
r

)
, r ≥ 1,

then x ∈ D(An) and for every k ∈ N there exists a constant mk > 0 such that

ωk(t, Anx,A) ≤ mk

(
tk

∫ 1

t

ω(u)
uk+1

du +
∫ t

0

ω(u)
u

du

)
, 0 < t ≤ 1/2.

The following lemma is used for the proof of theorem.

Lemma 1. Suppose that the function ω(t) satisfies Conditions 1–3 of Theorem 3. If,
for x ∈ X, there exists m > 0 such that

Er(x,A) ≤ mω

(
1
r

)
, r ≥ 1,

then, for every k ∈ N there exists a constant c̃k > 0 such that

ωk(t, x, A) ≤ c̃ktk
∫ 1

k

ω(τ)
τk+1

dτ, 0 < t ≤ 1/2.

Remark 1. As would follow from the proof, the lemma remains true under somewhat
weaker conditions than those formulated in the theorem, namely, it is sufficient that for an
element x ∈ X there exist at least one sequence {uj}∞j=1 ⊂ E(A) such that σ(uj , A) ≤ 2j

and for all j ∈ N

‖x− uj‖ ≤ m · ω
(

1
2j

)
.

Proof of theorem 3. As shown in Theorem 1, the subspaces Ξr(A) are closed, therefore
it follows from the definition and from (5.1) that there exists a sequence of vectors
{uj}∞j=0 ⊂ E(A) such that σ(uj , A) ≤ 2j and

(5.2) ‖x− uj‖ ≤
m

2nj
ω

(
1
2j

)
.

From the inequality (5.2) and Conditions 1, 2 one can get ‖x− uj‖ → 0, j →∞, and so
the vector x has the representation

x = u0 +
∞∑

j=1

(uj − uj−1).
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Due to σ(uj − uj−1, A) ≤ 2j , j ∈ N, one can find from (4.3) that

‖Anuj −Anuj−1‖ ≤ cn2jn‖uj − uj−1‖ ≤ cn2jn
(
‖x− uj‖+ ‖x− uj−1‖

)
≤ cn2jn

(
m

2nj
· ω

(
1
2j

)
+

m

2n(j−1)
· ω

(
1

2j−1

))
≤ 2mcn2jn

2n(j−1)
· ω

(
1

2j−1

)
≤ 2n+1ccnm · ω

(
1
2j

)
≤ 2n+1ccnm

ln 2

∫ 2−j+1

2−j

ω(u)
u

du.

Hence,
∑∞

j=1(A
nuj −Anuj−1) is convergent. By virtue of closedness of the operator An,

x ∈ D(An) and

An = Anu0 +
∞∑

j=1

(Anuj −Anuj−1),

therefore,

‖Anx−Anuj0‖ ≤
∞∑

j=j0+1

‖Anuj −Anuj−1‖ ≤
2n+1ccnm

ln 2

∞∑
j=j0+1

∫ 2−j+1

2−j

ω(u)
u

du

=
2n+1ccnm

ln 2

∫ 2−j0

0

ω(u)
u

du =: c̃Ω(2−j0), j0 ∈ N,

where c̃ = 2n+1ccnm
ln 2 ,

Ω(t) :=
∫ t

0

ω(u)
u

du.

It is easy to see that the function Ω(t) has the following properties:
(1) Ω(t) is continuous and monotonically nondecreasing;
(2) Ω(0) = 0;
(3) for t ∈ [0, 1], the following relation is true:

Ω(2t) =
∫ 2t

0

ω(u)
u

du =
∫ t

0

ω(2u)
u

du ≤ c

∫ t

0

ω(u)
u

du = cΩ(t).

Therefore, setting ω(t) = Ω(t) in Lemma 1 and taking remark into account, we get

ωk(t, Anx,A) ≤ c̃ktk
∫ 1

t

Ω(u)
uk+1

du =
c̃ktk

k

(
Ω(u)

1
uk

∣∣∣∣t
1

+
∫ 1

t

ω(u)
uk+1

du
)

≤ mk

(
tk

∫ 1

t

ω(u)
uk+1

du +
∫ t

0

ω(u)
u

du
)
.

The theorem is proved. �

Proof of lemma 1. By the analogy with the proof of Theorem 3, it follows from (5.1)
that there exists a sequence of vectors {uj}∞j=0 ⊂ E(A) such that σ(uj , A) ≤ 2j and

(5.3) ‖x− uj‖ ≤ mω

(
1
2j

)
.

Let us take an arbitrary h ∈ (0, 1/2] and choose a number N in such a way that
1

2N+1 < h ≤ 1
2N . Inequality (5.3) yields

(5.4)
‖uj − uj−1‖ ≤ ‖uj − x‖+ ‖x− uj−1‖

≤ mω(2−j) + mω(2−j+1) ≤ 2mω(2−j+1) ≤ 2cmω(2−j).
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By virtue of monotonicity of ω(t),

(5.5)
2k

∫ 2−j+1

2−j

ω(u)
uk+1

du ≥ 2kω(2−j)
∫ 2−j+1

2−j

1
uk+1

du

=
2kj(2k − 1)

k
ω(2−j) ≥ 2kjω(2−j).

Since σ(uj − uj−1, A) ≤ 2j and σ(u0, A) ≤ 1, according to Corollary 1,

‖∆k
hu0‖ ≤ ckhkMU (kh)‖u0‖,

‖∆k
h(uj − uj−1)‖ ≤ ckhk(2j)kMU (kh)‖uj − uj−1‖, j ≥ 1.

Relations (5.3)–(5.5) yield

‖∆k
h(uj − uj−1)‖ ≤ 2c̃hk(2j)kω(2−j) ≤ 2k+1c̃hk

∫ 2−j+1

2−j

ω(u)
uk+1

du,

where c̃ = cckmMU (kh), and

‖∆(x− uN )‖ ≤ ‖(U(h)− I)k‖ ‖x− uN‖

≤ (MU (h) + 1)k‖x− uN‖ ≤ (MU (h) + 1)kmω(2−N ).

Using these inequalities, we obtain

‖∆k
hx‖ =

∥∥∥∆k
hu0 +

N∑
j=1

∆k
h(uj − uj−1) + ∆k

h(x− uN )
∥∥∥

≤ ckMU (kh)hk‖u0‖+ 2k+1c̃hk
N∑

j=1

∫ 2−j+1

2−j

ω(u)
uk+1

du + (MU (h) + 1)kmω(2−N )

≤ hk

[
ckMU (kh)‖u0‖+ 2k+1c̃

∫ 1

h

ω(u)
uk+1

du

+ (MU (h) + 1)kcm
k

1− hk

∫ 1

h

ω(h)
uk+1

du

]
≤ c̃khk

∫ 1

h

ω(u)
uk+1

du, where

c̃k :=
‖u0‖ckMU (k/2)∫ 1

1/2
ω(u)
uk+1 du

+ 2k+1cckmMU (k/2) + (MU (1/2) + 1)k cmk

1− (1/2)k
.

The last inequality holds for all 0 < h ≤ 1/2. Taking into account the definition of the
module of continuity (2.4), this inequality finishes the proof. �

6. Examples of application of abstract direct and inverse theorems in
particular spaces

In this section we discuss an application of the presented theory — the approximation
of continuous functions by entire functions in the weighted Lp(R, µp) space with a growing
at the infinity weight (for example, L1(R, xn) spaces). Similar problems studied in several
papers (see the review [14] and references therein).

Let us consider a real-valued function µ(t) satisfying the following conditions:
1) µ(t) ≥ 1, t ∈ R;
2) µ(t) is even, monotonically non-decreasing when t > 0;
3) µ(t) satisfies the condition µ(t + s) ≤ µ(t) · µ(s), s, t ∈ R.
4)

∫∞
−∞

ln µ(t)
1+t2 dt < ∞,

or, alternatively, instead of 4), an equivalent condition holds,
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4’)
∑∞

k=1
ln µ(k)

k2 < ∞.
Below are several important classes of functions satisfying conditions 1)–4) (see [10]

for details).
1. The constant function µ(t) ≡ 1, t ∈ R.
2. Functions with polynomial order of growth at infinity. For such functions the

following estimate holds: ∃k ∈ N, ∃M ≥ 1

µ(t) ≤ M(1 + |t|)k, t ∈ R.

3. Functions of the form

µ(t) = e|t|
β

, 0 < β < 1, t ∈ R.

4. µ(t) represented as a power series for t > 0. I.e.,

µ(t) =
∞∑

n=0

|t|n

mn
,

where {mn}n∈N is a sequence of positive real numbers satisfying three conditions:
• m0 = 1, m2

n ≤ mn−1 ·mn+1, n ∈ N;
• for all k, l ∈ N (k+l)!

mk+l
≤ k!

mk

l!
ml

;

•
∑∞

n=1

(
1

mn

)1/n

< ∞.

5. µ(t) as a module of an entire function with zeroes on the imaginary axis. Let’s
consider

ω(t) = C

∞∏
k=1

(
1− t

itk

)
, t ∈ R,

where C ≥ 1, 0 < t1 ≤ t2 ≤ . . . ,
∑∞

k=1
1
tk

< ∞, and set µ(t) := |ω(t)|.
Let us consider the space Lp(R, µp), 1 ≤ p ≤ ∞, of functions x(s), s ∈ R, integrable

in p-th degree with the weight µp:

‖x‖p
Lp(R,µp) =

∫ ∞

−∞
|x(s)|pµp(s) ds.

Lp(R, µp) is the Banach space. The differential operator

(Ax)(t) =
dx

dt
, D(A) = {x ∈ Lp(R, µp) ∩AC(R) : x′ ∈ Lp(R, µp)}.

generates the group of shifts {U(t)}t∈R in the space Lp(R, µp). This group is not bounded.
As shown in [10],

‖U(t)‖Lp(R,µp) ≤ µ(|t|), t ∈ R.

To apply the constructed theory, we need to determine how the space E(A) and
the space of exponential type entire functions are connected. Denote by Bσ the set
of exponential functions of entire type σ. We show that the following embedding holds:

(6.1) Ξσ(A) ⊂ Bσ ∩ Lp(R, µp).

Let f ∈ Ξσ(A). Obviously, f ∈ Lp(R, µp). We prove that f ∈ Bσ. Due to µ(t) ≥ 1
we have

‖f‖Lp(R) ≤ ‖f‖Lp(R,µp),

thus for all n ∈ N and for any ε > 0

(6.2) ‖Anf‖Lp(R) ≤ ‖Anf‖Lp(R,µp) ≤ cε(f)(σ + ε)n,

and so we can construct a continuation of U(t) onto C by

U(z) =
∞∑

n=0

Anf

n!
zn, z ∈ C.
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Moreover, (6.2) ensures for all ε > 0

‖f(x + z)‖Lp(R) =
∥∥∥ ∞∑

n=0

Anf

n!
zn

∥∥∥ ≤ cε(f) · ‖f‖e(σ+ε)|z|,

which means f ∈ Bσ, which was required.
By virtue of the classical Bernstein inequality, the embedding inverse to (6.1) holds

for all bounded weights µ(t). We show that it holds for all functions µ(t) satisfying

µ(t) ≥ 1 + R|t|q

for some q > 1 − 1
p , R > 0 and for all t > t0 ≥ 0. The condition on µ(t) gives us

f ∈ L1(R). f ∈ Bσ, thus it is infinitely differentiable and by the Paley-Wiener theorem
the support of its Fourier transform is contained in [−σ, σ]. Let’s prove that f ∈ Ξσ(A)
by using Theorem 1. Let us consider the majorant θ(t) for the function µ(t), constructed
as in the proof of Theorem 2. We need to show that for all φ ∈ E

(∞)
θ ([−σ, σ])

f = Pφf =
∫ ∞

−∞
φ(t)U(t)fdt.

Since φ is arbitrary, we can consider φ1(t) = φ(−t) ∈ E
(∞)
θ ([−σ, σ]). Note that∫ ∞

−∞
φ1(t)U(t)f(x)dt =

∫ ∞

−∞
φ(t)f(x− t)dt = φ ∗ f.

The Fourier transform of φ ∗ f equals to

φ̃ ∗ f = φ̃ · f̃ = f̃ ,

because supp f ⊂ [−σ, σ], and by the definition of E
(∞)
θ ([−σ, σ]) we have φ̃ = 1 on

[−σ, σ]. Thus,
Pφf = f ∀φ ∈ E

(∞)
θ ([−σ, σ]),

so f ∈ L([−σ, σ]) and by means of Theorem 1 f ∈ Ξσ(A).
We have shown that Ξσ(A) coincides with Bσ ∩Lp(R, µp). Note that ‖f − gσ‖Lp(R,µp)

is defined only for those functions that belongs to Lp(R, µp) (because of ‖gσ‖Lp(R,µp) ≤
‖f − gσ‖Lp(R,µp) + ‖f‖Lp(R,µp)), thus the best approximation by exponential type entire
vectors is the same as the best approximation by entire functions of exponential type.

By applying Theorems 2 and 3 we get several results for the approximation theory in
Lp(R, µp) spaces. First two results are direct theorems (from [10]) for spaces Lp(R, µp).

Corollary 2 ([10]). For every k ∈ N there exists a constant mk(p, µ) > 0 such that for
all f ∈ Lp(R, µp)

Er(f) ≤ mk · ω̃k

(
1
r
, f

)
, r ≥ 1.

Corollary 3 ([10]). Let f ∈ Wm
p (R, µp), m ∈ N0. Then for all k ∈ N0

Er(f) ≤ mk+m

µ
(

m
r

)
rm

ω̃k

(
1
r
, f (m)

)
, r ≥ 1,

where constants mn (n ∈ N) are the same as in the Corollary 2.

Corollary 4. Let f ∈ Lp(R, µp) ∩ Bσ, σ ≥ 1. Then for all n ∈ N there exist such
constants cn > 0, not depending on σ and on f , that

‖f (n)‖Lp(R,µp) ≤ cnσn‖f‖Lp(R,µp).

Corollary 5. Let ω(t) be a function of type of module of continuity for which the fol-
lowing conditions are satisfied:

(1) ω(t) is continuous and nondecreasing for t ∈ R+.
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(2) ω(0) = 0.
(3) ∃c > 0 ∀t ∈ [0, 1] ω(2t) ≤ cω(t).
(4)

∫ 1

0
ω(t)

t dt < ∞.
If, for f ∈ Lp(R, µp), there exist such n ∈ N and m > 0 that

Er(f) ≤ m

rn
ω

(
1
r

)
, r ≥ 1,

then f ∈ Wn
p (R, µp) and for every k ∈ N there exists such mk > 0 that

ωk(t, f (n)) ≤ mk

(
tk

∫ 1

t

ω(u)
uk+1

du +
∫ t

0

ω(u)
u

du

)
, 0 < t ≤ 1/2.

References

1. N. P. Kupcov, Direct and inverse theorems of approximation theory and semigroups of opera-
tors, Uspekhi Mat. Nauk 23 (1968), no. 4, 118–178. (Russian)

2. A. P. Terehin, A bounded group of operators and best approximation, Differencial’nye Urav-
neniya i Vychisl. Mat., Vyp. 2, 1975, 3–28. (Russian)

3. M. L. Gorbachuk and V. I. Gorbachuk, On approximation of smooth vectors of a closed operator
by entire vectors of exponential type, Ukrain. Mat. Zh. 47 (1995), no. 5, 616–628. (Ukrainian);
English transl. Ukrainian Math. J. 47 (1995), no. 5, 713–726.

4. M. L. Gorbachuk and V. I. Gorbachuk, Operator approach to approximation problems, St.
Petersburg Math. J. 9 (1998), no. 6, 1097–1110.

5. G. V. Radzievskii, On the best approximations and the rate of convergence of decompositions in
the root vectors of an operator, Ukrain. Mat. Zh. 49 (1997), no. 6, 754–773. (Russian); English
transl. Ukrainian Math. J. 49 (1997), no. 6, 844–864.

6. G. V. Radzievskii, Direct and converse theorems in problems of approximation by vectors of
finite degree, Mat. Sb. 189 (1998), no. 4, 83–124.

7. M. L. Gorbachuk, Ya. I. Grushka, and S. M. Torba, Direct and inverse theorems in the theory
of approximations by the Ritz method, Ukrain. Mat. Zh. 57 (2005), no. 5, 633–643. (Ukrainian);
English transl. Ukrainian Math. J. 57 (2005), no. 5, 751–764.

8. Ju. I. Ljubic and V. I. Macaev, Operators with separable spectrum, Mat. Sb. 56 (98) (1962),
no. 4, 433–468. (Russian)

9. M. L. Gorbachuk, On analytic solutions of differential-operator equations, Ukrain. Mat. Zh.
52 (2000), no. 5, 596–607. (Ukrainian); English transl. Ukrainian Math. J. 52 (2000), no. 5,
680–693.

10. Ya. Grushka and S. Torba, Direct theorems in the theory of approximation of Banach space
vectors by exponential type entire vectors, Methods Funct. Anal. Topology 11 (2007), no. 3,
267–278.

11. Ya. V. Radyno, Spaces of vectors of exponential type, Dokl. Akad. Nauk Bel. SSR 27 (1983),
no. 9, 215–229. (Russian)

12. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential
Equations, Kluwer Academic Publishers, Dordrecht—Boston—London, 1991. (Russian edition:
Naukova Dumka, Kiev, 1984)

13. O. I. Inozemcev and V. A. Marchenko, On majorants of genus zero, Uspekhi Mat. Nauk 11
(1956), 173–178. (Russian)

14. M. I. Ganzburg, Limit theorems and best constants in approximation theory, Handbook on
Analytic-Computational Methods in Applied Mathematics, CRC Press, Boca Raton, FL, 2000,
pp. 507–569.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs’ka,
Kyiv, 01601, Ukraine

E-mail address: sergiy.torba@gmail.com

Received 29/09/2008; Revised 03/03/2009


