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HYPERSPACES OF CLOSED LIMIT SETS

ALDO J. LAZAR

Abstract. We study Michael’s lower semifinite topology and Fell’s topology on the
collection of all closed limit subsets of a topological space. Special attention is given

to the subfamily of all maximal limit sets.

1. Introduction

The collection of all closed subsets of a topological space has been for long of interest to
topologists and functional analysts. It seems that the modern investigation of the subject
began with [10]. It is well known that there is a one-to-one correspondence between the
closed two-sided ideals of a C∗-algebra and the closed subsets of its primitive ideal space
as detailed in [4, Proposition 3.2.2]. Naturally, this correspondence attracted the interest
of operator algebraists in the hyperspace of the closed subsets of a topological space. It
led Fell to the definition in [6] of a topology on this hyperspace that is of significance in
topology and several branches of analysis. Moreover, according to [2, Proposition 3.2],
when one restricts this correspondence to the closed limit subsets of the primitive ideal
space, a very interesting class of ideals is obtained. The wealth of information given in [1]
on this class of ideals stimulated the present investigation and a significant portion of the
results that appear here were proved in [1] for this special family of ideals of a C∗-algebra.
However, no knowledge of the theory of C∗-algebras is required for the understanding of
the following; we discuss the properties of two topologies on the collection of all the closed
limit subsets of a topological space. All the definitions beyond the common knowledge
of a topologist or an analyst are given in the next section. Of course, all our results are
significant only for non Hausdorff spaces, as the primitive ideal spaces often are.

In section 3 we study the Michael’s lower semifinite topology on the family of all closed
limit sets. We establish that with this topology this hyperspace is a locally compact Baire
space. We restrict the discussion to the collection of all maximal limit sets in section 4.
The Fell topology and the lower semifinite topology coincide on this hyperspace. This
hyperspace is also a Baire space and if the initial space is second countable and locally
compact then the hyperspace of maximal limit sets is a Gδ subspace in the space of all
closed limit sets equipped with the Fell topology. Section 5, which is independent of
sections 3 and 4, contains a discussion of the space of maximal limit sets of the cartesian
product of two topological spaces.

2. Preliminaries

For a topological space X we shall denote by F(X) the hyperspace of all its closed
subsets and F ′(X) will stand for the collection of all the non-void closed subsets of X.
A subset L of X is called a limit set if there is a net that converges to all the points of L.
By [5, Lemme 9], L ⊂ X is a limit set if and only if every finite family of open subsets
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that intersect L has a non-void intersection. The collection of all the closed limit sets of
X will be denoted by L(X) and we set L′(X) := L(X)∩F ′(X). It easily follows from the
lemma quoted above and Zorn’s lemma that each L ∈ L(X) is contained in a maximal
limit set. Obviously, every maximal limit set is closed and non-void. ML(X) will denote
the collection of all maximal limit sets. There is a natural map ηX : X → L′(X) defined
by ηX(x) := {x}. This map is one to one if and only if X is a T0 space.

Some of the results below are valid under the restriction that the topological space
X is locally compact that is, each point in X has a fundamental system of compact
neighbourhoods. Such spaces were called locally quasi-compact in [3, I, 9, Ex. 29].

For C be a compact subset and Φ a finite family (possibly empty) of open subsets of
X let

U(C,Φ) := {A ∈ F(X) | A ∩ C = ∅, A ∩O 6= ∅, O ∈ Φ} .
The collection of all such U(C,Φ) forms a base for a topology on F(X) that was defined
by Fell in [6] and which will be denoted here by τs. It was shown in [6] that with this
topology F(X) is a compact space that is Hausdorff if X is locally compact. If X is locally
compact and has a countable base then (F(X), τs) is metrizable, see [5, Lemme 2].

The collection of all U(∅,Φ) when Φ runs through all the finite families of open subsets
of X is the base of a T0 topology on F(X), weaker than τs, which we shall denote by
τw. It was called the lower semifinite topology in [10, Definition 9.1] and was further
discussed in [8]. It is easily seen that if B is a base for the topology of X then the
collection of all U(∅,Φ) when Φ runs through all the finite subfamilies of B is a base for
(F(X), τw). Thus, if X is second countable then (F(X), τw) is also second countable.
Clearly F ′(X) = U(∅, {X}) hence F ′(X) is τw-open in F(X). The only τw-open subset
of F(X) to which the empty subset of X belongs is F(X) itself so F ′(X) is τw-dense in
F(X) and L′(X) is τw-dense in L(X). Obviously,ML(X) is also τw-dense in L(X). For
every A ∈ F(X) the τw-closure of {A} is {B ∈ F(X) | B ⊂ A} and this entails the T0

separation property for (F(X), τw). The map ηX is τw continuous; it is a homeomorphism
onto its image if X is T0. Generalizing [1, Proposition 3.1], we claim that always the
τw-closure of ηX(X) is L(X). Indeed, it is easily seen that A ∈ F(X) is in the τw-closure
of ηX(X) if and only if every finite family of open subsets that intersect A has a non-void
intersection that is, if and only if A ∈ L(X). In particular, L(X) is τw-closed hence also
τs-closed. Thus (L(X), τs) is a compact Hausdorff space. From the τw-density of ηX(X)
in L(X) it follows that (L(X), τw) is connected when X is connected. However, trivial
examples show that (L(X), τs) need not be connected if X is connected.

Concerning the τs-convergence of nets, the following was proved in [11, Lemma H.2]:

Proposition 2.1. Let {Aι} be a net of closed subsets of the topological space X and
A ∈ F(X). The net τs-converges to A if (a) given xι ∈ Aι such that the net {xι}
converges to x, then x ∈ A, and (b) if x ∈ A then there is a subnet {Aικ} and there are
points xικ ∈ Aικ such that {xικ} converges to x. When X is locally compact the converse
is true too : the net {Aι} τs-converges to A only if the conditions (a) and (b) hold.

The characterization of the τs-convergence of nets given below is in line with our
attempt to investigate the links between the two topologies on the hyperspace of closed
subsets noted above. A net in a topological space was called by Fell primitive in [6] if the
set of all its limits equals the set of all its cluster points. With this definition we have

Proposition 2.2. Let X be a topological space. If {Aι} is a primitive net in (F(X), τw)
and the set of all its τw-limits is {B ∈ F(X) | B ⊂ A} where A ∈ F(X) then {Aι} τs-
converges to A. If X is locally compact then the converse holds: a net {Aι} that is
τs-convergent to A in F(X) is primitive in (F(X), τw) and the set of all its τw-limits is
{B ∈ F(X) | B ⊂ A}.
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Proof. Suppose {Aι} is a τw-primitive net in F(X) and the set of all its limits is
{B | B ⊂ A}. Let U(C,Φ) be a basic τs-neighbourhood of A. If we assume that {Aι} is
not eventually in U(C,Φ) then, by passing to a subnet and relabelling, we have Aι∩C 6= ∅
for each ι. We choose points xι ∈ Aι ∩ C. There is a subnet {xικ} that converges to
a point x in the compact set C. We claim that {Aικ} τw-converges to {x}. Indeed, let
Φ1 be a finite family of open subsets of X all of which intersect {x} that is, such that x
belongs to the intersection V of all the sets in Φ1. Then xικ is eventually in V . Thus, for
κ large enough, Aικ∩V 6= ∅ and the claim is established. Accordingly, {x} is a τw-cluster
point of the primitive net {Aι} hence {x} ⊂ A. We got A ∩ C 6= ∅, a contradiction.

Suppose now that X is locally compact and the net {Aι} τs-converges to A. It follows
readily from the definition of the topologies on F(X) that {Aι} τw-converges to every
closed subset B of X which is a subset of A. Assume that there is a subnet {Aικ} that
τw-converges to some B ∈ F(X) with B \ A 6= ∅ and let x ∈ B \ A. There is a compact
set C ⊂ X such that x ∈ Int(C) ⊂ C ⊂ X \ A. U(C, {X}) is a τs-neighbourhood of A
hence Aικ ∩C = ∅ eventually. On the other hand, U(∅, {Int(C)}) is a τw-neighbourhood
of B hence Aικ ∩ Int(C) 6= ∅ and we got a contradiction. We have proved that each
τw-cluster point of {Aι} is a subset of A and we are done. �

3. The topology τw

First we want to establish the local compactness of F(X), F ′(X), L(X), and L′(X)
with their τw-topology when the space X is locally compact. The result for the first two
spaces is likely to be known but we have no reference for it. The local compactness of
L(X) and L′(X) was established when X is the primitive ideal space of a C∗-algebra in
[1, Theorem 3.7] by using special properties of such spaces.

Lemma 3.1. Let C1, . . . Cn be compact subsets of the topological space X. Then S :=
{A ∈ F(X) | A ∩ Ci 6= ∅, 1 ≤ i ≤ n} is τw-compact.

Proof. Let {Mα | α ∈ A} be a net in S and xiα ∈ Mα ∩ Ci. By passing to successive
subnets we may suppose that each of the nets

{
xiα | α ∈ A

}
, 1 ≤ i ≤ n, converges to a

point xi ∈ Ci. Denote by M the closure of {x1, . . . xn} and suppose E := {U1, . . . Up} is
a finite family of open subsets of X such that M ∈ U(∅, E). Then for each k, 1 ≤ k ≤ p,
there is 1 ≤ ik ≤ n such that xik ∈ Uk. Hence there is α0 ∈ A such that for all 1 ≤ k ≤ p
and α > α0 we have xikα ∈ Uk. Thus, if α > α0 then Mα ∩ Uk 6= ∅, 1 ≤ k ≤ p. We have
established that {Mα} converges weakly to M and clearly M ∈ S. �

Theorem 3.2. If X is a locally compact space then F(X), F ′(X), L(X), and L′(X)
are locally compact spaces with their τw topology.

Proof. Suppose X is a locally compact space and let A be a closed subset of X. For a
basic τw-neighbourhood U(∅, {Ui}ni=1) of A we choose xi ∈ A ∩ Ui, 1 ≤ i ≤ n. Let Vi be
a compact neighbourhood of xi contained in Ui and Wi := Int(Vi). Then

A ∈ U(∅, {Wi}ni=1) ⊂ V := {B ∈ F(X) | B ∩ Vi 6= ∅, 1 ≤ i ≤ n} ⊂ U(∅, {Ui}ni=1).

Thus V is a neighbourhood of A that is compact by the preceding lemma. We have
proved that (F(X), τw) is locally compact.

As remarked above, F ′(X) is τs-open in F (X), L(X) is τw-closed, L′(X) = L(X) ∩
F ′(X) is relatively open in L(X) and the conclusion follows. �

The next result was stated in [1, Proposition 3.4] for the primitive ideal space of a
C∗-algebra. However, the proof given there is valid for any topological space and we
reproduce it here.
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Proposition 3.3. If X is a Baire topological space then (L(X), τw) and (L′(X), τw) are
Baire spaces.

Proof. For each natural number n let Un be a τw-dense open subset of L(X). Since
ηX(X) is τw-dense in L(X) and ηX is τw-continuous, η−1

X (Un) is an open dense subset of
X. From the hypothesis it follows that ∩n≥1η

−1
X (Un) is dense in X. But then

ηX(∩n≥1η
−1
X (Un)) = ηX(X)

⋂
(∩n≥1Un)

is τw-dense in Li(X). In particular, ∩n≥1Un is τw-dense in L(X).
L′(X) is an open dense subset of (L(X), τw) so it is a Baire space too. �

Proposition 3.4. If X has a base consisting of open and compact sets then the same is
true for (F(X), τw) and its subspaces F ′(X), L(X), and L′(X).

Proof. Suppose B is a base for the topology of X consisting of open and compact sets.
Then the collection of all the families U(∅,Φ) where Φ runs through all the finite sub-
families of B is a base for (F(X), τw). Each U(∅,Φ) is τw-compact by Lemma 3.1. We
get a base for F ′(X) by requiring Φ to run through the nonempty finite subfamilies of
B. Intersecting each of the elements of the bases we got for F(X) and F ′(X) with the
τw-closed set L(X) we get bases as needed for L(X) and L′(X), respectively. �

4. The hyperspace ML(X)

The next result generalizes [1, Theorem 4.2] where the framework is that of a certain
family of ideals of a C∗-algebra and the proof uses C∗-algebraic methods. The ”if” part
of the statement is also a consequence of [5, Lemme 15].

Theorem 4.1. The identity map (L(X), τw) → (L(X), τs) is continuous at A ∈ L(X)
if and only if A ∈ML(X).

Proof. Suppose A is a maximal limit set. Let C be a compact subset of X and Φ a finite
family of open subsets of X such that A ∈ U(C,Φ). We claim that there is a finite family
Ψ ⊃ Φ of open subsets of X each of which has a nonempty intersection with A and such
that U(∅,Ψ) ∩ L(X) ⊂ U(C,Φ) ∩ L(X). This, of course, will establish the continuity of
the identity map at A.

Assume there is no such Ψ. Then for each finite family Ψ ⊃ Φ of open subsets of X
such that every set in Ψ has a nonempty intersection with A there is BΨ ∈ (U(∅,Ψ) \
U(C,Φ)) ∩ L(X). Denote the collection of all such families Ψ by Λ and order it by
inclusion. Clearly Ψ ∈ Λ implies BΨ ∩ C 6= ∅. Choose xΨ ∈ BΨ ∩ C. The net {xΨ} has
a converging subnet to some point x ∈ C. We have x /∈ A hence A ∪ {x} % A. We shall
show that A∪{x} is a limit set hence A∪{x} ∈ L′(X), and this will yield a contradiction
to the maximality of A.

Let N be the family of all the open neighbourhoods of x. We order N × Λ by
defining (V1,Ψ1) ≺ (V2,Ψ2) if V1 ⊃ V2 and Ψ1 ⊂ Ψ2). Denote by Γ the collection of
all the pairs (V,Ψ) ∈ N × Λ such that the finite family of open sets {V } ∪ Ψ has a
nonempty intersection. For (V1,Ψ1), (V2,Ψ2) ∈ N × Λ there is (V,Ψ) ∈ Γ such that
(V1,Ψ1) ≺ (V,Ψ) and (V1,Ψ2) ≺ (V,Ψ). Indeed, V := V1 ∩V2 is an open neighbourhood
of x and Ψ1∪Ψ2 ∈ Λ hence there is Ψ ∈ Λ that satisfies Ψ ⊃ Ψ1∪Ψ2 and xΨ ∈ V . Thus
xΨ ∈ V ∩BΨ and since BΨ is a limit set that belongs to U(∅,Ψ), the family of open sets
{V } ∪Ψ has a nonempty intersection by the previously quoted Lemme 9 of [5]. We got
(V,Ψ) ∈ Γ as needed. In particular, Γ is a directed set with this order restricted to it.
For each (V,Ψ) ∈ Γ we choose y(V,Ψ) in the intersection of the family {V } ∪Ψ. The net
{y(V,Ψ)} converges to every point of {x} ∪A. It is clear that the net converges to x. Let
now y be a point of A and W an open neighbourhood of y. With Ψ0 := {W} ∪ Φ we
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have (X,Ψ0) ∈ N × Λ. By the order property of Γ proved above there is (V1,Ψ1) ∈ Γ
such that (X,Ψ0) ≺ (V1,Ψ1). Clearly if (V,Ψ) ∈ Γ and (V1,Ψ1) ≺ (V,Ψ) then W ∈ Ψ
hence y(V,Ψ) ∈ ∩{O | O ∈ Ψ} ⊂ W . We have proved that the net {y(V,Ψ) | (V,Ψ) ∈ Γ}
converges to y as claimed.

Let now L be a non-maximal closed limit set of X. There are z ∈ X \L and a net that
converges to all the points of L∪ {z}. The set L belongs to the τs-open set U({z}, {X})
but no τw-neighbourhood of L in L(X) is contained in U({z}, {X}) thus the identity
map from (L(X), τw) to (L(X), τs) is not continuous at L. Indeed, if U(∅,Φ) is any basic
τw-neighbourhood of L then L ∪ {z} ∈ U(∅,Φ) ∩ L(X) but L ∪ {z} /∈ U({z}, {X}). �

Corollary 4.2. The restrictions of τw and τs to ML(X) coincide.

A point y of a topological space Y is called separated in Y if, for every z ∈ Y \ {y},
y and z have disjoint neighbourhoods; equivalently, {y} is a maximal limit set(see [5,
Dèfinition 16]). It is proved in [5, Thèoréme 19] that if Y is a second countable locally
compact Baire space then the subset of all separated points in Y is a dense Gδ. For
any topological space X the density of the set of all separated points in (L(X), τw) is an
immediate corollary of the next result.

Theorem 4.3. Let X be a topological space. An element A of L(X) is separated in
(L(X), τw) if and only if A is a maximal limit set.

Proof. If A ∈ L(X) is not maximal then there is A1 ∈ L(X) such that A1 % A. Then
A1 does not belong to the τw-closure of {A} in L(X). However, A is in the τw-closure of
{A1} in L(X) hence A and A1 cannot be separated by disjoint τw-open sets.

Suppose now that A is a maximal limit set and A1 ∈ L(X) does not belong to the
τw-closure of {A} that is, A1 is not included in A. Then A ∪A1 ∈ F(X) \ L(X). By [5,
Lemme 9] there is a finite family Φ of open subsets of X such that each of them has a
nonempty intersection with A∪A1 but the intersection of all the sets in Φ is void. Let Ψ
be the subfamily of Φ consisting of those sets that have a nonempty intersection with A.
Since A1 ∈ L(X) we must have, by the above quoted lemma of Dixmier, Ψ 6= ∅. Similarly,
Ψ1 := Φ \Ψ is not empty since A ∈ L(X). Now, U(∅,Ψ) ∩ L(X) is a τw-neighbourhood
of A in L(X) and U(∅,Ψ1) ∩ L(X) is a τw-neighbourhood of A1 in L(X). We have

U(∅,Ψ) ∩ U(∅,Ψ1) ∩ L(X) = ∅
hence A and A1 can be separated by disjoint τw-open sets. Indeed, if the above equality
does not hold and B ∈ U(∅,Ψ) ∩ U(∅,Ψ1) ∩ L(X) then

∩{V | V ∈ Φ} = (∩{V | V ∈ Ψ})
⋂

(∩{V | V ∈ Ψ1}) 6= ∅

since B ∈ L(X), a contradiction. �

The following two propositions were stated and proved in [1] in the language of C∗-
algebras. We only had to rewrite the proofs to be fit in a more general situation.

Proposition 4.4 ([1, Proposition 4.9]). ML(X) is a Baire space if X is a Baire space.

Proof. Let {Vn} be a sequence of τw-open subsets of L(X) such that every Un := Vn ∩
ML(X) is dense in ML(X). Since ML(X) is τw-dense in L(X) we get that each Vn is
τw-dense in L(X). By Proposition 3.3, ∩Vn is τw-dense in L(X). Let now U be an open
set in ML(X). Then U = V ∩ML(X), V being a τw-open set in L(X). There exist
B ∈ (∩Vn) ∩ V and B1 ∈ML(X) with B ⊂ B1. Since B1 belongs to any τw-open set of
L(X) to which B belongs, we have

B1 ∈ (∩Vn) ∩ V ∩ML(X) = (∩Un) ∩ U .
Hence ∩Un is dense in ML(X). �
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Proposition 4.5 ([1, Corollary 4.6]). If X is a second countable locally compact Baire
space then the family {{x} | x is separated in X} is dense in ML(X).

Proof. As mentioned before, [5, Thèoréme 19] asserts that the set

T := {x ∈ X | x is separated in X}

is dense in X. Since ηX(X) is τw-dense in L(X) and ηX is τw-continuous we can infer
that ηX(T ) is τw-dense in L(X). In particular, ηX(T ) = ηX(X) ∩ML(X) is dense in
ML(X). �

We shall have more to say about the set considered in the statement of Proposition 4.5
in Corollary 4.10.

Theorems 4.1 and 4.3 give us some information about the way ML(X) is imbedded
in L(X). Theorem 4.8 will show us another aspect of this imbedding when the space is
second countable. First we need two lemmas.

Lemma 4.6. Let Y be a compact space, M ⊂ Y × Y and

S(M) := {y ∈ Y | {y} × Y ⊂M}.

If M is open then S(M) is open and if M is a Gδ set then S(M) is a Gδ set too.

Proof. Suppose M is an open set. If y ∈ S(M) then, by using the compactness of Y , we
can infer that there are open subsets {Ui}ni=1 and {Vi}ni=1 of Y such that

{y} × Y ⊂ ∪ni=1(Ui × Vi) ⊂M.

Then
y ∈ ∩ni=1Ui ⊂ S(M)

and ∩ni=1Ui is open.
Suppose now M is a Gδ set, M = ∩∞1 Mn with each Mn open in Y × Y . Since

S(M) = ∩∞1 S(Mn) and S(Mn) is open by the first part of the proof, the conclusion
obtains. �

Lemma 4.7. Let X be a locally compact space. Then

E := {(A,B) ∈ L(X)× L(X) | A ⊂ B}

is (τs × τs)-closed in L(X)× L(X).

Proof. Let {(Aι, Bι)} be a net in E that (τs×τs)-converges to (A,B). Given x ∈ A there
exists, by Proposition 2.1, a subnet {Aικ} of {Aι} and points xικ ∈ Aικ ⊂ Bικ such that
{xικ} converges to x. Again by Proposition 2.1, x ∈ B and we have shown A ⊂ B that
is (A,B) ∈ E . �

Theorem 4.8. If X is a second countable locally compact space then ML(X) is a Gδ
subset of (L(X), τs).

Proof. Set

D := {(A,A) | A ∈ L(X)}, E := {(A,B) ∈ L(X)× L(X) | A ⊂ B},

and
T := L(X)× L(X) \ (E \ D).

Then for A ∈ L(X) we have A ∈ML(X) if and only if {A} × L(X) ⊂ T . T is a Gδ set
since E \ D is an Fσ set. The conclusion follows now from Lemma 4.6. �

Remark 4.9. If X is a second countable locally compact space then ML(X) is a Baire
space since it is a Gδ subset of the compact metrizable space (L(X), τs).
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Corollary 4.10. If X is a second countable locally compact space in which every closed
subset is a Baire space then {{x} | x is separated in X} is a Gδ subset of L(X); it is
also a dense subset of ML(X).

Proof. By [5, Thèoréme 7], ηX(X) is a Gδ subset of F(X) hence it is a Gδ subset of
L(X). Then {{x} | x is separated in X} = ηX(X) ∩ML(X) is a dense Gδ subset of
ML(X) by Proposition 4.5 and a Gδ subset of L(X) by Theorem 4.8. �

Remark 4.11. The primitive ideal space of a separable C∗-algebra with its hull-kernel
topology satisfies the hypothesis of Corollary 4.10.

5. Maximal limit sets of a cartesian product

Let now X1 and X2 be topological spaces. We are going to discuss ML(X1 × X2)
but first we shall establish two results for F(X1) × F(X2). Everywhere in this section
φ : F(X1)×F(X2)→ F(X1 ×X2) will be the map given by φ(A1, A2) := A1 ×A2. The
continuity of φ was proved in [9, Lemma 1] but be reproduce here the simple proof for
the sake of completeness.

Proposition 5.1. Let F(X1), F(X2), and F(X1×X2) have their τw topologies. Then φ
is continuous and its restriction to F ′(X1)×F ′(X2) is a homeomorphism onto its image
(which is contained in F ′(X1 ×X2)).

Proof. Let U be an open subset of X1 × X2, say U = ∪(U1
ι × U2

ι ) where U jι are open
subsets of Xj . We have

{(A1, A2) ∈ F(X1)×F(X2) | φ(A1, A2) ∩ U 6= ∅}
= ∪({A1 ∈ F(X1) | A1 ∩ U1

ι 6= ∅} × {A2 ∈ F(X2) | A2 ∩ U2
ι 6= ∅}).

The latter is an open subset of F(X1)×F(X2) so the continuity of φ is established.
Let now V1 ⊂ X1, V2 ⊂ X2 be open sets. Then

φ({(A1, A2) ∈ F ′(X1)×F ′(X2) | A1 ∩ V1 6= ∅, A2 ∩ V2 6= ∅})
= φ(F ′(X1)×F ′(X2)) ∩ {A ∈ F ′(X1)×X2) | A ∩ (V1 × V2) 6= ∅}.

Since the restriction of φ to F ′(X1)×F ′(X2) is one to one this shows that it is also an
open map with respect to the relative topology of its image and the proof is complete. �

A similar result is valid for the Fell topology but with an additional hypothesis on the
spaces.

Proposition 5.2. Let X1 and X2 be locally compact spaces. We suppose that F(X1),
F(X2), and F(X1×X2) are endowed with their τs-topologies. Then φ is continuous and
its restriction to F ′(X1)×F ′(X2) is a homeomorphism onto its image.

Proof. As in the proof of Proposition 5.1 we let U := ∪(U1
ι × U2

ι ) where U jι are open
subsets of Xj . For the first step of the continuity proof we let Cjk, 1 ≤ k ≤ n, be compact
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subsets of Xj . Then{
(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ ∪(C1

k × C2
k) = ∅, (A1 ×A2) ∩ U 6= ∅

}
= ∩nk=1

{
(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ (C1

k × C2
k) = ∅,

(A1 ×A2) ∩ U 6= ∅}
= ∩nk=1

(
∪ι
{

(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ (C1
k × C2

k) = ∅,
(A1 ×A2) ∩ (U1

ι × U2
ι ) 6= ∅

})
= ∩nk=1

{
∪ι
({
A1 ∈ F(X1) | A1 ∩ C1

k = ∅, A1 ∩ U1
ι 6= ∅

}
×
{
A2 ∈ F(X2) | A2 ∩ U2

ι 6= ∅
})

∪ ∪ι
({
A1 ∈ F(X1) | A1 ∩ U1

ι 6= ∅
}
×
{
A2 ∈ F(X2) | A2 ∩ C2

k = ∅,
A2 ∩ U2

ι 6= ∅
})}

.

Clearly the latter is an open subset of F(X1)×F(X2).
Let now C be an arbitrary compact subset of X1 × X2. To finish the proof of the

continuity of φ we have to show that

U := {(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ C = ∅, (A1 ×A2) ∩ U 6= ∅}

is open in F(X1) × F(X2). Suppose (A0
1, A

0
2) ∈ U . Then C ⊂ (X1 × X2) \ (A0

1 × A0
2)

hence there are compact subsets {Cjk}nk=1} of Xj , j = 1, 2, such that

C ⊂ ∪nk=1int(C1
k × C2

k) ⊂ ∪nk=1(C1
k × C2

k) ⊂ (X1 ×X2) \ (A0
1 ×A0

2).

Thus
(A0

1, A
0
2) ∈ {(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ ∪nk=1(C1

k × C2
k) = ∅,

(A1 ×A2) ∩ U 6= ∅}

which is an open subset of F(X1)×F(X2) by the first part of the proof. Clearly

{(A1, A2) ∈ F(X1)×F(X2) | (A1 ×A2) ∩ ∪nk=1(C1
k × C2

k) = ∅,
(A1 ×A2) ∩ U 6= ∅} ⊂ U

and this shows that U is indeed open.
The remainder of the proof parallels that of the corresponding statement in Proposition

5.1. Let Cj ⊂ Xj be compact and Vj ⊂ Xj be open, j = 1, 2. We have

φ ({A1 ∈ F ′(X1) | A1 ∩ C1 = ∅, A1 ∩ V1 6= ∅} × {A2 ∈ F ′(X2) | A2 ∩ C2 = ∅,
A2 ∩ V2 6= ∅})

= φ(F ′(X1)×F ′(X2)) ∩ {A ∈ F ′(X1 ×X2) | A ∩ (C1 × C2) = ∅,
A ∩ (V1 × V2) 6= ∅}

hence the restriction of φ to F ′(X1)×F ′(X2) is an open map onto its image. �

We have φ(L′(X1) × L′(X2)) ⊂ L′(X1 × X2); indeed, if Lj ∈ L′(Xj) then every
collection of open subsets of X1 ×X2 that intersect L1 × L2 has a non-void intersection
hence φ(L1, L2) ∈ L′(X1 × X2). Very simple examples show that the inclusion can
be strict. For instance, if X1 and X2 are T1 spaces but not Hausdorff then one sees
immediately that the inclusion is strict. However the situation with the spaces of maximal
limit sets is different. We shall use below the restriction of the τw topology to the spaces
of maximal limit sets that we discuss.

Theorem 5.3. Let X1 and X2 be topological spaces and φ the map defined above. Then
the restriction of φ to ML(X1)×ML(X2) is a homeomorphism onto ML(X1 ×X2).
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Proof. We have only to show that φ(ML(X1) ×ML(X2)) = ML(X1 × X2), the rest
being a consequence of Proposition 5.1. Denote by pj the projection of X1×X2 onto Xj ,
j = 1, 2, and let L be a closed limit subset of X1×X2. Then pj(L) is a limit subset of Xj ,
L ⊂ p1(L)×p2(L) and if L is a maximal limit set then one must have L = p1(L)×p2(L).
Clearly in this case pj(L) must also be a maximal limit subset of Xj . Thus we have
proved φ(ML(X1)×ML(X2)) ⊃ML(X1 ×X2). Let now Mj ∈ML(Xj), j = 1, 2. We
have (M1×M2) ∈ L′(X1×X2). If M is a limit subset of X1×X2 with (M1×M2) ⊂M
then pj(M) is a limit subset of Xj and

(M1 ×M2) ⊂M ⊂ p1(M)× p2(M).

The maximality of Mj forces Mj = pj(M) and we got M1 ×M2 = M . Thus M1 ×M2

is a maximal limit subset of X1 × X2 and we have shown φ(ML(X1) ×ML(X2)) ⊂
ML(X1 ×X2). �

Remark 5.4. Theorem 5.3 allows us to give an alternative proof for Theorem 1.1 of [7]
on the minimal primal ideal space of the spatial tensor product of two C∗-algebras. The
details, in a more general setting, will appear elsewhere.
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