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POSITIVE DEFINITE KERNELS SATISFYING DIFFERENCE
EQUATIONS

S. M. ZAGORODNYUK

Abstract. We study positive definite kernels K = (Kn,m)n,m∈A, A = Z or A =

Z+, which satisfy a difference equation of the form LnK = LmK, or of the form

LnLmK = K, where L is a linear difference operator (here the subscript n (m)
means that L acts on columns (respectively rows) of K). In the first case, we give
new proofs of Yu. M. Berezansky results about integral representations for K. In the
second case, we obtain integral representations for K. The latter result is applied
to strengthen one our result on abstract stochastic sequences. As an example, we
consider the Hamburger moment problem and the corresponding positive matrix of
moments. Classical results on the Hamburger moment problem are derived using an
operator approach, without use of Jacobi matrices or orthogonal polynomials.

1. Introduction

The object of our present investigation will be a positive definite kernel

K = (Kn,m)n,m∈A

defined on a set of integers A = Z, or on a set of non-negative integers A = Z+. By the
kernel we mean a symmetric infinite matrix (Kn,m)n,m∈A, and the positive definiteness
means that

(1)
∑

n,m∈A

Kn,mξnξm ≥ 0,

for finite sequences (ξn)n∈A of complex numbers, A = Z, Z+, see [1].
Let us consider the following operator L:

(2) (Lu)n =
r+∑

k=−r−

αn,kun+k, n ∈ Z,

where αn,k ∈ C, αn,−r− 6= 0, αn,r+ 6= 0, r−, r+ ∈ Z+: r− + r+ > 0. It can be considered
on finite complex sequences (uk)k∈Z from l2(Z), where l2(Z) is the standard space of
square summable complex sequences (uk)k∈Z. Notice that the operator L is a difference
operator of order r = r− + r+. We also define an operator L as

(3) (Lu)n =
r+∑

k=−r−

αn,kun+k, n ∈ Z.

Suppose that a positive definite kernel K = (Kn,m)n,m∈Z satisfies the relation

(4) LnK = LmK,
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where Ln means that L acts on each column of K, and Lm means that L acts on each
row of K. In the coordinate form this relation takes the form

(5)
r+∑

k=−r−

αn,kKn+k,m =
r+∑

l=−r−

αm,lKn,m+l, n,m ∈ Z.

Necessary and sufficient conditions that an arbitrary positive definite kernel

K = (Kn,m)n,m∈Z

satisfies relation (4) is that K admits the following integral representation, see [1, Ch. 8,
Theorem 5.1]:

(6) Kn,m =
∫

R

r−1∑
k,l=0

χk;n(λ)χl;m(λ)dσk,l(λ), n,m ∈ Z,

where χk;n(λ) is a solution of the equation

(7) Lu = λu, (λ ∈ R),

with the initial conditions

(8) χk;n(λ) = δn,k+a−r− , n = a− r−, . . . , a + r+ − 1, k = 0, 1, . . . , r − 1,

and a is a fixed integer. Here (σk,l(λ))r−1
k,l=0 is a non-decreasing matrix-valued function

on R. This result was easily transferred to the case of A = Z+, see [1, Ch. 8, Theo-
rem 5.2]. Proofs of these results were based on the theory of expansions by generalized
eigenfunctions of self-adjoint operators developed by Yu. M. Berezansky.

Our first purpose is to give other proofs of the mentioned results. These proofs are
based on standard facts from the extension theory of Hilbert space operators [2].

Our second purpose will be to obtain integral representations for positive definite
kernels satisfying the following equation:

(9) LnLmK = K.

Finally, we apply our result to strengthen one our result about abstract stochastic se-
quences in [3].
Notations. As usual, we denote by R, C, N, Z, Z+ the sets of real, complex, positive
integer, integer, non-negative integer numbers, respectively; T = {z ∈ C : |z| = 1}. If
σ(x) is a non-decreasing left-continuous function on R, we denote by L2

σ a space of (classes
of equivalence) of complex-valued functions on R measurable with respect to the positive

Borel measure σ generated by σ(x), and such that ‖f(x)‖σ :=
(∫

R |f(x)|2dσ
) 1

2 < ∞.
The space L2

σ is a Hilbert space with the scalar product (f(x), g(x))σ :=
∫

R f(x)g(x) dσ,
f, g ∈ L2

σ.
For a separable Hilbert space H we denote by (·, ·)H and ‖ · ‖H the scalar product and
the norm in H, respectively. The indices may be omitted in obvious cases. For a complex
polynomial p(λ) =

∑n
k=0 akλk, ak ∈ C, n ∈ Z+, we set p(λ) =

∑n
k=0 akλk. For a linear

operator A we denote by D(A) its domain and by A∗ we denote its adjoint if it exists. For
a set of elements {xn}n∈A in a separable Hilbert space H, we denote by Lin{xn}n∈A and
span{xn}n∈A the linear span and the closed linear span (in the norm of H), respectively,
A = Z or A = Z+. For a set M ⊆ H we denote by M the closure of M with respect to
the norm of H. By EH we denote the identity operator in H, i.e., EHx = x, x ∈ H. If
H1 is a subspace of H, by PH1 = PH

H1
we denote an operator of the orthogonal projection

on H1 in H.
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2. Difference equations of a ”self-adjoint” type

2.1. Case A = Z. We will make use of the following important fact (e.g., [4, p. 215]).

Theorem 1. Let K = (Kn,m)n,m∈A be a positive definite kernel, A = Z or A = Z+.
Then there exist a separable Hilbert space H with a scalar product (·, ·) and a sequence
{xn}n∈A in H, such that

(10) Kn,m = (xn, xm), n,m ∈ A,

and span{xn}n∈A = H.

Proof. Consider an arbitrary infinite-dimensional linear vector space V (for example a
space of complex sequences (un)n∈Z+ , un ∈ C). Let X = {xn}n∈A be an arbitrary infinite
sequence of linear independent elements in V . Let L = Lin{xn}n∈A be the linear span
of elements of X. Introduce the following functional:

(11) [x, y] =
∑

n,m∈A

Kn,manbm,

for x, y ∈ L,
x =

∑
n∈A

anxn, y =
∑
m∈A

bmxm, an, bm ∈ C.

The space V with [·, ·] will be a pre-Hilbert space. Factorizing and making the completion
we obtain the required space H (see [1, p. 10–11]). �

Let K = (Kn,m)n,m∈Z be a positive definite kernel which satisfies difference rela-
tion (5). Let H and {xn}n∈Z be the Hilbert space and the sequence provided by Theo-
rem 1. Set

(12) x′n :=
r+∑

k=−r−

αn,kxn+k, n ∈ Z.

By virtue of (10) and (5) we get

(13) (x′n, xm) = (xn, x′m), n,m ∈ Z.

Suppose that n, m ∈ Z are such that xn = xm. In this case, using (13) we can write

(x′n, xk) = (xn, x′k) = (xm, x′k) = (x′m, xk),

(x′n − x′m, xk) = 0, k ∈ Z.

Since, by Theorem 1, span{xn}n∈Z = H, we conclude that x′n = x′m.
Define an operator A in the following way:

(14) Axn = x′n, n ∈ Z.

Let L = Lin{xn}n∈Z. Choose an arbitrary x ∈ L. Suppose that

(15) x =
∑
k∈Z

αkxk, x =
∑
j∈Z

βjxj , αk, βj ∈ C.

Then ( ∑
k∈Z

αkx′k, xm

)
=

∑
k∈Z

αk(x′k, xm) =
∑
k∈Z

αk(xk, x′m) = (x, x′m),( ∑
j∈Z

βjx
′
j , xm

)
=

∑
j∈Z

βj(x′j , xm) =
∑
j∈Z

βj(xj , x
′
m) = (x, x′m),

and therefore we get ( ∑
k∈Z

αkx′k −
∑
j∈Z

βjx
′
j , xm

)
= 0, m ∈ Z.
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Since span{xn}n∈Z = H, we obtain

(16)
∑
k∈Z

αkx′k =
∑
j∈Z

βjx
′
j .

Thus, we can correctly define an operator A on L in the following way:

(17) Ax =
∑
k∈Z

αkx′k,

for
x ∈ L, x =

∑
k∈Z

αkxk, αk ∈ C.

For arbitrary

x =
∑
k∈Z

akxk ∈ L, y =
∑
j∈Z

bjxj ∈ L, ak, bj ∈ C,

we have
(Ax, y) =

( ∑
k∈Z

akx′k,
∑
j∈Z

bjxj

)
=

∑
k,j∈Z

akbj(x′k, xj)

=
∑

k,j∈Z
akbj(xk, x′j) =

( ∑
k∈Z

akxk,
∑
j∈Z

bjx
′
j

)
= (x,Ay).

So, the operator A is symmetric. Its closure we denote by A′. There exists a self-adjoint
extension Ã ⊇ A′ in a space H̃ ⊇ H, see [2].

Choose an arbitrary a ∈ Z and let χk;n(λ) be a solution of (7), (8). From the definition
of the operator A we see that

xn+r+ =
1

αn,r+

(
Axn −

r+−1∑
l=−r−

αn,lxn+l

)
, n = a, a + 1, . . . ,(18)

xn−r− =
1

αn,−r−

(
Axn −

r+∑
l=−r−+1

αn,lxn+l

)
, n = a− 1, a− 2, . . . .(19)

On the other hand, χk;n(λ) satisfy the difference equations

un+r+ =
1

αn,r+

(
λun −

r+−1∑
l=−r−

αn,lun+l

)
, n = a, a + 1, . . . ,(20)

un−r− =
1

αn,−r−

(
λun −

r+∑
l=−r−+1

αn,lun+l

)
, n = a− 1, a− 2, . . . .(21)

Notice that AL ⊆ L and that χk;n(λ) are polynomials of λ. Set

(22) x[k]
n = χk;n(A)xk, n ∈ Z, k = 0, 1, . . . , r − 1.

From (20), (21) it follows that {x[k]
n }n∈Z, k = 0, 1, . . . , r − 1, satisfy relations (18), (19).

Thus, the elements

(23) x̃n :=
r−1∑
k=0

x[k]
n , n ∈ Z,

are also solutions of (18), (19). Since

x̃n = xn, n = a− r−, a− r− + 1, . . . , a + r+ − 1,
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using (18), (19) we get x̃n = xn, n ∈ Z. Thus, we get

(24) xn =
r−1∑
k=0

x[k]
n =

r−1∑
k=0

χk;n(A)xk, n ∈ Z.

Let

(25) Ã =
∫

R
λ dEλ,

be the spectral decomposition of Ã, where {Eλ} is the resolution of unity of Ã. From (10)
and (24) we obtain

Kn,m = (xn, xm) =
( r−1∑

k=0

χk;n(A)xk,

r−1∑
l=0

χl;m(A)xl

)
=

r−1∑
k,l=0

(
χk;n(Ã)xk, χl;m(Ã)xl

)
=

r−1∑
k,l=0

(
χl;m(Ã)χk;n(Ã)xk, xl

)

=
r−1∑

k,l=0

∫
R

χk;n(λ)χl;m(λ) d(Eλxk, xl).

If we set σk,l(λ) := (Eλxk, xl), we get relation (6). Since

|((Eλ − Eµ)xk, xl)| = |((Eλ − Eµ)xk, (Eλ − Eµ)xl)| ≤ ‖(Eλ − Eµ)xk‖‖(Eλ − Eµ)xl‖

=
√

((Eλ − Eµ)xk, xk)((Eλ − Eµ)xl, xl), λ ≥ µ,

we can obtain that all main minors of the matrix ((Eλ−Eµ)xk, xl)r−1
l=0 are non-negative.

Thus, ((Eλ − Eµ)xk, xl)r
l=0 ≥ 0.

2.2. Case A = Z+. Let us consider the following operator L:

(26) (Lu)n =
n+r+∑
j=0

dn,juj , n ∈ Z+,

where dn,j ∈ C, dn,n+r+ 6= 0, r+ ∈ N. This relation can be considered on finite complex
sequences (uk)k∈Z+ from l2, where l2 is the standard space of square summable complex
sequences (uk)k∈Z+ . We define an operator L as

(27) (Lu)n =
n+r+∑
j=0

dn,juj , n ∈ Z+.

Suppose that a positive definite kernel K = (Kn,m)n,m∈Z+ satisfies the relation (4), which
in the coordinate form is

(28)
n+r+∑
j=0

dn,jKj,m =
m+r+∑

l=0

dm,lKn,l, n,m ∈ Z+.

Let H and {xk}k∈Z+ be from Theorem 1. We set

(29) x′n =
n+r+∑
j=0

dn,jxj , n ∈ Z+.

From (10) and (28) we get

(30) (x′n, xm) = (xn, x′m), n,m ∈ Z+.
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Let L = Lin{xn}n∈Z+ . Choose an arbitrary x ∈ L. Suppose that

(31) x =
∑

k∈Z+

αkxk, x =
∑

j∈Z+

βjxj , αk, βj ∈ C.

Like in the previous case (see considerations after (15)) we get

(32)
∑

k∈Z+

αkx′k =
∑

j∈Z+

βjx
′
j .

Thus, we can correctly define an operator A on L in the following way:

(33) Ax =
∑

k∈Z+

αkx′k

for
x ∈ L, x =

∑
k∈Z+

αkxk, αk ∈ C.

For arbitrary

x =
∑

k∈Z+

akxk ∈ L, y =
∑

j∈Z+

bjxj ∈ L, ak, bj ∈ C,

we have

(Ax, y) =
( ∑

k∈Z+

akx′k,
∑

j∈Z+

bjxj

)
=

∑
k,j∈Z+

akbj(x′k, xj)

=
∑

k,j∈Z+

akbj(xk, x′j) =
( ∑

k∈Z+

akxk,
∑

j∈Z+

bjx
′
j

)
= (x,Ay).

So, the operator A is symmetric. There exists a self-adjoint extension Ã ⊇ A in a Hilbert
space H̃ ⊇ H with resolution (25).

Let χk;n(λ) be a solution of the equation

(34) Lu = λu, (λ ∈ R),

with the initial conditions

(35) χk;n(λ) = δk,n, n, k = 0, 1, . . . , r+ − 1.

From (29) it follows that

(36) xn+r+ =
1

dn,n+r+

(
Axn −

n+r+−1∑
j=0

dn,jxj

)
, n ∈ Z+.

The functions χk;n(λ) satisfy

(37) χk,n+r+ =
1

dn,n+r+

(
λχk,n −

n+r+−1∑
j=0

dn,jχk,j

)
, n ∈ Z+.

Notice that AL ⊆ L and that χk;n(λ) are polynomials of λ. Thus we can define

(38) x[k]
n = χk;n(A)xk, n ∈ Z+, k = 0, 1, . . . , r+ − 1.

From (37) it follows that {x[k]
n }n∈Z+ , k = 0, 1, . . . , r+ − 1, satisfy relations (36). So, the

elements

(39) x̃n :=
r+−1∑
k=0

x[k]
n ,
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are also solutions of (36). Since

x̃n = xn, n = 0, 1, . . . , r+ − 1,

using (36) we obtain x̃n = xn, n ∈ Z+. Thus, we have

(40) xn =
r+−1∑
k=0

x[k]
n =

r+−1∑
k=0

χk;n(A)xk, n ∈ Z+.

From the latter relation we obtain that

Kn,m = (xn, xm) =
( r+−1∑

k=0

χk;n(A)xk,

r+−1∑
l=0

χl;m(A)xl

)

=
r+−1∑
k,l=0

(
χk;n(Ã)xk, χl;m(Ã)xl

)
=

r+−1∑
k,l=0

(
χl;m(Ã)χk;n(Ã)xk, xl

)

=
r+−1∑
k,l=0

∫
R

χk;n(λ)χl;m(λ) d(Eλxk, xl).

Thus, we get the following theorem.

Theorem 2. Let K = (Kn,m)n,m∈Z+ be a positive definite kernel. It satisfies rela-
tion (28) if and only if there exists a representation

(41) Kn,m =
r+−1∑
k,l=0

∫
R

χk;n(λ)χl;m(λ) dσk,l(λ),

where χk;l(λ) are solutions of (34), (35), and (σk,l(λ))r+−1
k,l=0 is a non-decreasing matrix-

valued function on R the elements of which have bounded variation on R. In (41) one
understands the improper Riemann-Stieltjes integrals.

Proof. Necessity was shown above. Sufficiency follows from (34). �

In the case dn,j = 0, for j < n − r−, n ∈ Z+, with some r− ∈ Z+, we obtain the
well-known result, see. [1, Ch. 8, Theorem 5.2].

Example 2.1. Consider the classical Hamburger moment problem (see, e.g., [7]). The
problem is to find a non-decreasing left-continuous bounded function on R such that

(42)
∫

R
xkdσ(x) = sk, k ∈ Z+,

where {sk}∞k=0 is a given sequence of real numbers.
Sequences {sk}∞k=0 for which this problem has a solution are called moment sequences.

Solutions of the Hamburger moment problem are said to be equal if they differ by a
constant (notice that such solutions produce the same positive Borel measure on R). We
will seek for solutions such that σ(0) = 0. The Hamburger moment problem is said to
be determinate if the solution is unique and indeterminate in the opposite case.

Let {sk}∞k=0 be a moment sequence. Consider K = (Kn,m)n,m∈Z+ , with Kn,m = sn+m.
For an arbitrary complex polynomial p(x) =

∑∞
n=0 ξnxn, where ξn ∈ C (all but finite

number of ξn are zero), we get

0 ≤
∫

R
|p(x)|2dσ(x) =

∞∑
n,m=0

ξnξm

∫
R

xn+mdσ(x) =
∞∑

n,m=0

sn+mξnξm.

Thus, the kernel K is positive definite.
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On the other hand, consider an arbitrary sequence {sk}∞k=0. Suppose that the kernel
K = (sn+m)n,m∈Z+ is positive definite. In such a case, the corresponding sequence of
moments is called positive. There exists a sequence {xn}n∈Z+ in a Hilbert space H such
that

(43) (xn, xm) = Kn,m, n,m ∈ Z+,

and span{xn}n∈Z+ = H. Let us define an operator A on L := Lin{xn}n∈Z+ in the
following way:

(44) Ax =
∑

k∈Z+

αkxk+1,

for
x ∈ L, x =

∑
k∈Z+

αkxk, αk ∈ C.

This definition is correct. If there exists another representation for x

x =
∑
l∈Z+

βlxl, βl ∈ C,

then( ∑
k∈Z+

αkxk+1, xm

)
=

∑
k∈Z+

αk(xk+1, xm) =
∑

k∈Z+

αkKk+1,m

=
∑

k∈Z+

αkKk,m+1 =
∑

k∈Z+

αk(xk, xm+1) = (x, xm+1), m ∈ Z+,

and, analogously, we have( ∑
l∈Z+

βlxl+1, xm

)
= (x, xm+1), m ∈ Z+.

Therefore, we get
∑

k∈Z+
αkxk+1 =

∑
l∈Z+

βlxl+1.
For arbitrary

x =
∑

k∈Z+

akxk ∈ L, y =
∑

j∈Z+

bjxj ∈ L, ak, bj ∈ C,

we have

(Ax, y) =
( ∑

k∈Z+

akxk+1,
∑

j∈Z+

bjxj

)
=

∑
k,j∈Z+

akbj(xk+1, xj)

=
∑

k,j∈Z+

akbj(xk, xj+1) =
( ∑

k∈Z+

akxk,
∑

j∈Z+

bjxj+1

)
= (x,Ay).

Thus, the operator A is symmetric. There exists a self-adjoint extension Ã ⊇ A in a
Hilbert space H̃ ⊇ H. Let Ã =

∫
R λ dẼλ, be the spectral decomposition of Ã, where

{Ẽλ} is the left-continuous orthogonal resolution of unity of Ã. From the equality

Axn = xn+1, n ∈ Z+,

by induction we get

(45) xn = Anx0, n ∈ Z+.

Since AL ⊆ L, by induction we obtain that

Anx = Ãnx, x ∈ L.
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Therefore we get

(46) xn = Ãnx0 =
∫

R
λndẼλx0, n ∈ Z+.

Consequently, we obtain that

(47) Kn,m = (xn, xm) =
∫

R
λn+md(P eH

H Ẽλx0, x0), n,m ∈ Z+.

In particular, we can write

(48) sn = Kn,0 =
∫

R
λnd(P eH

H Ẽλx0, x0), n ∈ Z+.

That means that the moment problem has a solution (P eH
H Ẽλx0, x0). So, the Hamburger

moment problem has a solution if and only if the kernel K = (sn+m)n,m∈Z+ is positive
definite.
Let σ(λ) be an arbitrary solution of the Hamburger moment problem above. Consider
the corresponding space L2

σ. Let Qσ be an operator of multiplication by an independent
variable in L2

σ. It is defined for f(x) ∈ L2
σ such that xf(x) ∈ L2

σ. This operator is self-
adjoint (see, e.g., [2, p. 158]). Denote by Pσ a set of all polynomials in L2

σ (more precisely,
it is a set of all classes of equivalence in L2

σ, which contain at least one polynomial). The
closure of Pσ we denote by L2

σ,0. For f(x) ∈ Pσ, f(x) =
∑∞

k=0 αkxk, αk ∈ C, (all but
finite number of αk are zero), we set

(49) V f =
∞∑

k=0

αkxk.

If there are two polynomials in the same class of equivalence, that is f(x) =
∑∞

k=0 αkxk,
g(x) =

∑∞
n=0 βnxn, αk, βn ∈ C, and

0 =
∫

R

∣∣∣ ∞∑
k=0

(αk − βk)xk
∣∣∣2dσ(x) =

∫
R

∞∑
k,n=0

(αk − βk)(αn − βn)xk+ndσ(x)

=
∞∑

k,n=0

(αk − βk)(αn − βn)sk+n =
∥∥∥ ∞∑

k=0

(αk − βk)xk

∥∥∥
H

,

we obtain
∑∞

k=0 αkxk =
∑∞

k=0 βkxk. Thus, the operator V is a correctly defined linear
operator from Pσ to H. From (49) it follows that V maps Pσ on the whole set L =
Lin{xk}k∈Z+ . For arbitrary f(x), g(x) ∈ Pσ, f(x) =

∑∞
k=0 αkxk, g(x) =

∑∞
n=0 βnxn,

αk, βn ∈ C, we can write

(f, g)σ =
∞∑

k,n=0

αkβn(xk, xn)σ =
∞∑

k,n=0

αkβnsk+n =
∞∑

k,n=0

αkβn(xk, xn)H

=
( ∞∑

k=0

αkxk,

∞∑
n=0

βnxn

)
= (V f, V g)H .

By continuity, we extend the operator V to an isometric operator from L2
σ,0 on H. Let

L2
σ,1 := L2

σ 	L2
σ,0. The operator U := V ⊕EL2

σ,1
maps isometrically L2

σ = L2
σ,0⊕L2

σ,1 on

Ĥ := H ⊕ L2
σ,1.

Let us consider an operator Â := UQσU−1. It is a self-adjoint operator in Ĥ isomor-
phic to the operator Qσ. Notice that Â ⊇ A. In fact, Âxk = UQσU−1xk = UQσxk =
Uxk+1 = xk+1, and by linearity we obtain the required result. Let {Êλ}λ∈R be a left-
continuous resolution of unity of the operator Â. Notice that EQ,λ := U−1ÊλU , λ ∈ R, is
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an orthogonal (left-continuous) resolution of unity of Qσ. Choose an arbitrary z ∈ C\R
and write

(50)

∫
R

1
λ− z

d(Êλx0, x0) bH =
(∫

R

1
λ− z

dÊλx0, x0

)
bH

=
(

U−1

∫
R

1
λ− z

dÊλx0, U
−1x0

)
σ

=
(∫

R

1
λ− z

dU−1ÊλU1, 1
)

σ

=
(∫

R

1
λ− z

dEQ,λ1, 1
)

σ

=
∫

R

1
λ− z

d(EQ,λ1, 1)σ.

By the Stieltjes-Perron inversion formula (see, e.g., [7]) we conclude that

(EQ,λ1, 1)σ = (Êλx0, x0) bH = (P bH
H Êλx0, x0)H .

Notice that EQ,λf(t) = χ[−∞,λ)(t)f(t), f ∈ L2
σ, where χ(−∞,λ)(t) is the characteristic

function of an interval [−∞, λ), see, e.g, [2, p. 267]. Thus, we have

(EQ,λ1, 1)σ =
∫

R
χ[−∞,λ)(t) dσ(t) =

∫ λ

−∞
dσ(t) = σ(λ),

and therefore

(51) σ(λ) = (P bH
H Êλx0, x0)H .

Consequently, all solutions of the Hamburger moment problem are generated by self-
adjoint extensions of the corresponding operator A by formula (51), where {Êλ}λ∈R is
an orthogonal (left-continuous) resolution of unity of an extension Â in a Hilbert space
Ĥ ⊇ H.

For x ∈ L, x =
∑∞

k=0 ckxk, ck ∈ C, we set

(52) Jx :=
∞∑

k=0

ckxk.

If there exists another representation x =
∑∞

k=0 dkxk, dk ∈ C, then∥∥∥ ∞∑
k=0

ckxk −
∞∑

k=0

dkxk

∥∥∥2

=
∥∥∥ ∞∑

k=0

(ck − dk)xk

∥∥∥2

=
∞∑

k,n=0

(ck − dk)(cn − dn)(xk, xn)

=
∞∑

k,n=0

(ck − dk)(cn − dn)sn+k =
∞∑

k,n=0

(ck − dk)(cn − dn)(xn, xk)

=
( ∞∑

n=0

(cn − dn)xn,

∞∑
k=0

(ck − dk)xk

)
=

∥∥∥ ∞∑
k=0

ckxk −
∞∑

k=0

dkxk

∥∥∥2

= 0.

Thus, J is a correctly defined antilinear operator on L. Notice that

(53) J2u = u, u ∈ L.

For arbitrary u, v ∈ L, u =
∑∞

k=0 ckxk, v =
∑∞

n=0 dnxn, ck, dn ∈ C, we can write

(Ju, Jv) =
( ∞∑

k=0

ckxk,

∞∑
n=0

dnxn

)
=

∞∑
k,n=0

ckdn(xk, xn) =
∞∑

k,n=0

ckdnsk+n(54)

=
∞∑

k,n=0

ckdn(xn, xk) =
( ∞∑

n=0

dnxn,

∞∑
k=0

ckxk

)
= (v, u);(55)

(Ju, Jv) = (v, u), u, v ∈ L.(56)

In particular, this means that ‖Ju‖ = ‖u‖, u ∈ L. By continuity, the operator J can
be extended to a bounded operator J in H. It is not hard to verify that it will be an
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antilinear operator in H and properties (54), (56) will be true on the whole H. Such an
operator is called a conjugation (see [11]).

For an arbitrary u ∈ L, u =
∑∞

k=0 ckxk, ck ∈ C, we can write

AJu = A

∞∑
k=0

ckxk =
∞∑

k=0

ckxk+1,

JAu = J

∞∑
k=0

ckxk+1 =
∞∑

k=0

ckxk+1,

and therefore A and J commute. In this case, the operator A is called real with respect
to the conjugation J ([11]). Let A be the closure of a symmetric operator A. It is easy
to check that A is real with respect to J (symmetric) operator. Consequently, defect
numbers of A are equal (see [11, Theorem 9.14]).

Choose an arbitrary u ∈ L, u =
∑∞

k=0 ckxk, ck ∈ C. Suppose that ck = 0, k > N , for
some N ∈ N. Consider the following system of linear equations:

(57)
{
−zd0 = c0,
dk−1 − zdk = ck, k = 1, 2, 3, . . . ,

where {dk}k∈Z+ are unknown complex numbers, z ∈ C\R is a fixed parameter. Set

(58)
dk = 0, k ≥ N,

dk−1 = ck + zdk, k = 1, 2, . . . , N.

For such numbers {dk}k∈Z+ , equations in (57) with k ∈ N are satisfied. Only the first
equation is not satisfied. Set v =

∑∞
k=0 dkxk, v ∈ L. Notice that

(A− zEH)v =
∞∑

k=0

(dk−1 − zdk)xk, d−1 := 0.

By the construction of dk we have

(59)

(A− zEH)v − u =
∞∑

k=0

(dk−1 − zdk)xk −
∞∑

k=0

ckxk

=
N∑

k=0

(dk−1 − zdk − ck)xk = (−zd0 − c0)x0,

u = (A− zEH)v + (c0 + zd0)x0, u ∈ L.

Set Hz := (A− zEH)L = (A − zEH)D(A), and H0 := span{x0}. If Hz = H, then the
defect numbers of A are equal to 0.

If Hz 6= H, then we choose an arbitrary orthonormal basis in Hz: {εn}n∈N. Set
ε0 := x0−PHz x0

‖x0−PHz x0‖ . From (59) it follows that L ⊆ span{εn}n∈Z+ , and therefore H =
span{εn}n∈Z+ . Thus, {εn}n∈Z+ is an orthonormal basis in H. If x ∈ H, x ⊥ Hz, we
obtain x = αε0, α ∈ C. So, the defect numbers of A are equal to 1.

Let Â be a self-adjoint extension of A in a Hilbert space Ĥ. Let Rz(Â) be the resolvent
of Â and {Êλ}λ∈R be an orthogonal left-continuous resolution of unity of Â. Recall that
the operator-valued function Rz = P

bH
H Rz(Â) is called a generalized resolvent of A,

z ∈ C\R. The function Eλ = P
bH

H Êλ, λ ∈ R, is called a spectral function of a symmetric
operator A. There exists a one-to-one correspondence between generalized resolvents and
spectral functions established by the following relation:

(60) (Rzf, g)H =
∫

R

1
λ− z

d(Eλf, g)H , f, g ∈ H, z ∈ C\R.
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In the case Ĥ = H, the generalized resolvent is called orthogonal and the corresponding
spectral function of A is called orthogonal.

Formula (51) shows that solutions of the Hamburger moment problem are produced by
spectral functions of the corresponding operator A.

It is known that for a self-adjoint operator the spectral function is unique [2]. So, in
the case of the deficiency index (0, 0) the Hamburger moment problem is determinate.
The solution is the spectral function of the self-adjoint operator A.

Consider the case of the deficiency index (1, 1). First, let us show that in the case of
the deficiency index (1, 1) the Hamburger moment problem is indeterminate. Assume to
the contrary that for any two self-adjoint extensions Aj ⊇ A, in Hilbert spaces Hj ⊇ H,
we have

(61) (PH1
H E1,λx0, x0)H = (PH2

H E2,λx0, x0)H , λ ∈ R,

where {Ej,λ}λ∈R are orthogonal left-continuous resolutions of unity of operators Aj ,
j = 1, 2. Denote by Rj,λ the resolvent of Aj , and set Rj,λ := P

Hj

H Rj,λ, j = 1, 2.
From (60), (61) it follows that

(62) (R1,λx0, x0)H = (R2,λx0, x0)H , λ ∈ C\R.

Choose an arbitrary z ∈ C\R and consider the space Hz defined as above. Since

Rj,z(A− zEH)x = (Aj − zEHj )
−1(Aj − zEHj )x = x, x ∈ L = D(A),

we get

(63) R1,zy = R2,zy ∈ H, y ∈ Hz;

(64) R1,zy = R2,zy, y ∈ Hz, z ∈ C\R.

We can write

(65)
(Rj,zx0, u)H = (Rj,zx0, u)Hj

= (x0, Rj,zu)Hj
= (x0,Rj,zu)H ,

u ∈ Hz, j = 1, 2,

and therefore we get

(66) (R1,zx0, u)H = (R2,zx0, u)H , u ∈ Hz.

By (59) an arbitrary element x ∈ L can be represented as x = xz + cx0, xz ∈ Hz, c ∈ C.
Using (62) and (66) we get

(R1,zx0, x)H = (R1,zx0, xz + cx0)H = (R2,zx0, xz + cx0)H = (R2,zx0, x)H .

Since L = H, we obtain

(67) R1,zx0 = R2,zx0, z ∈ C\R.

For an arbitrary x ∈ L, x = xz + cx0, xz ∈ Hz, c ∈ C, using relations (64), (67) we
obtain

(68) R1,zx = R1,z(xz + cx0) = R2,z(xz + cx0) = R2,zx, x ∈ L, z ∈ C\R,

and

(69) R1,zx = R2,zx, x ∈ H, z ∈ C\R.

On the other hand, using von Neumann’s formulas we can choose two different extensions
of A inside H. Relation (69) means that their resolvents must coincide. By (60) that
means that their resolutions of unity coincide and A1 = A2. We obtained a contradiction.
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Let us describe all solutions in the case of the deficiency index (1, 1). We can use
the classical Krein’s results on a description of all generalized resolvents of a symmetric
operator A with equal and finite defect numbers. In particular, we have (see [2, p. 389])

(70) (Rzx0, x0)H =
p0(z) + p1(z)τ(z)
q0(z) + q1(z)τ(z)

,

where p0, p1, q0, q1 are some known entire functions and τ(z) ∈ N . Here N is a class of
analytic functions in C+ = {z ∈ C : Im z > 0}, with values in C′+ = {z ∈ C : Im z ≥
0} (including a function τ(z) ≡ ∞). From (60), (70) we get that all solutions of the
Hamburger moment problem in the case of the deficiency index (1, 1) are obtained from
the following relation:

(71)
∫

R

1
x− z

dσ(x) =
p0(z) + p1(z)τ(z)
q0(z) + q1(z)τ(z)

,

where τ(z) ∈ N .
Let us give a sufficient condition for determinacy of the Hamburger moment problem.

Recall some known facts on quasianalytic classes of functions (see [1], [5], [6]). Let
[a, b] ⊂ R be a finite segment, (mn)n∈Z+ be a fixed sequence of positive numbers. By
C∞([a, b]) we denote a linear space of complex-valued functions on [a, b] which have
derivatives of all orders on [a, b]. By C(mn) we denote a linear set of all functions
f(t) ∈ C∞([a, b]) such that

(72) |f (n)(t)| ≤ Kn
f mn, t ∈ [a, b], n ∈ Z+,

where Kf > 0 is a constant depending on f . The class C(mn) is called quasianalytic if
equalities

f (n)(t0) = 0, n ∈ Z+,

which hold for a function f ∈ C(mn) in a point t0 ∈ [a, b], imply that f(t) = 0, t ∈ [a, b].
Let B be an operator in a Hilbert space H. A vector x ∈ ∩∞n=0D(Bn) is called

quasianalytic if the class C(mn) with mn = ‖Bnx‖H is quasianalytic. If B is symmetric,
a vector x ∈ ∩∞n=1D(Bn) is quasianalytic if and only if (see [5, Chapter 13, Lemma 9.1])

(73)
∞∑

n=1

‖Bnx‖−
1
n

H = ∞.

If B is closed and symmetric, the necessary and sufficient condition for B to be self-
adjoint is that in H there exists a set M of quasianalytic vectors such that span M = H
(see [5, Chapter 13, Theorem 9.1]).

Let us apply these results to the operator A defined above for a positive sequence
of moments {sn}n∈Z+ . We shall show that if the class C(s2n) is quasianalytic then the
Hamburger moment problem is determinate. Suppose that the class C(s2n) is quasi-
analytic (note that s2k should be positive in that case, k ∈ Z+). Let us check that
xk ∈ H, k ∈ Z+, are quasianalytic vectors for the symmetric operator A. Notice that
m̃n := ‖An

xk‖H = ‖xn+k‖H = √
s2n+2k, n ∈ Z+. The quasianalyticity of C(mn+k)

and C(mn), k ∈ Z+ is equivalent, [6, p. 263]. Thus, classes C(s2n+2k) are quasianalytic,
and vectors xk ∈ H, k ∈ Z+, are therefore quasianalytic. So, A is self-adjoint and the
moment problem is determinate.

Notice that the quasianalyticity of C(s2n) is equivalent to the quasianalyticity of x0

for A. By (73) it is equivalent to the condition

(74) ∞ =
∞∑

n=1

‖An
x0‖

− 1
n

H =
∞∑

n=1

1
2n
√

s2n
.
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Thus, if
∑∞

n=1
1

2n
√

s2n
= ∞, then the moment problem is determinate (Carleman’s condi-

tion).
If there exists C > 0 such that

(75) s2n ≤ Cn(n!)2, n ∈ Z+,

then the moment problem is determinate ([6]). In fact, in this case we can write

∞∑
n=1

1
2n
√

s2n
≥

∞∑
n=1

1√
C n

√
(n!)

≥
∞∑

n=1

1√
Cn

= ∞,

and therefore by Carleman’s condition we obtain that the moment problem is determi-
nate.

Let us study some density questions. Suppose that σ(x) is a solution of the Hamburger
moment problem, generated by a self-adjoint extension Ã of the operator A inside the
space H or, in other words, by an orthogonal spectral function:

σ(λ) = (Ẽλx0, x0)H , λ ∈ R,

where {Ẽλ}λ∈R is a resolution of unity of Ã.
Notice that span{Ãnx0}n∈Z+ = span{xn}n∈Z+ = H, and therefore the operator A

has a simple spectrum and x0 is a generating vector of A (see [2, p. 272]). By virtue of
the canonical representation of a self-adjoint operator with a simple spectrum we obtain
that there exists an isometric transformation V from L2

σ on H such that A is isomorphic
to Qσ (see [2, p. 269]). Moreover, V 1 = x0. By induction we can see that xn = V xn,
n ∈ Z+. Thus, we obtain V H = L2

σ,0. In other words, this means that polynomials are
dense in L2

σ.
On the other hand, suppose that L2

σ,0 = L2
σ. In this case, as it was done above we

can construct an isometric operator U from L2
σ on H (in this case L2

σ,1 = {0}) and
Â := UQσU−1 will be a self-adjoint extension of A inside H. By (51) it follows that
σ(λ) is constructed by a spectral function corresponding to Â. This spectral function is
orthogonal.

Thus, polynomials are dense in L2
σ if and only if σ can be generated by an orthogonal

spectral function of the corresponding operator A. The orthogonal resolvents are known
to correspond to constants τ(z) = t, t ∈ R∪ {∞} in the formula (70). So, such solutions
σ(λ) correspond to some constant functions τ(z) (including τ(z) = ∞) in (71).

Let σ(x) is a non-decreasing left-continuous bounded function on R and L2
σ contains

polynomials. We set sn :=
∫

R xndσ(x), n ∈ Z+. The sequence {sn}n∈Z+ is positive.
Polynomials are dense in L2

σ if and only if τ(z) = c is a solution of (71) for some
c ∈ R ∪ {∞}.

Remark. An operator approach was used to study the Hamburger moment problem using
the theory of Jacobi matrices in [8], [9], and in [7]. In [10] an operator approach which
used the orthogonal polynomials was given. In [6] it was presented an operator approach
based on the theory of expansions of operators by their generalized eigenvectors.

3. Difference equations of a ”unitary” type

3.1. Case A = Z. We shall consider the operator L from (2). Suppose that a positive
definite kernel K = (Kn,m)n,m∈Z satisfies the relation

(76) LnLmK = K.
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In the coordinate form this relation takes the form

(77)
r+∑

k,j=−r−

αn,kαm,jKn+k,m+j = Kn,m, n,m ∈ Z.

Let H and {xn}n∈Z be the Hilbert space and the sequence provided by Theorem 1 for
K. Define {x′n}n∈Z as in (12). Using (10) and (77) we get

(78) (x′n, x′m) = (xn, xm), n,m ∈ Z.

Suppose that n, m ∈ Z are such that xn = xm. In this case, using (78) we can write

0 = ‖xn − xm‖2 = (xn, xn)− (xn, xm)− (xm, xn) + (xm, xm)

= (x′n, x′n)− (x′n, x′m)− (x′m, x′n) + (x′m, x′m) = ‖x′n − x′m‖2.
Thus, we get x′n = x′m. Define an operator A as in (14). Let L = Lin{xn}n∈Z. Choose
an arbitrary x ∈ L. Suppose that

(79) x =
∑
k∈Z

αkxk, x =
∑
j∈Z

βjxj , αk, βj ∈ C.

Then

0 =
∥∥∥ ∑

k∈Z
αkxk −

∑
j∈Z

βjxj

∥∥∥2

=
( ∑

k∈Z
αkxk −

∑
j∈Z

βjxj ,
∑
l∈Z

αlxl −
∑
r∈Z

βrxr

)
=

∑
k,l∈Z

αkαl(xk, xl)−
∑

k,r∈Z
αkβr(xk, xr)−

∑
j,l∈Z

βjαl(xj , xl) +
∑

j,r∈Z
βjβr(xj , xr)

=
∑

k,l∈Z
αkαl(x′k, x′l)−

∑
k,r∈Z

αkβr(x′k, x′r)−
∑
j,l∈Z

βjαl(x′j , x
′
l) +

∑
j,r∈Z

βjβr(x′j , x
′
r)

=
( ∑

k∈Z
αkx′k −

∑
j∈Z

βjx
′
j ,

∑
l∈Z

αlx
′
l −

∑
r∈Z

βrx
′
r

)
=

∥∥∥ ∑
k∈Z

αkx′k −
∑
j∈Z

βjx
′
j

∥∥∥2

,

and we get ∑
k∈Z

αkx′k =
∑
j∈Z

βjx
′
j .

So, we can correctly define the operator A on L as in (17). For arbitrary

x =
∑
k∈Z

akxk ∈ L, y =
∑
j∈Z

bjxj ∈ L, ak, bj ∈ C,

we have
(Ax,Ay) =

( ∑
k∈Z

akx′k,
∑
j∈Z

bjx
′
j

)
=

∑
k,j∈Z

akbj(x′k, x′j)

=
∑

k,j∈Z
akbj(xk, xj) =

( ∑
k∈Z

akxk,
∑
j∈Z

bjxj

)
= (x, y).

So, the operator A is isometric. Thus, there exists a unitary extension Ã ⊇ A in a space
H̃ ⊇ H, see [2].

Choose an arbitrary a ∈ Z and let χk;n(λ) be a solution of (7),(8). Repeating consid-
erations after formula (18) we get

(80) xn =
r−1∑
k=0

χk;n(A)xk, n ∈ Z.

Let

(81) Ã =
∫ 2π

0

eiθdFθ,
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be the spectral decomposition of Ã, where {Fθ} is the resolution of unity of Ã. From (10)
and (80) we obtain

Kn,m = (xn, xm) =
( r−1∑

k=0

χk;n(A)xk,

r−1∑
l=0

χl;m(A)xl

)
=

r−1∑
k,l=0

(
χk;n(Ã)xk, χl;m(Ã)xl

)
=

r−1∑
k,l=0

((
χl;m(Ã)

)∗
χk;n(Ã)xk, xl

)

=
r−1∑

k,l=0

∫ 2π

0

χk;n(eiθ)χl;m(eiθ) d(Fθxk, xl).

The following theorem is true.

Theorem 3. Let K = (Kn,m)n,m∈Z be a positive definite kernel. It satisfies relation (77)
if and only if there exists a representation

(82) Kn,m =
r−1∑

k,l=0

∫ 2π

0

χk;n(eiθ)χl;m(eiθ) dσk,l(θ),

where χk;l(·) are solutions of (7),(8), and (σk,l(θ))r−1
k,l=0 is a non-decreasing matrix func-

tion on [0, 2π] which elements have a bounded variation on [0, 2π].

Proof. Necessity was already shown above. Sufficiency follows from (7). �

3.2. Case A = Z+. We shall consider the operator L from (26). Suppose that a positive
definite kernel K = (Kn,m)n,m∈Z+ satisfies the relation

(83) LnLmK = K.

In the coordinate form this relation takes the form

(84)
n+r+∑
j=0

m+r+∑
l=0

dn,jdm,lKj,l = Kn,m, n,m ∈ Z+.

Let H and {xn}n∈Z+ be the Hilbert space and the sequence provided by Theorem 1 for
K. Define {x′n}n∈Z+ as in (29). By virtue of (10) and (84) we get

(85) (x′n, x′m) = (xn, xm), n,m ∈ Z+.

Let L = Lin{xn}n∈Z+ . Choose an arbitrary x ∈ L. Suppose that

(86) x =
∑

k∈Z+

αkxk, x =
∑

j∈Z+

βjxj , αk, βj ∈ C.

Like it was done in the previous case after formula (79), we can get∑
k∈Z+

αkx′k =
∑

j∈Z+

βjx
′
j .

So, we can correctly define an operator A on L as in (33). For arbitrary

x =
∑

k∈Z+

akxk ∈ L, y =
∑

j∈Z+

bjxj ∈ L, ak, bj ∈ C,

we have

(Ax,Ay) =
( ∑

k∈Z+

akx′k,
∑

j∈Z+

bjx
′
j

)
=

∑
k,j∈Z+

akbj(x′k, x′j)

=
∑

k,j∈Z+

akbj(xk, xj) =
( ∑

k∈Z+

akxk,
∑

j∈Z+

bjxj

)
= (x, y).
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So, the operator A is isometric. There exists a unitary extension Ã ⊇ A in a space
H̃ ⊇ H.

Let χk;n(λ) be a solution of the equation (34) with the initial conditions (35). Re-
peating the arguments after formula (36) we obtain

(87) xn =
r+−1∑
k=0

χk;n(A)xk, n ∈ Z+.

From the last relation we obtain that

Kn,m = (xn, xm) =
r+−1∑
k,l=0

(χk;n(A)xk, χl;m(A)xl) =
r+−1∑
k,l=0

(
χk;n(Ã)xk, χl;m(Ã)xl

)

=
r+−1∑
k,l=0

((
χl;m(Ã)

)∗
χk;n(Ã)xk, xl

)
=

r+−1∑
k,l=0

∫ 2π

0

χk;n(eiθ)χl;m(eiθ) d(Fθxk, xl).

Thus, we obtain the following theorem.

Theorem 4. Let K = (Kn,m)n,m∈Z+ be a positive definite kernel. It satisfies rela-
tion (84) if and only if there exists a representation

(88) Kn,m =
r+−1∑
k,l=0

∫ 2π

0

χk;n(eiθ)χl;m(eiθ) dσk,l(θ),

where χk;l(·) are solutions of (34), (35), and (σk,l(θ))r+−1
k,l=0 is a non-decreasing matrix

function on [0, 2π] which elements have a bounded variation on [0, 2π].

Proof. Necessity was shown above and sufficiency follows from (34). �

3.3. Stochastic sequences. Recently, in [3] we study different classes of sequences
{xn}n∈Z+ in a separable Hilbert space H. The function Kn,m = (xn, xm), n, m ∈ Z+, is
called a correlation function. Recall the following definition ([3]):

Definition 1. A sequence {xn}n∈Z+ of elements of a Hilbert space H is called P-
stationary, if it admits a representation

(89) xn = pn(U)x0 =
∫ 2π

0

pn(eiθ) dFθx0, n ∈ Z+,

where {pn(·)}n∈Z+ is a system of orthogonal polynomials on the unit circle T, U is a uni-
tary operator in H and {Fθ}θ∈[0,2π] is its orthogonal resolution of unity (not necessarily
left or right continuous).

Recall that a set of polynomials {pn(z)}n∈Z+ (deg pn = n and pn has a positive leading
coefficient) is a system of orthogonal polynomials on T if

(90)
∫ 2π

0

pn(eiθ)pm(eiθ) dσ(θ) = Anδn,m, An > 0, n,m ∈ Z+,

where σ(θ) is a non-decreasing function on [0, 2π], such that
∫ 2π

0
dσ = 1. If An = 1,

n ∈ Z+, the polynomials are called orthonormal. Orthonormal polynomials pn satisfy a
recurrence relation [12]

(91) zpn(z) =
n+1∑
j=0

dn,jpj(z),

where dn,n+1 = κn

κn+1
, dn,j = − κj

κn
ajan+1, an = pn(0)

κn
, and κj is the leading coefficient

of pj .
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The correlation function of a P-stationary sequence {xn}n∈Z+ with orthonormal poly-
nomials satisfies relation (84) with r+ = 1, see [3, Theorem 5]. Now we can strengthen
Theorem 6 in [3]. The following theorem is true.

Theorem 5. Let a sequence {xn}n∈Z+ in a Hilbert space H be given. If its correla-
tion function Kn,m satisfies relation (84) with r+ = 1 and dn,j from (91) then it is
P-stationary with orthonormal polynomials in a Hilbert space H̃ ⊇ H.

Proof. The proof is the same as in [3] if we take into account that the operator V in (85)
in [3] is correctly defined in our case (see our considerations above). �
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